
pelab1 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Model DesignModel Design

pelab2 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modeling ApproachesModeling Approaches

• Traditional state space approach

• Traditional signal-style block-oriented approach

• Object-oriented approach based on finished
library component models

• Object-oriented flat model approach

• Object-oriented approach with design of library
model components

pelab3 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modeling Approach 1Modeling Approach 1

Traditional state space approach

pelab4 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Traditional State Space ApproachTraditional State Space Approach

• Basic structuring in terms of subsystems and
variables

• Stating equations and formulas

• Converting the model to state space form:

))(),(()(
))(),(()(

tutxgty
tutxftx

=
=

pelab5 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Difficulties in State Space ApproachDifficulties in State Space Approach

• The system decomposition does not
correspond to the "natural" physical system
structure

• Breaking down into subsystems is difficult if
the connections are not of input/output type.

• Two connected state-space subsystems do
not usually give a state-space system
automatically.

pelab6 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modeling Approach 2Modeling Approach 2

Traditional signal-style block-oriented approach

pelab7 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Physical Modeling Style (e.g Modelica) vs Physical Modeling Style (e.g Modelica) vs
signal flow Blocksignal flow Block--Oriented Style (e.g. Simulink)Oriented Style (e.g. Simulink)

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

p
n

p

pp

p

p

n

n

nn

-1
 1

sum3

+1
 -1

sum1

+1
+1

sum2

1
s

l2

1
s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Modelica:
Physical model – easy to
understand

Block-oriented:
Signal-flow model – hard to
understand for physical systems

pelab8 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Traditional Block Diagram ModelingTraditional Block Diagram Modeling

∫
+

-
Integrator Adder Multiplier Function Branch Point

x

y f(x,y)

• Special case of model components:
the causality of each interface variable
has been fixed to either input or output

Typical Block diagram model components:

Simulink is a common block diagram tool

pelab9 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Physical Modeling Style (e.g Modelica) vs Physical Modeling Style (e.g Modelica) vs
signal flow Blocksignal flow Block--Oriented Style (e.g. Simulink)Oriented Style (e.g. Simulink)

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

p
n

p

pp

p

p

n

n

nn

-1
 1

sum3

+1
 -1

sum1

+1
+1

sum2

1
s

l2

1
s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Modelica:
Physical model – easy to
understand

Block-oriented:
Signal-flow model – hard to
understand for physical systems

pelab10 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Example Block Diagram ModelsExample Block Diagram Models

K

∫ +
-

-2/1 kk

L/1

∫

∫ ∫

∫ ∫

R

Electric

Control

Rotational
Mechanics

+
-

+
-IT/1

+
-

+
-

+
-

i

e

loadτ

2

2
221/1

k
kJJ −

1k

2k

3k
3/1 J

2ω

3ω

2θ

3θ

pelab11 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Properties of Block Diagram ModelingProperties of Block Diagram Modeling

• - The system decomposition topology does not
correspond to the "natural" physical system structure

• - Hard work of manual conversion of equations into
signal-flow representation

• - Physical models become hard to understand in signal
representation

• - Small model changes (e.g. compute positions from
force instead of force from positions) requires redesign of
whole model

• + Block diagram modeling works well for control systems
since they are signal-oriented rather than "physical"

pelab12 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

ObjectObject--Oriented Modeling VariantsOriented Modeling Variants

• Approach 3: Object-oriented approach based on
finished library component models

• Approach 4: Object-oriented flat model approach

• Approach 5: Object-oriented approach with
design of library model components

pelab13 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

ObjectObject--Oriented ComponentOriented Component--Based Based
Approaches in GeneralApproaches in General

• Define the system briefly
• What kind of system is it?
• What does it do?

• Decompose the system into its most important
components
• Define communication, i.e., determine interactions
• Define interfaces, i.e., determine the external ports/connectors
• Recursively decompose model components of “high complexity”

• Formulate new model classes when needed
• Declare new model classes.
• Declare possible base classes for increased reuse and maintainability

pelab14 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

TopTop--Down versus BottomDown versus Bottom--up Modelingup Modeling

• Top Down: Start designing the overall view.
Determine what components are needed.

• Bottom-Up: Start designing the components
and try to fit them together later.

pelab15 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Approach 3: TopApproach 3: Top--Down ObjectDown Object--oriented oriented
approach using library model componentsapproach using library model components

• Decompose into subsystems
• Sketch communication
• Design subsystems models by connecting

library component models
• Simulate!

pelab16 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Decompose into Subsystems and Sketch Decompose into Subsystems and Sketch
Communication Communication –– DCDC--Motor Servo ExampleMotor Servo Example

The DC-Motor servo subsystems and their connections

Controller

Electrical
Circuit

Rotational
Mechanics

pelab17 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modeling the Controller SubsystemModeling the Controller Subsystem

Modeling the controller

Controller

Electrical
Circuit

Rotational
Mechanics

- PI

feedback1

PI1 step1

pelab18 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modeling the Electrical SubsystemModeling the Electrical Subsystem

Modeling the electric circuit

Controller

Electrical
Circuit

Rotational
Mechanics

resistor1 inductor1

signalVoltage1 EMF1

ground1

pelab19 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Modeling the Mechanical SubsystemModeling the Mechanical Subsystem

Modeling the mechanical subsystem including the speed sensor.

inertia1 inertia2 inertia3 idealGear1 spring1

speedSensor1

Controller
Electrical

Circuit
Rotational
Mechanics

pelab20 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

ObjectObject--Oriented Modeling from ScratchOriented Modeling from Scratch

• Approach 4: Object-oriented flat model approach

• Approach 5: Object-oriented approach with
design of library model components

pelab21 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Example: OO Modeling of a Tank SystemExample: OO Modeling of a Tank System

level h
maxLevel

valve

levelSensor

out in

controller

 tank

 source

• The system is naturally
decomposed into components

pelab22 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

ObjectObject--Oriented ModelingOriented Modeling

Approach 4: Object-oriented flat model design

pelab23 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Tank System Model FlatTank Tank System Model FlatTank –– No Graphical No Graphical
StructureStructure

• No component
structure

• Just flat set of
equations

• Straight-
forward but
less flexible,
no graphical
structure

model FlatTank
// Tank related variables and parameters
parameter Real flowLevel(unit="m3/s")=0.02;
parameter Real area(unit="m2") =1;
parameter Real flowGain(unit="m2/s") =0.05;
Real h(start=0,unit="m") "Tank level";
Real qInflow(unit="m3/s") "Flow through input valve";
Real qOutflow(unit="m3/s") "Flow through output valve";
// Controller related variables and parameters
parameter Real K=2 "Gain";
parameter Real T(unit="s")= 10 "Time constant";
parameter Real minV=0, maxV=10; // Limits for flow output
Real ref = 0.25 "Reference level for control";
Real error "Deviation from reference level";
Real outCtr "Control signal without limiter";
Real x; "State variable for controller";

equation
assert(minV>=0,"minV must be greater or equal to zero");//
der(h) = (qInflow-qOutflow)/area; // Mass balance equation
qInflow = if time>150 then 3*flowLevel else flowLevel;
qOutflow = LimitValue(minV,maxV,-flowGain*outCtr);
error = ref-h;
der(x) = error/T;
outCtr = K*(error+x);

end FlatTank;

pelab24 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Simulation of Simulation of FlatTankFlatTank SystemSystem
• Flow increase to flowLevel at time 0
• Flow increase to 3*flowLevel at time 150

50 100 150 200 250
time

0.1

0.2

0.3

0.4

simulate(FlatTank, stopTime=250)

plot(h, stopTime=250)

pelab25 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

ObjectObject--Oriented ModelingOriented Modeling

• Approach 5:
Object-oriented approach with design of
library model components

pelab26 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Object Oriented ComponentObject Oriented Component--Based ApproachBased Approach
Tank System with Three ComponentsTank System with Three Components

TankPI

piContinuous

tank
tActuatortSensor

qIn qOut

cOutcIn

source

model TankPI
LiquidSource source(flowLevel=0.02);
PIcontinuousController piContinuous(ref=0.25);
Tank tank(area=1);

equation
connect(source.qOut, tank.qIn);
connect(tank.tActuator, piContinuous.cOut);
connect(tank.tSensor, piContinuous.cIn);

end TankPI;

• Liquid source
• Continuous PI

controller
• Tank

pelab27 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Tank modelTank model
• The central equation regulating the behavior of the tank is the mass balance

equation (input flow, output flow), assuming constant pressure

model Tank
ReadSignal tSensor "Connector, sensor reading tank level (m)";
ActSignal tActuator "Connector, actuator controlling input flow";
LiquidFlow qIn "Connector, flow (m3/s) through input valve";
LiquidFlow qOut "Connector, flow (m3/s) through output valve";
parameter Real area(unit="m2") = 0.5;
parameter Real flowGain(unit="m2/s") = 0.05;
parameter Real minV=0, maxV=10; // Limits for output valve flow
Real h(start=0.0, unit="m") "Tank level";

equation
assert(minV>=0,"minV – minimum Valve level must be >= 0 ");//
der(h) = (qIn.lflow-qOut.lflow)/area; // Mass balance

equation
qOut.lflow = LimitValue(minV,maxV,-flowGain*tActuator.act);
tSensor.val = h;

end Tank;

pelab28 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Connector Classes and Liquid Source Model Connector Classes and Liquid Source Model
for Tank Systemfor Tank System
connector ReadSignal "Reading fluid level"

Real val(unit="m");
end ReadSignal;

connector ActSignal "Signal to actuator
for setting valve position"
Real act;

end ActSignal;

connector LiquidFlow "Liquid flow at inlets or outlets"
Real lflow(unit="m3/s");

end LiquidFlow;

model LiquidSource
LiquidFlow qOut;
parameter flowLevel = 0.02;

equation
qOut.lflow = if time>150 then 3*flowLevel else flowLevel;

end LiquidSource;

TankPI

piContinuous

tank
tActuator tSensor

qIn qOut

cOut cIn

source

pelab29 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

model PIcontinuousController
extends BaseController(K=2,T=10);
Real x "State variable of continuous PI controller";

equation
der(x) = error/T;
outCtr = K*(error+x);

end PIcontinuousController;

Continuous PI Controller for Tank SystemContinuous PI Controller for Tank System

)(* xerrorKoutCtr
T

error
dt
dx

+=

=• error = (reference level –
actual tank level)

• T is a time constant
• x is controller state

variable
• K is a gain factor)(* dt

T
errorerrorKoutCtr ∫+=

base class for controllers – to be defined

Integrating equations gives
Proportional & Integrative (PI)

error – to be defined in controller base class

pelab30 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

The Base Controller The Base Controller –– A Partial ModelA Partial Model

partial model BaseController
parameter Real Ts(unit="s")=0.1

"Ts - Time period between discrete samples – discrete sampled";
parameter Real K=2 "Gain";
parameter Real T=10(unit="s") "Time constant - continuous";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference level";
Real outCtr "Output control signal";

equation
error = ref-cIn.val;
cOut.act = outCtr;

end BaseController;

error = difference betwen reference level and
actual tank level from cIn connector

TankPI

piContinuous

tank
tActuator tSensor

qIn qOut

cOut cIn

source

pelab31 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Simulate ComponentSimulate Component--Based Tank SystemBased Tank System
• As expected (same equations), TankPI gives the

same result as the flat model FlatTank

50 100 150 200 250
time

0.1

0.2

0.3

0.4

simulate(TankPI, stopTime=250)

plot(h, stopTime=250)

pelab32 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Flexibility of ComponentFlexibility of Component--Based ModelsBased Models

• Exchange of components possible in a
component-based model

• Example:
Exchange the PI controller component for a PID
controller component

pelab33 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Tank System with Continuous PID Controller Tank System with Continuous PID Controller
Instead of Continuous PI ControllerInstead of Continuous PI Controller

model TankPID
LiquidSource source(flowLevel=0.02);
PIDcontinuousController pidContinuous(ref=0.25);
Tank tank(area=1);

equation
connect(source.qOut, tank.qIn);
connect(tank.tActuator, pidContinuous.cOut);
connect(tank.tSensor, pidContinuous.cIn);

end TankPID;

• Liquid source
• Continuous PID

controller
• Tank

TankPID

pidContinuous

tank
tActuator tSensor

qIn qOut

cOutcIn

source

pelab34 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Continuous PID ControllerContinuous PID Controller

model PIDcontinuousController
extends BaseController(K=2,T=10);
Real x; // State variable of continuous PID controller
Real y; // State variable of continuous PID controller

equation
der(x) = error/T;
y = T*der(error);
outCtr = K*(error + x + y);

end PIDcontinuousController;

base class for controllers – to be defined

Integrating equations gives Proportional
& Integrative & Derivative(PID)

)(* yxerrorKoutCtr
dt

errordTy

T
error

dt
dx

++=

=

=

)(*
dt

errordTdt
T

errorerrorKoutCtr ++= ∫

• error = (reference level –
actual tank level)

• T is a time constant
• x, y are controller state

variables
• K is a gain factor

pelab35 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Simulate Simulate TankPIDTankPID and and TankPITankPI SystemsSystems
• TankPID with the PID controller gives a

slightly different result compared to the
TankPI model with the PI controller
simulate(compareControllers, stopTime=250)

plot({tankPI.h,tankPID.h})

50 100 150 200 250 time

0.1

0.2

0.3

0.4

tankPI.h

tankPID.h

pelab36 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Two Tanks Connected TogetherTwo Tanks Connected Together

TanksConnectedPI

piContinuous

tank1
tActuatortSensor

qIn qOut

cOutcIn
piContinuous

tank2
tActuatortSensor

qIn qOut

cOutcIn

source

• Flexibility of component-based models allows connecting models together

model TanksConnectedPI
LiquidSource source(flowLevel=0.02);
Tank tank1(area=1), tank2(area=1.3);;
PIcontinuousController piContinuous1(ref=0.25), piContinuous2(ref=0.4);

equation
connect(source.qOut,tank1.qIn);
connect(tank1.tActuator,piContinuous1.cOut);
connect(tank1.tSensor,piContinuous1.cIn);
connect(tank1.qOut,tank2.qIn);
connect(tank2.tActuator,piContinuous2.cOut);
connect(tank2.tSensor,piContinuous2.cIn);

end TanksConnectedPI;

pelab37 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Simulating Two Connected Tank SystemsSimulating Two Connected Tank Systems
• Fluid level in tank2 increases after tank1 as it should
• Note: tank1 has reference level 0.25, and tank2 ref level 0.4
simulate(TanksConnectedPI, stopTime=400)

plot({tank1.h,tank2.h})

100 200 300 400
time

0.2

0.4

0.6

0.8
tank2.h

tank1.h

pelab38 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Exchange: Either PI Continous or PI Discrete Exchange: Either PI Continous or PI Discrete
ControllerController

partial model BaseController
parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";
parameter Real K = 2 "Gain";
parameter Real T(unit = "s") = 10 "Time constant";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference level";
Real outCtr "Output control signal";

equation
error = ref - cIn.val;
cOut.act = outCtr;

end BaseController;

model PIdiscreteController
extends BaseController(K = 2, T = 10);
discrete Real x;

equation
when sample(0, Ts) then

x = pre(x) + error * Ts / T;
outCtr = K * (x+error);

end when;
end PIdiscreteController;

model PIDcontinuousController
extends BaseController(K = 2, T = 10);
Real x;
Real y;

equation
der(x) = error/T;
y = T*der(error);
outCtr = K*(error + x + y);

end PIDcontinuousController;

pelab39 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

ExercisesExercises

• Replace the PIcontinuous controller by the
PIdiscrete controller and simulate. (see also the
book, page 461)

• Create a tank system of 3 connected tanks and
simulate.

pelab40 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Principles for Designing Interfaces Principles for Designing Interfaces –– i.e., i.e.,
Connector ClassesConnector Classes

• Should be easy and natural to connect components
• For interfaces to models of physical components it must be physically

possible to connect those components

• Component interfaces to facilitate reuse of existing
model components in class libraries

• Identify kind of interaction
• If there is interaction between two physical components involving energy

flow, a combination of one potential and one flow variable in the appropriate
domain should be used for the connector class

• If information or signals are exchanged between components, input/output
signal variables should be used in the connector class

• Use composite connector classes if several
variables are needed

pelab41 Peter Fritzson CopyrightPeter Fritzson Copyright ©© Open Source Modelica Consortium

Simplification of ModelsSimplification of Models

• When need to simplify models?
• When parts of the model are too complex
• Too time-consuming simulations
• Numerical instabilities
• Difficulties in interpreting results due to too many low-level model details

• Simplification approaches
• Neglect small effects that are not important for the phenomena to be

modeled
• Aggregate state variables into fewer variables
• Approximate subsystems with very slow dynamics with constants
• Approximate subsystems with very fast dynamics with static

relationships, i.e. not involving time derivatives of those rapidly changing
state variables

