
Peter FritzsonPeter Fritzson
Linköping University, petfr@ida.liu.se

Mohsen TorabzadehMohsen Torabzadeh--TariTari
Linköping University, mohto@ida.liu.se

SlidesSlides
Based on book and lecture notes by Peter Fritzson
Contributions 2004-2005 by Emma Larsdotter Nilsson, Peter Bunus
Contributions 2007-2008 by Adrian Pop, Peter Fritzson
Contributions 2009 by David Broman, Jan Brugård, and Mohsen
Torabzadeh-Tari, Peter Fritzson

Principles ofPrinciples of ObjectObject--OrientedOriented
Modeling and SimulationModeling and Simulation

with Modelicawith Modelica

2009-09-29 Course at Linköping University

pelab2 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Course Based on Course Based on BookBook, 2004, 2004

Peter Fritzson
Principles of Object Oriented
Modeling and Simulation with
Modelica 2.1

Wiley-IEEE Press

940 pages

pelab3 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Outline Day 1Outline Day 1

Part I
Introduction to Modelica and a

demo example

Part II
Modelica environments

Part III
Modelica language concepts

and textual modeling

Part IV
Graphical modeling and the

Modelica standard library

pelab4 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Acknowledgements, Usage, CopyrightsAcknowledgements, Usage, Copyrights

• If you want to use the Powerpoint version of these slides in
your own course, send an email to: peter.fritzson@ida.liu.se

• Thanks to Emma Larsdotter Nilsson for contributions to the
layout of these slides, to Peter Bunus, Adrian Pop, David
Broman, Jan Brugård, Mohsen Torabzadeh-Tari for
contributions.

• Most examples, figures and much text in this course are
adapted with permission from Peter Fritzson’s book
”Principles of Object Oriented Modeling and Simulation with
Modelica 2.1”, copyright Wiley-IEEE Press

• Some examples and figures reproduced with permission from
Modelica Association, Martin Otter, Hilding Elmqvist, and
MathCore

• Modelica Association: www.modelica.org
• OpenModelica: www.openmodelica.org

pelab5 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Software InstallationSoftware Installation

• Start the software installation

• Install OpenModelica-1.5.msi or OpenModelica-
1.4.5.msi, and simForge (e.g. SimForge-0.8.4.1.jar)
from the USB Stick

• (If you have a Mac or Linux computer, install
OpenModelica-1.4.5)

pelab6 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

OutlineOutline
• Introduction to Modeling and Simulation
• Modelica - The next generation modeling and

Simulation Language
• Modeling and Simulation Environments and

OpenModelica
• Classes
• Components, Connectors and Connections
• Equations
• Discrete Events and Hybrid Systems
• Algorithms and Functions
• Demonstrations

pelab7 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Why Modeling & Simulation ?Why Modeling & Simulation ?

• Increase understanding of complex systems
• Design and optimization
• Virtual prototyping
• Verification

Build more complex systems

pelab8 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

What is a system?What is a system?

• A system is an object or collection of
objects whose properties we want to study

• Natural and artificial systems
• Reasons to study: curiosity, to build it

Collector

Storage tank

PumpCold water

Hot water

Electricity

Heater

pelab9 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Examples of Complex SystemsExamples of Complex Systems

• Robotics
• Automotive
• Aircrafts
• Satellites
• Biomechanics
• Power plants
• Hardware-in-the-loop,

real-time simulation

pelab10 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

ExperimentsExperiments

Problems
• Experiment might be too expensive
• Experiment might be too dangerous
• System needed for the experiment might not yet exist

An experiment is the process of extracting information
from a system by exercising its inputs

pelab11 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Model conceptModel concept

Kinds of models:
• Mental model – statement like “a person is reliable”
• Verbal model – model expressed in words
• Physical model – a physical object that mimics the system
• Mathematical model – a description of a system where

the relationships are expressed in mathematical form – a
virtual prototype

• Physical modeling – also used for mathematical models
built/structured in the same way as physical models

A model of a system is anything an experiment can be
applied to in order to answer questions about that system

pelab12 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

SimulationSimulation

A simulation is an experiment performed on a model

Examples of simulations:
• Industrial process – such as steel or pulp

manufacturing, study the behaviour under different
operating conditions in order to improve the process

• Vehicle behaviour – e.g. of a car or an airplane, for
operator training

• Packet switched computer network – study behaviour
under different loads to improve performance

pelab13 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Reasons for SimulationReasons for Simulation

• Suppression of second-order effects
• Experiments are too expensive, too dangerous, or

the system to be investigated does not yet exist
• The time scale is not compatible with experimenter

(Universe, million years, …)
• Variables may be inaccessible.
• Easy manipulation of models
• Suppression of disturbances

pelab14 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Dangers of SimulationDangers of Simulation

Falling in love with a model
The Pygmalion effect (forgetting that model is not the real
world, e.g. introduction of foxes to hunt rabbits in Australia)

Forcing reality into the constraints of a model
The Procrustes effect (e.g. economic theories)

Forgetting the model’s level of accuracy
Simplifying assumptions

pelab15 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Building Models Based on KnowledgeBuilding Models Based on Knowledge

System knowledge
• The collected general experience in relevant domains
• The system itself

Specific or generic knowledge
• E.g. software engineering knowledge

pelab16 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Kinds of Mathematical ModelsKinds of Mathematical Models

• Dynamic vs. Static models

• Continuous-time vs. Discrete-time dynamic models

• Quantitative vs. Qualitative models

pelab17 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Dynamic vs. Static ModelsDynamic vs. Static Models

A dynamic model includes time in the model
A static model can be defined without involving time

time

Resistor voltage – static system

Capacitor voltage - dynamic

Input current
pulse

pelab18 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

ContinuousContinuous--Time vs.Time vs.
DiscreteDiscrete--Time Dynamic ModelsTime Dynamic Models

Continuous-time models may evolve their variable values
continuously during a time period
Discrete-time variables change values a finite number of times
during a time period

time

Continuous

Discrete

pelab19 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Quantitative vs. Qualitative ModelsQuantitative vs. Qualitative Models

Results in qualitative data
Variable values cannot be represented numerically

Mediocre = 1, Good = 2, Tasty = 3, Superb = 4

Quality of food in a restaurant according
to inspections at irregular points in time

time

Good

Tasty

Superb

Mediocre

pelab20 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Using Modeling and SimulationUsing Modeling and Simulation
within the Product Designwithin the Product Design--VV

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and
verification

Subsystem level integration test
calibration and verification

Product verification and
deployment

Maintenance

Realization

Detailed feature design and
implementation

Architectural design and
system functional design

Preliminary feature design

System
requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

pelab21 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Principles of Principles of Graphical EquationGraphical Equation--BasedBased ModelingModeling

• Each icon represents a physical component
i.e. Resistor, mechanical Gear Box, Pump

• Composition lines represent the actual
physical connections i.e. electrical line,
mechanical connection, heat flow

• Variables at the interfaces describe
interaction with other component

• Physical behavior of a component is
described by equations

• Hierarchical decomposition of components

Connection

Component 1

Component 3

Component 2

pelab22 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6
r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

V
s

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m

))
Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

Rp
2=

50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-
skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));

Application Example Application Example –– Industry RobotIndustry Robot

Courtesy of Martin Otter

pelab23 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

GTX Gas Turbine Power Cutoff MechanismGTX Gas Turbine Power Cutoff Mechanism

Hello

Courtesy of Siemens Industrial Turbomachinery AB

Developed
by MathCore
for Siemens

pelab24 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modelica in Modelica in AutomotiveAutomotive IndustryIndustry

pelab25 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modelica in AvionicsModelica in Avionics

pelab26 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modelica in BiomechanicsModelica in Biomechanics

pelab27 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modelica Modelica ––
The Next GenerationThe Next Generation
Modeling LanguageModeling Language

pelab28 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Stored KnowledgeStored Knowledge

Model knowledge is stored in books and human
minds which computers cannot access

“The change of motion is proportional
to the motive force impressed “
– Newton

pelab29 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

The Form The Form –– EquationsEquations

• Equations were used in the third millennium B.C.
• Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)
“The change of motion is proportional to the motive force impressed ”

CSSL (1967) introduced a special form of “equation”:
variable = expression
v = INTEG(F)/m

Programming languages usually do not allow equations!

pelab30 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

What is Modelica?What is Modelica?

• Robotics
• Automotive
• Aircrafts
• Satellites
• Power plants
• Systems biology

A language for modeling of complex physical systems

pelab31 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

What is Modelica?What is Modelica?

A language for modeling of complex physical systems

Primary designed for simulation, but there are also other
usages of models, e.g. optimization.

pelab32 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

What is Modelica?What is Modelica?

A language for modeling of complex physical systems
i.e., Modelica is not a tool

Free, open language
specification: There exist several free and commercial

tools, for example:

• OpenModelica from OSMC
• MathModelica by MathCore
• Dymola by Dassault systems / Dynasim
• SimulationX by ITI
• MapleSim by MapleSoft

Available at: www.modelica.org

pelab33 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Declarative language
Equations and mathematical functions allow acausal modeling,
high level specification, increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,
biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a general class
concept, Java & MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,
e.g. 300 000 equations, ~150 000 lines on standard PC

Modelica Modelica –– The Next Generation Modeling The Next Generation Modeling
LanguageLanguage

pelab34 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

High level language

MATLAB similarities

Non-Proprietary
• Open Language Standard
• Both Open-Source and Commercial implementations

Flexible and powerful external function facility
• LAPACK interface effort started

Modelica Modelica –– The Next Generation Modeling The Next Generation Modeling
LanguageLanguage

MATLAB-like array and scalar arithmetic, but strongly typed and
efficiency comparable to C.

MATLAB-style array operations; Functional style; iterators,
constructors, object orientation, equations, etc.

pelab35 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modelica Language PropertiesModelica Language Properties

• Declarative and Object-Oriented

• Equation-based; continuous and discrete equations

• Parallel process modeling of real-time applications,
according to synchronous data flow principle

• Functions with algorithms without global side-effects
(but local data updates allowed)

• Type system inspired by Abadi/Cardelli

• Everything is a class – Real, Integer, models,
functions, packages, parameterized classes....

pelab36 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Object OrientedObject Oriented
Mathematical Modeling with ModelicaMathematical Modeling with Modelica

• The static declarative structure of a mathematical
model is emphasized

• OO is primarily used as a structuring concept

• OO is not viewed as dynamic object creation and
sending messages

• Dynamic model properties are expressed in a
declarative way through equations.

• Acausal classes supports better reuse of modeling
and design knowledge than traditional classes

pelab37 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Brief Modelica HistoryBrief Modelica History

• First Modelica design group meeting in fall 1996
• International group of people with expert knowledge

in both language design and physical modeling
• Industry and academia

• Modelica Versions
• 1.0 released September 1997
• 2.0 released March 2002
• 2.2 released March 2005
• 3.0 released September 2007
• 3.1 released May 2009

• Modelica Association established 2000
• Open, non-profit organization

pelab38 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modelica ConferencesModelica Conferences
• The 1st International Modelica conference October, 2000

• The 2nd International Modelica conference March 18-19, 2002

• The 3rd International Modelica conference November 5-6, 2003 in
Linköping, Sweden

• The 4th International Modelica conference March 6-7, 2005 in Hamburg,
Germany

• The 5th International Modelica conference September 4-5, 2006 in
Vienna, Austria

• The 6th International Modelica conference March 3-4, 2008 in Bielefeld,
Germany

• The 7th International Modelica conference Sept 21-22, 2009 in Como,
Italy

pelab39 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Exercises Part IExercises Part I
HandsHands--on graphical modelingon graphical modeling

(20(20 minutes)minutes)

pelab40 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Graphical ModelingGraphical Modeling
Using Drag and Drop CompositionUsing Drag and Drop Composition

Courtesy
MathCore
Engineering AB

pelab41 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Exercises Part I Exercises Part I –– Basic Graphical ModelingBasic Graphical Modeling
• (See instructions on next two pages)
• Start the simForge editor
• Draw the RL-Circuit
• Simulate

A
C

R=10

R1

L=0.1

L

G

L=1R=100

SimulationThe RL-Circuit

pelab42 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Exercises Part I Exercises Part I –– simForge Instructions Page 1simForge Instructions Page 1

• Start simForge, (e.g. SimForge-0.8.4.1.jar).
• Go to File menu and choose New Project.
• Write RL_Circuit and click on the Browse button for choosing the

destination folder.
• Press OK.
• In the navigation bar in the left, there should be three items,

Modelica, IEC61131-3 and Simulation result. Double-click on the
Modelica.

• Under the Modelica :
• The standard Modelica library components are
listed in the Used external package.
• The Modelica classes and Modelica files are the
places where your models will end up under. The first
folder is for the graphical models and the latter is for
the texual form.

pelab43 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Exercises Part I Exercises Part I –– simForgesimForge Instructions Page 2Instructions Page 2

• Go to File menu and choose New File. Write RL_circuit and press OK.
• In the Add Class pop-up dialog box change the Type from package to

class and press OK.
• Double click on the RL_circuit under the Modelica classes and the

graphical window will appear.
• Drag and Drop components from the standard Modelica library to your

model.
• For connecting components, move the cursor to the target pin and press

shift+click once and just move the cursor with the mouse to the
destination pin and press again shift+click.

• Start the simulation with simulation button.
• In the simulation pop-up you can leave out

some fields like the Stop time, which will result
in a default value of 1 sec. will be used.

• The result will appear under the Simulation result.

• Under the Edit menu ->
Advanced properties you
can tick the visible legend
bar.

