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Model DesignModel Design

pelab2 Peter Fritzson     CopyrightPeter Fritzson     Copyright ©© Open Source Modelica Consortium

Modeling ApproachesModeling Approaches

• Traditional state space approach

• Traditional signal-style block-oriented approach

• Object-oriented approach based on finished 
library component models

• Object-oriented flat model approach

• Object-oriented approach with design of library 
model components
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Modeling Approach 1Modeling Approach 1

Traditional state space approach
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Traditional State Space ApproachTraditional State Space Approach

• Basic structuring in terms of  subsystems and 
variables

• Stating equations and formulas

• Converting the model to state space form:
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Difficulties in State Space ApproachDifficulties in State Space Approach

• The system decomposition does not 
correspond to the "natural" physical system 
structure

• Breaking down into subsystems is difficult if 
the connections are not of input/output type.

• Two connected state-space subsystems  do 
not usually give a state-space system 
automatically.
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Modeling Approach 2Modeling Approach 2

Traditional signal-style block-oriented approach
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Physical Modeling Style (e.g Modelica) vs Physical Modeling Style (e.g Modelica) vs 
signal flow Blocksignal flow Block--Oriented Style (e.g. Simulink)Oriented Style (e.g. Simulink)
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Modelica: 
Physical model – easy to 
understand

Block-oriented:
Signal-flow model – hard to 
understand for physical systems
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Traditional Block Diagram ModelingTraditional Block Diagram Modeling
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• Special case of model components:
the causality of each interface variable 
has been fixed to either input or output

Typical Block diagram model components:

Simulink is a common block diagram tool
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Physical Modeling Style (e.g Modelica) vs Physical Modeling Style (e.g Modelica) vs 
signal flow Blocksignal flow Block--Oriented Style (e.g. Simulink)Oriented Style (e.g. Simulink)
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Modelica: 
Physical model – easy to 
understand

Block-oriented:
Signal-flow model – hard to 
understand for physical systems
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Example Block Diagram ModelsExample Block Diagram Models
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Properties of Block Diagram ModelingProperties of Block Diagram Modeling

• - The system decomposition topology does not 
correspond to the "natural" physical system structure

• - Hard work of manual conversion of equations into 
signal-flow representation

• - Physical models become hard to understand in signal 
representation

• - Small model changes  (e.g. compute positions from 
force instead of force from positions) requires redesign of 
whole model

• + Block diagram modeling works well for control systems 
since they are signal-oriented rather than "physical"
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ObjectObject--Oriented Modeling VariantsOriented Modeling Variants

• Approach 3: Object-oriented approach based on 
finished library component models

• Approach 4: Object-oriented flat model approach

• Approach 5: Object-oriented approach with 
design of library model components
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ObjectObject--Oriented ComponentOriented Component--Based Based 
Approaches in GeneralApproaches in General

• Define the system briefly
• What kind of system is it? 
• What does it do?

• Decompose the system into its most important 
components
• Define communication, i.e., determine interactions
• Define interfaces, i.e., determine the external ports/connectors
• Recursively decompose model components of “high complexity”

• Formulate new model classes when needed
• Declare new model classes.
• Declare possible base classes for increased reuse and maintainability
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TopTop--Down versus BottomDown versus Bottom--up Modelingup Modeling

• Top Down: Start designing the overall view. 
Determine what components are needed.

• Bottom-Up: Start designing the components 
and try to fit them together later.
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Approach 3: TopApproach 3: Top--Down ObjectDown Object--oriented oriented 
approach using library model componentsapproach using library model components

• Decompose into subsystems
• Sketch communication
• Design subsystems models by connecting 

library component models
• Simulate!
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Decompose into Subsystems and Sketch Decompose into Subsystems and Sketch 
Communication Communication –– DCDC--Motor Servo ExampleMotor Servo Example

The DC-Motor servo subsystems and their connections
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Modeling the Controller SubsystemModeling the Controller Subsystem

Modeling the controller
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Modeling the Electrical SubsystemModeling the Electrical Subsystem

Modeling the electric circuit
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Modeling the Mechanical SubsystemModeling the Mechanical Subsystem

Modeling the mechanical subsystem including the speed sensor.
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ObjectObject--Oriented Modeling from ScratchOriented Modeling from Scratch

• Approach 4: Object-oriented flat model approach

• Approach 5: Object-oriented approach with 
design of library model components



pelab21 Peter Fritzson     CopyrightPeter Fritzson     Copyright ©© Open Source Modelica Consortium

Example: OO Modeling of a Tank SystemExample: OO Modeling of a Tank System
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• The system is naturally 
decomposed into components
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ObjectObject--Oriented ModelingOriented Modeling

Approach 4: Object-oriented flat model design
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Tank System Model FlatTank Tank System Model FlatTank –– No Graphical No Graphical 
StructureStructure

• No component 
structure

• Just flat set of 
equations

• Straight-
forward but 
less flexible, 
no graphical 
structure

model FlatTank
// Tank related variables and parameters
parameter Real flowLevel(unit="m3/s")=0.02;
parameter Real area(unit="m2")       =1;
parameter Real flowGain(unit="m2/s") =0.05;
Real           h(start=0,unit="m")   "Tank level";
Real           qInflow(unit="m3/s")  "Flow through input valve";
Real           qOutflow(unit="m3/s") "Flow through output valve";
// Controller related variables and parameters
parameter Real K=2                   "Gain";
parameter Real T(unit="s")= 10       "Time constant";
parameter Real minV=0, maxV=10;    // Limits for flow output
Real           ref = 0.25  "Reference level for control";
Real           error       "Deviation from reference level";
Real           outCtr      "Control signal without limiter";
Real           x;          "State variable for controller";

equation
assert(minV>=0,"minV must be greater or equal to zero");//
der(h) = (qInflow-qOutflow)/area;   // Mass balance equation
qInflow  = if time>150 then 3*flowLevel else flowLevel; 
qOutflow = LimitValue(minV,maxV,-flowGain*outCtr);
error  = ref-h;
der(x) = error/T;
outCtr = K*(error+x);

end FlatTank; 
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Simulation of Simulation of FlatTankFlatTank SystemSystem
• Flow increase to flowLevel at time 0
• Flow increase to 3*flowLevel at time 150

50 100 150 200 250 
time 

0.1

0.2

0.3

0.4

simulate(FlatTank, stopTime=250)

plot(h, stopTime=250)
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ObjectObject--Oriented ModelingOriented Modeling

• Approach 5: 
Object-oriented approach with design of 
library model components
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Object Oriented ComponentObject Oriented Component--Based ApproachBased Approach
Tank System with Three ComponentsTank System with Three Components

TankPI 

piContinuous

tank
tActuatortSensor

qIn qOut

cOutcIn

source

model TankPI
LiquidSource           source(flowLevel=0.02);
PIcontinuousController piContinuous(ref=0.25);
Tank                   tank(area=1);

equation
connect(source.qOut, tank.qIn);
connect(tank.tActuator, piContinuous.cOut);
connect(tank.tSensor, piContinuous.cIn);

end TankPI;

• Liquid source
• Continuous PI 

controller
• Tank
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Tank modelTank model
• The central equation regulating the behavior of the tank is the mass balance 

equation (input flow, output flow), assuming constant pressure

model Tank
ReadSignal  tSensor   "Connector, sensor reading tank level (m)";
ActSignal   tActuator "Connector, actuator controlling input flow";
LiquidFlow  qIn  "Connector, flow (m3/s) through input valve";
LiquidFlow  qOut "Connector, flow (m3/s) through output valve";
parameter Real area(unit="m2")       = 0.5;
parameter Real flowGain(unit="m2/s") = 0.05;
parameter Real minV=0, maxV=10; // Limits for output valve flow
Real h(start=0.0, unit="m") "Tank level";

equation
assert(minV>=0,"minV – minimum Valve level must be >= 0 ");//
der(h)      = (qIn.lflow-qOut.lflow)/area;   // Mass balance

equation
qOut.lflow  = LimitValue(minV,maxV,-flowGain*tActuator.act);
tSensor.val = h;

end Tank;
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Connector Classes and Liquid Source Model Connector Classes and Liquid Source Model 
for Tank Systemfor Tank System
connector ReadSignal "Reading fluid level"

Real val(unit="m");
end ReadSignal;

connector ActSignal "Signal to actuator
for setting valve position"
Real act;

end ActSignal;

connector LiquidFlow "Liquid flow at inlets or outlets"
Real lflow(unit="m3/s");

end LiquidFlow; 

model LiquidSource
LiquidFlow qOut;
parameter flowLevel = 0.02;

equation
qOut.lflow = if time>150 then 3*flowLevel else flowLevel;

end LiquidSource; 

TankPI 

piContinuous

tank
tActuator tSensor

qIn qOut 

cOut cIn

source
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model PIcontinuousController
extends BaseController(K=2,T=10);
Real  x  "State variable of continuous PI controller";

equation
der(x) = error/T;
outCtr = K*(error+x);

end PIcontinuousController;

Continuous PI Controller for Tank SystemContinuous PI Controller for Tank System

)(* xerrorKoutCtr
T

error
dt
dx

+=

=• error = (reference level –
actual tank level)

• T is a time constant
• x is controller state 

variable
• K is a gain factor )(* dt

T
errorerrorKoutCtr ∫+=

base class for controllers – to be defined

Integrating equations gives 
Proportional & Integrative (PI)

error – to be defined in controller base class
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The Base Controller The Base Controller –– A Partial ModelA Partial Model

partial model BaseController
parameter Real Ts(unit="s")=0.1 

"Ts - Time period between discrete samples – discrete sampled";
parameter Real K=2            "Gain";
parameter Real T=10(unit="s") "Time constant - continuous";
ReadSignal cIn "Input sensor level,  connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref            "Reference level";
Real           error          "Deviation from reference level";
Real           outCtr "Output control signal";

equation
error    = ref-cIn.val;
cOut.act = outCtr;

end BaseController;

error  = difference betwen reference level and 
actual tank level from cIn connector

TankPI 

piContinuous

tank
tActuator tSensor

qIn qOut 

cOut cIn

source



pelab31 Peter Fritzson     CopyrightPeter Fritzson     Copyright ©© Open Source Modelica Consortium

Simulate ComponentSimulate Component--Based Tank SystemBased Tank System
• As expected (same equations), TankPI gives the 

same result as the flat model FlatTank

50 100 150 200 250 
time 

0.1

0.2

0.3

0.4

simulate(TankPI, stopTime=250)

plot(h, stopTime=250)

pelab32 Peter Fritzson     CopyrightPeter Fritzson     Copyright ©© Open Source Modelica Consortium

Flexibility of ComponentFlexibility of Component--Based ModelsBased Models

• Exchange of components possible in a 
component-based model

• Example: 
Exchange the PI controller component for a PID 
controller component
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Tank System with Continuous PID Controller Tank System with Continuous PID Controller 
Instead of Continuous PI ControllerInstead of Continuous PI Controller

model TankPID
LiquidSource            source(flowLevel=0.02);
PIDcontinuousController pidContinuous(ref=0.25);
Tank                    tank(area=1);

equation
connect(source.qOut, tank.qIn);
connect(tank.tActuator, pidContinuous.cOut);
connect(tank.tSensor, pidContinuous.cIn);

end TankPID;

• Liquid source
• Continuous PID 

controller
• Tank

TankPID 

pidContinuous

tank
tActuator tSensor

qIn qOut

cOutcIn

source
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Continuous PID ControllerContinuous PID Controller

model PIDcontinuousController
extends BaseController(K=2,T=10);
Real  x; // State variable of continuous PID controller
Real  y; // State variable of continuous PID controller

equation
der(x) = error/T;
y      = T*der(error);
outCtr = K*(error + x + y);

end PIDcontinuousController;

base class for controllers – to be defined

Integrating equations gives Proportional 
& Integrative & Derivative(PID)
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• error = (reference level –
actual tank level)

• T is a time constant
• x, y are controller state 

variables
• K is a gain factor
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Simulate Simulate TankPIDTankPID and and TankPITankPI SystemsSystems
• TankPID with the PID controller gives a 

slightly different result compared to the 
TankPI model with the PI controller
simulate(compareControllers, stopTime=250)

plot({tankPI.h,tankPID.h})
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Two Tanks Connected TogetherTwo Tanks Connected Together

TanksConnectedPI

piContinuous 

tank1 
tActuatortSensor

qIn qOut

cOutcIn
piContinuous

tank2
tActuatortSensor

qIn qOut

cOutcIn

 

source 

• Flexibility of component-based models allows connecting models together

model TanksConnectedPI
LiquidSource  source(flowLevel=0.02);
Tank          tank1(area=1), tank2(area=1.3);;
PIcontinuousController piContinuous1(ref=0.25), piContinuous2(ref=0.4);

equation
connect(source.qOut,tank1.qIn);
connect(tank1.tActuator,piContinuous1.cOut);
connect(tank1.tSensor,piContinuous1.cIn);
connect(tank1.qOut,tank2.qIn);
connect(tank2.tActuator,piContinuous2.cOut);
connect(tank2.tSensor,piContinuous2.cIn);

end TanksConnectedPI;
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Simulating Two Connected Tank SystemsSimulating Two Connected Tank Systems
• Fluid level in tank2 increases after tank1 as it should
• Note: tank1 has reference level 0.25, and tank2 ref level 0.4 
simulate(TanksConnectedPI, stopTime=400)

plot({tank1.h,tank2.h})
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Exchange: Either PI Continous or PI Discrete Exchange: Either PI Continous or PI Discrete 
ControllerController

partial model BaseController
parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";
parameter Real K = 2 "Gain";
parameter Real T(unit = "s") = 10 "Time constant";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference level";
Real outCtr "Output control signal";

equation
error = ref - cIn.val;
cOut.act = outCtr;  

end BaseController;

model PIdiscreteController
extends BaseController(K = 2, T = 10);
discrete Real x; 

equation
when sample(0, Ts) then

x = pre(x) + error * Ts / T;
outCtr = K * (x+error);

end when;
end PIdiscreteController;

model PIDcontinuousController
extends BaseController(K = 2, T = 10);
Real  x; 
Real  y; 

equation
der(x) = error/T;
y      = T*der(error);
outCtr = K*(error + x + y);

end PIDcontinuousController;
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ExercisesExercises

• Replace the PIcontinuous controller by the 
PIdiscrete controller and simulate. (see also the 
book, page 461)

• Create a tank system of 3 connected tanks and 
simulate.
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Principles for Designing Interfaces Principles for Designing Interfaces –– i.e., i.e., 
Connector ClassesConnector Classes

• Should be easy and natural to connect components
• For interfaces to models of physical  components it must be physically 

possible to connect those components

• Component interfaces to facilitate reuse of existing 
model components in class libraries

• Identify kind of interaction
• If there is interaction between two physical components involving energy 

flow, a combination of one potential and one flow variable in the appropriate 
domain should be used for the connector class

• If information or signals are exchanged between components, input/output 
signal variables should be used in the connector class

• Use composite connector classes if several 
variables are needed
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Simplification of ModelsSimplification of Models

• When need to simplify models?
• When parts of the model are too complex
• Too time-consuming simulations
• Numerical instabilities 
• Difficulties in interpreting results due to too many low-level model details

• Simplification approaches
• Neglect small effects that are not important for the phenomena to be 

modeled
• Aggregate state variables into fewer variables
• Approximate subsystems with very slow dynamics with constants
• Approximate subsystems with very fast dynamics with static 

relationships, i.e. not involving time derivatives of those rapidly changing 
state variables


