Model Design

1

Peter Fritzson Copyright © Open Source Modelica Consortium

wogfurc pe|abl.l.l

Modeling Approaches

Traditional state space approach

Traditional signal-style block-oriented approach

Object-oriented approach based on finished

library component models
Object-oriented flat model approach

Object-oriented approach with design of library

model components

Peter Fritzson Copyright © Open Source Modelica Consortium

wogfurc pe|abl.l.l

Modeling Approach 1

Traditional state space approach

3

0 [1]
Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Traditional State Space Approach

Basic structuring in terms of subsystems and
variables

Stating equations and formulas

Converting the model to state space form:

x(t) = T (x(1), u(t))
y(t) = g(x(t),u(t))

4

0 [1]
Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Difficulties in State Space Approach

» The system decomposition does not
correspond to the "natural" physical system
structure

» Breaking down into subsystems is difficult if
the connections are not of input/output type.

» Two connected state-space subsystems do
not usually give a state-space system
automatically.

0 [1]
5 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p9|ablll

Modeling Approach 2

Traditional signal-style block-oriented approach

0 [1]
6 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p9|ablll

Physical Modeling Style (e.g Modelica) vs
signal flow Block-Oriented Style (e.g. Simulink)

Modelica: Block-oriented:
Physical model — easy to Signal-flow model — hard to
understand understand for physical systems
p p
R1=10 R2=100
P n n
AC=220
. p p
€=0.01 L=0.1
p
o I
7 Peter Fritzson ~ Copyright © Open Source Modelica Consortium MO um A pelabl.l.l

Traditional Block Diagram Modeling

» Special case of model components:
the causality of each interface variable
has been fixed to either input or output

Typical Block diagram model components:

X
e) i

NE
Integrator Adder Multiplier Function Branch Point

Simulink is a common block diagram tool

0 [1]
8 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Physical Modeling Style (e.g Modelica) vs
signal flow Block-Oriented Style (e.g. Simulink)

Modelica: Block-oriented:
Physical model — easy to Signal-flow model — hard to
understand understand for physical systems
p p
R1=10 R2=100
P n n
AC=220
. p p
€=0.01 L=0.1
p
o I
9 Peter Fritzson ~ Copyright © Open Source Modelica Consortium MO nm A pelabl.l.l

Example Block Diagram Models

Rotational
Mechanics

0 [1]
10 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Properties of Block Diagram Modeling

- The system decomposition topology does not
correspond to the "natural” physical system structure

- Hard work of manual conversion of equations into
signal-flow representation

- Physical models become hard to understand in signal
representation

- Small model changes (e.g. compute positions from
force instead of force from positions) requires redesign of
whole model

+ Block diagram modeling works well for control systems
since they are signal-oriented rather than "physical”

11

0 [1]
Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p6|ablll

Object-Oriented Modeling Variants

» Approach 3: Object-oriented approach based on

finished library component models

» Approach 4: Object-oriented flat model approach
» Approach 5: Object-oriented approach with

design of library model components

12

0 [1]
Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p6|ablll

Object-Oriented Component-Based
Approaches in General

» Define the system briefly
e What kind of system is it?
* What does it do?

» Decompose the system into its most important
components

» Define communication, i.e., determine interactions
« Define interfaces, i.e., determine the external ports/connectors
* Recursively decompose model components of “high complexity”

* Formulate new model classes when needed
« Declare new model classes.
» Declare possible base classes for increased reuse and maintainability

0 [1]
13 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p9|ablll

Top-Down versus Bottom-up Modeling

» Top Down: Start designing the overall view.
Determine what components are needed.

» Bottom-Up: Start designing the components
and try to fit them together later.

0 [1]
14 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p9|ablll

Approach 3: Top-Down Object-oriented
approach using library model components

Decompose into subsystems
Sketch communication

Design subsystems models by connecting
library component models

Simulate!

0 [1]
15 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p9|ablll

Decompose into Subsystems and Sketch
Communication — DC-Motor Servo Example

Electricd Rotational
Controller Circuit Mechanics

The DC-Motor servo subsystemsand their connections

0 [1]
16 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p9|ablll

Modeling the Controller Subsystem

AN 1~ Electrical Rotational
Eontroller Ciresiit _ Mechanics
\ S
\ \r -~ < ~ ~o R
\ \ ~o ~o
\ AY ~ -~
\ ~ ~
\ N Ss S~
\\ \\ ~ ~ N -~ - N
\
“ feedbackl
\\
' ““"*i?%’___> PI
‘\
\| stept PIL

Modeling the controller

17

Peter Fritzson

Copyright © Open Source Modelica Consortium

wo o€ irea pelab-'-'-

Modeling the Electrical Subsystem

’ .
/ Electrical “|+ . Rotational
Controller K Circuit M echanics
h S
) 1 Ay ~ ~
’ 1 AN S
n ,- AN ~ N
/ ; N S

resistorl inductorl

EMF1

signalVoltagel

j_— groundl

Modeling the electric circuit

18

Peter Fritzson

Copyright © Open Source Modelica Consortium

wo o€ irea pelab-'-'-

Rotational ’r'

Modeling the Mechanical Subsystem

Mechani CSII

|| _Eleerrica””
r Circuit

[}

Controller

[
1
1
'
'
I
]
1
1
1

springl

inertia2

L%i
[—
idealGearl

inertial

inertia3

speedSensorl

Modeling the mechanical subsystem including the speed sensor.

wogfurc pe|abl.l.l

Peter Fritzson Copyright © Open Source Modelica Consortium

19

Object-Oriented Modeling from Scratch

» Approach 4: Object-oriented flat model approach

» Approach 5: Object-oriented approach with
design of library model components

wogfurc pe|abl.l.l

Peter Fritzson Copyright © Open Source Modelica Consortium

20

Example: OO Modeling of a Tank System

source
|:: levelSensor

controller
maxLevel out in D
level h tank =
valve
~
X
I
I

* The system is naturally
decomposed into components

21 Peter Fritzson Copyright © Open Source Modelica Consortium

wogfurc pe|abl.l.l

Object-Oriented Modeling

Approach 4: Object-oriented flat model design

22 Peter Fritzson Copyright © Open Source Modelica Consortium

wogfurc pe|abl.l.l

Tank System Model FlatTank — No Graphical
Structure

model FlatTank
° No Component // Tank related variables and parameters
structure parameter Real flowLevel (unit="m3/s")=0.02;
parameter Real area(unit="m2") =1;
parameter Real flowGain(unit="m2/s") =0.05;
« Just flat set of Real h(start=0,unit="m") "Tank level";
equations Real gInflow(unit="m3/s") "Flow through input valve";
Real gOutflow (unit="m3/s") "Flow through output valve";
// Controller related variables and parameters
° Straight_ parameter Real K=2 "Gain";
parameter Real T (unit="g")= 10 "Time constant";
fOfWard bUt parameter Real minV=0, maxV=10; // Limits for flow output
|ESS erX|bIe, Real ref = 0.25 "Reference level for control";
no graphical Real error "Deviation from reference level";
structure Real outCtr "Control signal without limiter";
Real x; "State variable for controller";
equation
assert (minV>=0, "minV must be greater or equal to zero");//
der (h) = (gInflow-gOutflow)/area; // Mass balance equation
gInflow = if time>150 then 3*flowLevel else flowLevel;
qoutflow = LimitValue (minV,maxV, -flowGain*outCtr) ;
error = ref-h;
der (x) = error/T;
outCtr = K* (error+x) ;
end FlatTank;

Pl [1]
23 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Simulation of FlatTank System

* Flow increase to flowLevel at time O
* Flow increase to 3*flowLevel at time 150

simulate (FlatTank, stopTime=250)

plot(h, stopTime=250)

50 100 150 200 250

Pl [1]
24 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Object-Oriented Modeling

o Approach 5:

Object-oriented approach with design of
library model components

0 [1]
25 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Object Oriented Component-Based Approach
Tank System with Three Components

 Liquid source TankP

. | Out
« Continuous PI source[| qnq -

co n'[I’O”er tSensor tActuator

. o

PIcontinuousController p1Cont1nuous (ref=0.25)
Tank tank (area=1)

equation
connect (source.qgOut, tank.gIn);
connect (tank.tActuator, piContinuous.cOut)
connect (tank.tSensor, plContlnuous cIn) ;

end TankPI;

model TankPI
LiquidSource source (flowLevel=0.02)
[1]

26 Peter Fritzson Copyright © Open Source Modelica Consortium MO E Lica pelab HEE

Tank model

* The central equation regulating the behavior of the tank is the mass balance
equation (input flow, output flow), assuming constant pressure

model Tank
ReadSignal tSensor "Connector, sensor reading tank level (m)";
ActSignal tActuator "Connector, actuator controlling input flow";
LigquidFlow gIn "Connector, flow (m3/s) through input valve";
LigquidFlow gOut "Connector, flow (m3/s) through output valve" j
parameter Real area (unit="m2") = 0.5;
parameter Real flowGain (unit="m2/s") = 0.05;
parameter Real minV=0, maxV=10; // Limits for output valve flow
Real h(start=0.0, unit="m") "Tank level";
equation
assert (minV>=0, "minV - minimum Valve level must be >= 0 ");//
der (h) = (gIn.lflow-gOut.lflow) /area; // Mass balance
equation
gOut.lflow = LimitValue (minV,maxV,-flowGain*tActuator.act) ;
tSensor.val = h;
end Tank;

Pl [1]
27 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Connector Classes and Liquid Source Model
for Tank System

connector ReadSignal "Reading fluid level"
Real val (unit="m") ;
end ReadSignal;

TankPI

connector ActSignal "Signal to actuator
for setting valve position"
Real act;

end ActSignal;

connector LiquidFlow "Liquid flow at inlets or outlets"
Real 1lflow(unit="m3/s");
end LiquidFlow;

model LiquidSource

LigquidFlow gOut;

parameter flowLevel = 0.02;
equation

qgOut.lflow = if time>150 then 3*flowLevel else flowLevel;
end LiquidSource;

Pl [1]
28 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Continuous PI Controller for Tank System

« error = (reference level — dx _ error
actual tank level) dt T
. . — *
. Tis atime constant outCtr = K * (error +)
* Xis controller state Integrating equations gives
variable Proportional & Integrative (Pl)
i i error
» Ks a gain factor outCtr = K*(ermHJ s)
> base class for controllers —to be defined
model PIcontinuousContro r
extends BaseController (K=2,T=10) ;
Real x "State variable of continuous PI controller";
equation ____——> error—to bedefined in controller base class
der (x) = error/T;
outCtr = K* (error+x) ;
end PIcontinuousController;
29 Peter Fritzson Copyright © Open Source Modelica Consortium MO l]{{;:?l A pelabl.l.l

The Base Controller — A Partial Model

partial model BaseController

parameter Real Ts(unit="s")=0.1
"Ts - Time period between discrete samples - discrete sampled";

parameter Real K=2 "Gain";
parameter Real T=10 (unit="s") "Time constant - continuous";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference level";
Real outCtr "Output control signal";

equation
error = ref-cIn.val;
cOut.act = outCtr; TankP|

nd BaseController;

T |
tSensor tActuator

error =difference betwen reference level and [piContinuousL]
actual tank level from cIn connector cin cOut

0 [1]
30 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Simulate Component-Based Tank System

* As expected (same equations), TankPI gives the
same result as the flat model FlatTank

simulate (TankPI, stopTime=250)

plot(h, stopTime=250)

L L L
50 100 150 200 250

0 [1]
31 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Flexibility of Component-Based Models

» Exchange of components possible in a
component-based model

* Example:
Exchange the PI controller component for a PID
controller component

0 [1]
32 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Tank System with Continuous PID Controller
Instead of Continuous Pl Controller

 Liquid source

e Continuous PID
controller

e Tank

TankPID
In Out
tank
[] [}
tSensor tActuator

= [] pidContinuous[} ~out

Tank
equation

connect (source.gout,

connect (tank.tActuator, pidContinuous.cOut) ;

connect (tank.tSensor, pidContinuous.cIn);
end TankPID;

model TankPID
LiquidSource
PIDcontinuousController pidContinuous (ref=0.25)

source (flowLevel=0.02) ;
tank (area=1) ;

tank.qgIn) ;

33 Peter Fritzson

Copyright © Open Source Modelica Consortium

wo o€ irea pelab-'-'-

Continuous PID Controller

» error = (reference level —
actual tank level)

* Tis atime constant

* X, Yy are controller state
variables

» Kis a gain factor

dx _ error
a T
y=T derror

outCtr = K* (error + X+ y)
Integrating equations gives Proportional
& Integrative & Derivative(PID)

outCtr = K* (error + ﬂdt+T

> base class for controllers —to be defined

derror

)

// State variable of continuous PID controller
// State variable of continuous PID controller

model PIDcontinuousContro T
extends BaseController (K=2,T=10) ;
Real x;

Real vy;

equation
der (x) = error/T;

y = T*der (error) ;
outCtr = K*(error + x + y);
end PIDcontinuousController;

34 Peter Fritzson

Copyright © Open Source Modelica Consortium

wo o€ irea pelab-'-'-

Simulate TankPID and TankPI Systems

» TankPID with the PID controller gives a
slightly different result compared to the
TankPI model with the PI controller

simulate (compareControllers, stopTime=250) I

plot ({tankPI.h, tankPID.h})

~
~ , vV meeeee tankPI.h
o.al A [Ya tankPID.h
72 i
! \ h \
/ \ 1 \
[/ \ I \
0.3 \ ! \
\ \
\ —— A —_———
\ LT TS \, -
"N\ N\
0.2 -
0.1
time
50 100 150 200 250

35 Peter Fritzson Copyright © Open Source Modelica Consortium

wogfurc pekabiﬂﬂ

Two Tanks Connected Together

Flexibility of component-based models allows connecting models together

TanksConnectedPI
qin qOut qin qOut
source[] [] L] [] L]
- tankl tank2
[] [] —L1 []
tSensor’ tActuator| [tSensor tActuator

iContini i Contini
4C|r: COUt 4(:"7 COUt

model TanksConnectedPI
LiquidSource source (flowLevel=0.02) ;

Tank tankl (area=1), tank2(area=1.3);;
PIcontinuousController piContinuousl (ref=0.25), piContinuous2 (ref=0.4);
equation

connect (source.qout, tankl.qgIn) ;

connect (tankl.tActuator,piContinuousl.cOut) ;

connect (tankl.tSensor,piContinuousl.cIn) ;

connect (tankl.gOut, tank2.qIn) ;

connect (tank2.tActuator, piContinuous2.cOut) ;

connect (tank2.tSensor,piContinuous2.cIn) ;
end TanksConnectedPI;

Pl [1]
36 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Simulating Two Connected Tank Systems

Fluid level in tank2 increases after tankl as it should
Note: tankl has reference level 0.25, and tank?2 ref level 0.4

simulate (TanksConnectedPI, stopTime=400)

plot ({tankl.h, tank2.h})

tankl.h

tank2.h

time

37 Peter Fritzson Copyright © Open Source Modelica Consortium

M um A pelab-.-.-

Exchange: Either Pl Continous or PI Discrete
Controller

partial model BaseController

parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";
parameter Real K = 2 "Gain";
parameter Real T (unit = "s") = 10 "Time constant";

ReadSignal cIn

ActSignal cOut

parameter Real ref

Real error

Real outCtr
equation

"Input sensor level, connector";
"Control to actuator, connector";
"Reference level";

"Deviation from reference level";
"Output control signal";

error = ref - cIn.val;
cOut.act = outCtr;
end BaseController;

model PIDcontinuousControlle

model PIdiscreteController

discrete Real x;

equation

equation when sample (0, Ts) then
der (x) = error/T; x = pre(x) + error * Ts / T;
y = T*der (error) ; outCtr = K *

(x+error) ;

outCtr = K* (error + x + y);

end when;
end PIDcontinuousController;

end PIdiscreteController;

38 Peter Fritzson Copyright © Open Source Modelica Consortium

M um A pelab-.-.-

Exercises

* Replace the Plcontinuous controller by the
Pldiscrete controller and simulate. (see also the
book, page 461)

» Create a tank system of 3 connected tanks and
simulate.

0 [1]
39 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p6|ablll

Principles for Designing Interfaces —i.e.,
Connector Classes

Should be easy and natural to connect components

« For interfaces to models of physical components it must be physically
possible to connect those components

Component interfaces to facilitate reuse of existing
model components in class libraries

Identify kind of interaction

« If there is interaction between two physical components involving energy
flow, a combination of one potential and one flow variable in the appropriate
domain should be used for the connector class

« If information or signals are exchanged between components, input/output
signal variables should be used in the connector class

Use composite connector classes if several
variables are needed

0 [1]
40 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p6|ablll

Simplification of Models

* When need to simplify models?

When parts of the model are too complex

Too time-consuming simulations

Numerical instabilities

Difficulties in interpreting results due to too many low-level model details

« Simplification approaches

Neglect small effects that are not important for the phenomena to be
modeled

Aggregate state variables into fewer variables
Approximate subsystems with very slow dynamics with constants

Approximate subsystems with very fast dynamics with static
relationships, i.e. not involving time derivatives of those rapidly changing
state variables

0 [1]
41 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca p9|ablll

