
Object-Oriented modeling is a fast-growing area of modeling
and simulation that provides a structured, computer-supported
way of doing mathematical and equation-based modeling.
Modelica is today the most promising modeling and simula-
tion language in that it effectively unifies and generalizes
previous object-oriented modeling languages and provides a
sound basis for the basic concepts. The Modelica modeling
language and technology is being warmly received by the
world community in modeling and simulation with major
applications in virtual prototyping. It is bringing about a revo-
lution in this area, based on its ease of use, visual design of
models with combination of lego-like predefined model build-
ing blocks, its ability to define model libraries with reusable
components, its support for modeling and simulation of complex applications involving parts from several
application domains, and many more useful facilities.

The course presents an object-oriented component-based approach to computer supported mathematical mod-
eling and simulation through the powerful Modelica language and its associated technology. Modelica can be
viewed as an almost universal approach to high level computational modeling and simulation, by being able
to represent a range of application areas and providing general notation as well as powerful abstractions and
efficient implementations.

The course gives an introduction to the Modelica language to people who are familiar with basic program-
ming concepts. It gives a basic introduction to the concepts of modeling and simulation, as well as the basics
of object-oriented component-based modeling for the novice, an overview of modeling and simulation in a
number of application areas, and an introduction to meta modeling. The OpenModelica environment together
with the simForge graphical user interface and MathModelica will be used for hands-on exercises.

Course Content

Lecturers
Peter Fritzson is Professor and Research Director of
the Programming Environment Lab (PELAB), at the
Department of Computer and Information Science,
Linköping University, Sweden. He has been chairman
of the Scandinavian Simulation Society, secretary of
the European simulation organization, EuroSim. He
is vice chairman of the Modelica Association, and
Director of the Open Source Modelica consortium.
His main area of interest is software engineering,
especially languages, programming and maintenance
tools and environments, including modeling and
simulation. Professor Fritzson has more than 200
publications including 10 books/proceedings.

Mohsen Torabzadeh-Tari is researcher at PELAB,
with PhD from KTH. Main interest modeling and
simulation with tools and applications.

Course at Linköping University, Room: John von Neumann
Location: Building B, 2nd floor

9.15-17.00

Principles of Object-Oriented
Modeling and Simulation of Dynamic
Systems with Modelica

The course has the
following goals

• Being easily accessi-
ble for people who do
not previously have a
background in mod-
eling and simulation.

• Introducing the con-
cepts of physical
modeling, object-
oriented modeling
and component-
based modeling and
simulation.

• Demonstrating mod-
eling examples from
several application
areas.

• Providing opportunity
for hands-on exer-
cises with the Open-
Modelica open-
source implementa-
tion of Modelica and
the simForge graphic
user interface

Hands-on exercises using OpenModelica—Bring Laptop!

Start Tuesday Sept 29, 2009

Useful Links

The OpenModelica project website:
www.openmodelica.org
Peter Fritzson’s book:
Principles of Object-Oriented Modeling and Simu-
lation with Modelica 2.1
http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-0471471631.html
 also:
www.ida.liu.se/labs/pelab/modelica/OpenModelica/
Documents/ModelicaBookExcerpts.pdf
 also: www.mathcore.com/drmodelica.

Graphic user interface:
https://trac.elet.polimi.it/simforge/

The tutorial is based on
Peter Fritzson’s book:
Principles of Object-Oriented
Modeling and Simulation
with Modelica 2.1

ISBN: 0-471-47163-1
Paperback, 940 pages
February 2004, Wiley-IEEE Press

 1

Schedule and Reading Instructions
Modelica Course at Linköping University
September-October 2009

Peter Fritzson
Mohsen Torabzadeh-Tari

Schedule
Day1: Tuesday, Sept 29, 9.15-17.00

Day2: Wednesday, Sept 30, 12.30-18.00 (hint: Spend morning reading the course book)

Day3: Tuesday, October 13, 9.15-17

Day4: Thursday, October 15, 9.15-17

Day5: Thursday, October, 22,.15-17

Approximately 28 hours including hands-on exercises.

Day1:
Lecture: Introduction to Modeling and Simulation with Modelica and OpenModelica

• OpenModelica OMNotebook usage

Introduction to textual modeling

Demo+Exercise: OMNotebook and DrModelica

Demo+short exercise: Graphic modeling with simForge

Lecture+Exercises: classes and inheritance
Exercise01-classes-simple-textual.onb

Lecture+Exercises: Component connectors and connections, graphical modeling
Exercise02-graphical-modeling.onb

Day2:
Lecture:Equations

Exercise03-classes-textual-circuit.onb

Lecture: Algorithms and functions
Exercise04-equations-algorithms-functions.onb

Lecture: Modelica Packages

Lecture: Modelica Libraries

 2

Day3:
Lecture: Hybrid Systems

Exercise05-hybrid-discreteevent.onb

Lecture:Simple biological models
Exercise06-pop-dynamics-and-model-design.onb

Lecture:Model Design
Exercise06-pop-dynamics-and-model-design.onb

Lecture: Romeo and Julia

Day4:
Lecture+Exercises: Building a simple Modelica library.

A whole day will be devoted to designing and building a simple modelica library from scratch, primarily
using the graphical user interface.

Day5:
Lecture+Exercises:

• Introduction to the OpenModelica Eclipse plugin
• Simple simulation exercise using the Eclipse plugin.

Lecture+Exercises:

Introduction to MetaModelica
• Functional programming in MetaModelica
• Model transformations and symbolic programming
• Simple model transformation exercise in MetaModelica.

Lectures:

Introduction to the OpenModelica compiler
• Structure, information about modules, etc
• The model manipulation and information retrieval API.
• Corba connection to OMC

 Advanced OpenModelica compiler development topics
• How to adapt code generator to specific needs,
• How to access the flat Modelica intermediate form,
• Programming AST transformations in the compiler
• How to add simple functionality to the compiler

 3

Reading Instructions
The following are reading instructions for the course book Principles of Object Oriented Modeling and
Simulation with Modelica 2.1.

You need to read this well enough to be able to sign a paper where you promise that you have read all
the included at a level to understand approximately 95% of the included material.

There will be some sampled oral examinations to check this.

Included in the course:

Chapter 1, whole chapter.
Chapter 2, whole chapter.
Chapter 3: Sec 3.1 - 3.13.1, 3.13.3 - 3.14.7
Chapter 4, whole chapter.
Chapter 5: 5.1 - 5.4.0; 5.4.3 - 5.7.2; 5.8
Chapter 6: 6.1 - 6.8.0;
Chapter 7: 7.1 - 7.2.2
Chapter 8: 8.1 - 8.4.1.3
Chapter 9: 9.1 - 9.3.2.6
Chapter 10: whole chapter.
Chapter 11: not included.
Chapter 12: whole chapter.
Chapter 13: 13.1 - 13.2.5.5; 13.2.5.7 - 13.2.6.5; 13.3.0 - 13.3.4; 13.4.1; 13.5
Chapter 15: 15.1.0; 15.4.1; 15.5; 15.6.0-15.6.2; 15.7; 15.10.2-15.10.3
Chapter 17: 17.1.0, 17.1.4, 17.1.5, 17.1.6,
Chapter 18.1, 18.2.0, 18.2.1, 18.2.1.1

The following are reading instructions for included parts of the “Modelica Meta-Programming and
Symbolic Transformations - MetaModelica programming guide”:

Chapter 1: whole chapter.
Chapter 2: Sec 2.0, 2.1, 2.2
Chapter 3: Sec 3.0, 3.1.5, 3.3

(We will have selected exercises, partly from the Appendix of the MetaModelica programming guide)

pelab41 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Exercises Part I Exercises Part I –– Basic Graphical ModelingBasic Graphical Modeling
• (See instructions on next two pages)
• Start the simForge editor
• Draw the RL-Circuit
• Simulate

A
C

R=10

R1

L=0.1

L

G

L=1R=100

SimulationThe RL-Circuit

pelab42 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Exercises Part I Exercises Part I –– simForge Instructions Page 1simForge Instructions Page 1

• Start simForge, (e.g. SimForge-0.8.4.1.jar).
• Go to File menu and choose New Project.
• Write RL_Circuit and click on the Browse button for choosing the

destination folder.
• Press OK.
• In the navigation bar in the left, there should be three items,

Modelica, IEC61131-3 and Simulation result. Double-click on the
Modelica.

• Under the Modelica :
• The standard Modelica library components are
listed in the Used external package.
• The Modelica classes and Modelica files are the
places where your models will end up under. The first
folder is for the graphical models and the latter is for
the texual form.

pelab43 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Exercises Part I Exercises Part I –– simForgesimForge Instructions Page 2Instructions Page 2

• Go to File menu and choose New File. Write RL_circuit and press OK.
• In the Add Class pop-up dialog box change the Type from package to

class and press OK.
• Double click on the RL_circuit under the Modelica classes and the

graphical window will appear.
• Drag and Drop components from the standard Modelica library to your

model.
• For connecting components, move the cursor to the target pin and press

shift+click once and just move the cursor with the mouse to the
destination pin and press again shift+click.

• Start the simulation with simulation button.
• In the simulation pop-up you can leave out

some fields like the Stop time, which will result
in a default value of 1 sec. will be used.

• The result will appear under the Simulation result.

• Under the Edit menu ->
Advanced properties you
can tick the visible legend
bar.

Exercises - Simple
Textual

1 Simple Textual Modeling Exercises
1.1Try DrModelica with VanDerPol

Locate the VanDerPol model in DrModelica (link from Section 2.1), run it, change it slightly,
and re-run it.

1.2HelloWorld

Simulate and plot the following example with one differential equation and one initial
condition. Do a slight change in the model, re-simulate and re-plot

model HelloWorld "A simple equation"
 Real x(start=1);
equation
 der(x)= -x;
end HelloWorld;

Push shift-tab for command completion, fill in the name HelloWorld, and simulate it!

simul

Push shift-tab for command completion, fill in a variable name (x), and plot it!

plo

Take a look at the intepolated value of the variable x at time=0.5 using the
val(variableName,time) function:

val(x,0.5)

Also take a look at the value at time=0.0:

val(x,0.)

1.3A Simple Systems of Equations

Make a Modelica model that solves the equation system below with initial conditions. Hint:
initial conditions are often specified using the start attribute.

1

model ...

1.4Creating a Class

Create a class, Multiply, that calculates the product of two parameter variables, which are
equal to Real numbers with given values.

1.5Creating Instances

class Dog
 constant Real legs = 4;
 parameter String name = "Dummy";
end Dog;

Create an instance of the class Dog by declaring a variable.

Create another dog instance and give this dog the name "Tim".

2 Creating a Function and Making a Function Call
Write a function, addTen, that returns the input number plus the Integer 10.

Make a function call to addTen with the input 3.5.
Also do that inside a class, and simulate the class.

2

Exercise - Graphical
Modeling

1The DC Motor
A) DC Motor

Make a simple DC-motor using the Modelica standard library that has the following structure:

model ...

If you are using MathModelica Lite, first save the model from the graphic editor, load it (or alternatively copy
paste it from the textual view in the graphic editor to OMNotebook or OMShell)

Simulate it (using OMShell or OMNotebook or MathModelica System Designer) for 15s and plot the variable
the outgoing rotational speed on the inertia axis and the voltage on the voltage source (denoted u in the figure)
the same plot.

Note: If you are using MathModelica System Designer you can do the plotting directly in the tool without cop
the model into OMShell or OMNotebook.
Hint: if you have difficulty finding the names of the variables to plot, you can flatten the model by calling
instantiateModel, which exposes all variable names

B) Spring and Inertia

1

Add a torsional spring to the outgoing shaft and another inertia element. Simulate again and see the results. Ad
some parameters to make a rather stiff spring.

model ...

C) Adding controller

Add a PI controller to the system and try to control the rotational speed of the outgoing shaft. Verify the result
using a step signal for input. Tune the PI controller by changing its parameters in MathModelica System Desig
(or Lite).

model ...

2

Exercise 2 - Classes and
Simple Circuit

1 Add Components to SimpleCircuit
Add a capacitor between the R2 component and the R1 component and an inductor between
the R1 and voltage component. Use the SimpleCicuit model and Modelica standard library
components.

loadModel(Modelica);

model SimpleCircuit
 import Modelica.Electrical.Analog;
 Analog.Basic.Resistor R1(R = 10);
 Analog.Basic.Capacitor C(C = 0.01);
 Analog.Basic.Resistor R2(R = 100);
 Analog.Basic.Inductor L(L = 0.1);
 Analog.Sources.SineVoltage AC(V = 220);
 Analog.Basic.Ground G;
equation
 connect(AC.p, R1.p);
 connect(R1.n, C.p);
 connect(C.n, AC.n);
 connect(R1.p, R2.p);
 connect(R2.n, L.p);
 connect(L.n, C.n);
 connect(AC.n, G.p);
end SimpleCircuit;

You can verify the result in the model editor. This example illustrates how inconvenient it is to
use textual modeling sometimes.

2 Build Electrical Components

1

This excercise consists of building a number of electrical componenets. Here follows the
equations that describes each component. You can skip section 1.1 if you are familiar with the
equations.

2.1 Equations

The ground element

 vp = 0

where vp is the potantial of the ground element.

A resistor

 ip + in = 0

 u = vp - vn

 u = R ip

where ipand inrepresents the currents into the positive and negative pin (or port) of the resistor,
vpand vn the corresponding potentials, u the voltage over the resistor, and R the resistance.

An inductor

 ip + in = 0

 u = vp - vn

where ipand inrepresents the currents into the positive and negative pin (or port) of the
inductor, vpand vn the corresponding potentials, u the voltage over the inductor, and L the
inductance.

A voltage source

 ip + in = 0

 u = vp - vn

 u = V

where ipand inrepresents the currents into the positive and negative pin (or port) of the voltage
source, vpand vn the corresponding potentials, u the voltage over the voltage source, and V the
constant voltage.

Build Modelica models of the above components. A Connector component representing an
electrical pin should be defined. Observe that the first two equations defining each electrical
component with two pins above are equal. Utilize this observation to build a partial model,
TwoPin, to be used in the definition of any electrical two pin component. Hence, totally six
components (Pin, Ground, TwoPin, Resistor, Inductor, and a VoltageSource) should be built.

2

Use the defined components to build a model of a circuit diagram and simulate the behavior of
the circuit.

2.2 Implementation

2.2.1User-Defined Types

Define the types Voltage and Current.

type Voltage = Real;
type Current = Real;

2.2.2Pin

The Pin has a potential, v and current variable, i. According to Kirchhoff's laws potentials are
set equal and currents sum to zero at connections. Hence, v is an effort variable and i is a flow
variable.

connector Pin
 ...
 ...
end Pin;

2.2.3Ground

The Ground component has a positive Pin and a simple equation.

model Ground
 Pin p;
equation
 ...
end Ground;

2.2.4Twopin

The TwoPin element has a positive and negative Pin, a voltage u and a current i defined (the
current i does not appear in the equations above and is only introduced to simplify notation).

model TwoPin
 Pin p, n;
 ...
 ...
equation
 ...
 ...
 ...
end TwoPin;

2.2.5Resistor

3

To define the resistor the partial model TwoPin is extended and we only add a declaration of
the parameter R together with Ohm's law that relates voltage and current to each other.

model Resistor
 extends TwoPin;
 ...
equation
 ...
end Resistor;

An equivalent model without use of a partial model would look like

model Resistor

equation

end Resistor;

Note: The Extends command could be thought of as just copying and pasting information
from the partial model.

2.2.6Inductor

The equation relating voltage and current for an inductor together with the inductance L are
added to the partial model.

model Inductor

equation

end Inductor;

2.2.7VoltageSource

Here the partial model is extended with the trivial equation that the voltage between the
positive and negative pin of the voltage source is kept constant.

model VoltageSource

equation

end VoltageSource;

4

2.2.8A Circuit

An example of a simple circuit where we instantiate the parameters of the components to other
values than the default.

model Circuit
 Resistor R1(R=0.9);
 Inductor L1(L=0.01);
 Ground G;
 VoltageSource EE(V=5);
equation
 connect(EE.p, R1.p);
 connect(R1.n, L1.p);
 connect(L1.n, G.p);
 connect(EE.n, G.p);
end Circuit;

Simulate the circuit

simulate(Circuit, startTime=0, stopTime=1)

The signals that can be plotted.

Plot the current through the resistor:

plot(R1.i)

5

Exercise 3 - Equations,
Algorithms, and
Functions

1AngleTransformer Using Equations
Show that the AngleTransformer model below can be used for computing radians or degrees
depending on which variable (rad or deg) a value is given. For example, do this by defining and
simulating a model that contains two different instances of AngleTransformer, and use modifier
equations to these to specify radians or degrees, respectively.

model AngleTransformer
 Real rad;
 Real deg;
protected
 constant Real Pi = Modelica.Constants.pi;
equation
 deg = 180/Pi*rad;
end AngleTransformer;

2Faculty
Write a function faculty, using a for-loop, such that faculty(n) = 1*2*3*4*....*n.

function ...

Write a class that contains a function call to faculty.

class ...

3Nested for-loop
Write a function, matrixAddition, for adding two two-dimensional matrices.

 Perform a function call to matrixAddition with two matrices. Then simulate the class with
the function call and plot the result.

4Functions and Algorithm Sections
a) Write a function, mySum, which calculates the sum of Real numbers, for a vector of arbitrary
size. Hint: you may declare an input vector of arbitrary size as having the type Real[:]; also, it
might be convenient to use a for-loop or a while-loop to make the summation.

1

function mySum ...

Call sum:

mySum(...

b) Write a function, average, which calculates the average of Real numbers, in a vector of
arbitrary size. The function average should make use of a function call to mySum.

function average ...

Call average:

average(...

5Functions - LargestAverage

Write a class, LargestAverage, that has two vectors and calculates the average of each of
them. Then it compares the averages and sets a variable to true if the first vector is larger than the
second and otherwise false.

2

Exercise 5 - Hybrid
Systems

1Hybrid Modeling with BouncingBall
Locate the BouncingBall model in one of the hybrid modeling sections of DrModelica (e.g. Section
2.9), run it, change it slightly, and re-run it.

2Square Signal
Make a square signal with a period of 1s and that starts at t = 2.5s. Note that it is possible to use
either an equation or an algorithm solution. Hint: an easy way is to use sample(...) to generate
events, and define a variable that switches sign at each event.

model ...

3DC Motor - Generator
What is needed if you want to make a hybrid DC motor, i.e. a DC motor that also can act like a
generator for a limited time? Make it work like a DC motor for the first 20s, then apply a
counteracting torque on the outgoing axis for the next 20s, and then turn off the counteracting
torque, i.e. you would like to have a torque pulse starting at 20s and lasting 20s. Draw the
following connection diagram in a graphic model editor, and adjust the starting times and signal
height for the Step1 and Step2 signal models to get the desired torque pulse.

1

