Packages

0 [1]
1 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Packages for Avoiding Name Collisions

* Modelica provide a safe and systematic way of avoiding
name collisions through the package concept

* A package is simply a container or name space for
names of classes, functions, constants and other
allowed definitions

0 [1]
2 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Packages as Abstract Data Type:
Data and Operations in the Same Place

Keywor

ds

denotinga < Usage of the
package
record Complex ComplexNumber
Real re;
encapsulated Real im; paCkage
makes end Complex;
package class ComplexUser
dependencies function add iCumplexNumt%rs.Camplex: a(re=1.0, im=2.0);
(i.e., imports) input Complex X,y; {ComplexNumbers.Complex; b(re=1.0, im=2.0);
explicit output Complex z; Complexhumbers Complex! z,w;
algorithm equation
z.re 1= X.re + y.re;
z.im = X.im + y.im
end add;
function multiply
input Complex X,y; The type Complex and the
output Complex z; H =
Declarations of algorithn operations multiply and add
Supstract. z.re 1= x.re*y.re — x.imty.im; are referenced by prefixing
’ z.im = X.re*y.im + x.im*y.re; .
realpart, iolv- them with the package name
imaginaryPart, end multiply;
etc are Not shown | e - CompleXNumber
here end ComplexMumbers
_|
.) ,) 0 [1]
3 Peter Fritzson Copyright © Open Source Modelica Consortium MOODELICA pelablll

Accessing Definitions in Packages

Access reference by prefixing the package name to definition names

class ComplexUser

Complex b(re=1.
ComplexNumbers.Complex z,w;
equation

=1.0, Iim=2.
0, im=2.

w = ComplexNumbers.add(a,b);
end ComplexUser

Shorter access names (e.g. Complex, multiply) can be used if
definitions are first imported from a package (see next page).

4

0 [1
Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Importing Definitions from Packages

« Qualified import <—+ import <packagename>

« Single definition import <——— import <packagename> . <definitionname>

« Unqualified import <—— import <packagename> . *

* Renaming import <—— import <shortpackagename> = <packagename>

The four forms of import are exemplified below assuming
that we want to access the addition operation (add) of the
package Model ica.Math._ComplexNumbers

import Modelica.Math.ComplexNumbers; //Access as ComplexNumbers.add
import Modelica.Math_.ComplexNumbers.add; //Access as add
import Modelica.Math.ComplexNumbers.* //Access as add

import Co = Modelica.Math.ComplexNumbers //Access as Co.add

0 [1]
5 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Qualified Import

Qualified import Himport <packagename> I

The qualified import statement

import <packagename>;

imports all definitions in a package, which subsequently can be
referred to by (usually shorter) names

simplepackagename . definitionname, where the simple
package name is the packagename without its prefix.

encapsulated package ComplexUser

Amport Modelica.Vath.Con ksl This is the most common
class User

ComplexNumbers.Complex a(x=1.0, y=2.0); form of import that

ComplexNumbers.Complex b(x=1.0, y=2.0); F H

ComplexNumbers.Complex z,w; ellmlnate§ the risk for
equation name collisions when

z = ComplexNumbzrs.multlply(a,b); importing from several

packages

end ComplexUserl;

0 [1]
6 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Single Definition Import

Single definition import é—|~ import <packagename> .

<definitionname> I

The single definition import of the form

import <packagename>.<definitionname>;

allows us to import a single specific definition (a constant or class but
not a subpackage) from a package and use that definition referred to
by its definitionname without the package prefix

encapsulated package ComplexUser2

import ComplexNumbers._multiply;
import ComplexNumbers.add;
class User
Complex a(x=1.0, y=
Complex b(x=1.0, y=2.
Complex z,w;

There is no risk for name
collision as long as we
do not try to import two

equation definitions with the same
z = multiply(a,b); h

w = dd(a.b); short name

end User;

end ComplexUser2;

7 Peter Fritzson Copyright © Open Source Modelica Consortium

wo o€ irea pelab-'-'-

Unqualified Import

Unqualified import %—| import <packagename> . * I

The unqualified import statement of the form

import packagename.*;

imports all definitions from the package using their short names without
qualification prefixes.

Danger: Can give rise to name collisions if imported package is changed.

Complex a(x=1.0, y=2.0);
Complex b(x=1.0, y=2.0);
Complex z,w;

This example also shows
direct import into a class
instead of into an enclosing

equation
z = multiply(a,b); package
w = iadd(a,b);

end ComplexUser3;

8 Peter Fritzson Copyright © Open Source Modelica Consortium

wo o€ irea pelab-'-'-

Renaming Import

Renaming import %| import <shortpackagename> = <packagename> I

The renaming import statement of the form;

import <shortpackagename> = <packagename>;

imports a package and renames it locally to shortpackagename.
One can refer to imported definitions using shortpackagename as
a presumably shorter package prefix.

class ComplexUser4

i 10bort Co - ComplexNumbers;) i e
COI_JcOmmex a(x=1.0, y=2.0): This is as safe as qualified
co.Complex b(x=1.0, y=2.0); import but gives more
Co.Complex z,w; .

equation concise code

z = Co.multiply(a,b);

0 [1]
9 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Package and Library Structuring

A well-designed package structure is one of the most
important aspects that influences the complexity,
understandability, and maintainability of large software
systems. There are many factors to consider when
designing a package, e.qg.:

« The name of the package.

Structuring of the package into subpackages.

Reusability and encapsulation of the package.

« Dependencies on other packages.

0 [1]
10 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Subpackages and Hierarchical Libraries

The main use for Modelica packages and subpackages is to structure
hierarchical model libraries, of which the standard Modelica library is a
good example.

encapsulated package Modelica // Modelica
encapsulated package Mechanics // Modelica.Mechanics
encapsulated package Rotational // Modelica.Mechanics.Rotational
model Inertia // Modelica.Mechanics.Rotational.Inertia

end Inertia;
model Torque // Modelica.Mechanics.Rotational.Torque

end Torque;
end Rotational;

end Mechanics;

end Modelica;

0 [1
11 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Ecapsulated Packages and Classes

An encapsulated package or class prevents direct reference to public
definitions outside itself, but as usual allows access to public subpackages
and classes inside itself.

» Dependencies on other packages become explicit
— more readable and understandable models!

» Used packages from outside must be imported.

import Modelica.Mechanics.Rotational; // Import package Rotational
Rotational .Torque t2; // Use Torque, OK!
Modelica.Mechanics.Rotational . Inertia w2;
//Error! No direct reference to the top-level Modelica package
.- // to outside an encapsulated class
end TorqueUserExamplel;

0 [1
12 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

within Declaration for Package Placement

Use short names without dots when declaring the package or class in
question, e.g. on a separate file or storage unit. Use within to specify
within which package it is to be placed.

Thewithin «— 1§
declaration

states the prefix
needed to form
the fully

qualified name

encapsulated package Interfaces
import .._;
connector Flange_a;

end-l;iange_a;
end ’ I r-1te rfaces;
model Inertia The subpackage Rotational declared
within Modelica.Mechanics has the fully
qualified name
end Rotational; Model ica.Mechanics.Rotational,
I hy concatenating the packageprefix with the
short name of the package.

end Inertia;

0 [1]
13 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Mapping a Package Hierachy into a Directory
Hirarchy

A Modelica package hierarchy can be mapped into a
corresponding directory hierarchy in the file system

C:\library Modelica
\Modelica
package.mo
\Blocks
package.mo
Continuous.mo Blocks Mechanics
Interfaces.mo
\Examples
package.mo
Examplel.mo
\Mechanics
package .mo
Rotational .mo

Rotational

Examples

Continuous Interfaces

Examplel

0 [1]
14 Peter Fritzson Copyright © Open Source Modelica Consortium MooELca pelablll

Mapping a Package Hierachy into a Directory

Hirarchy

within;
encapsulated package Modelica
"Modelica root package";
end Modelica;

elica.Blocks;

C:\library
\Modelica

encapsulated package Examples
"Examples for Modelica.Blocks";
import ...;

It contains an empty Modelica package declaration since all
subpackages under Modelica are represented as subdirectories of
their own. The empty within statement can be left out if desired

end Examples;

package.mo
Continuous.mo
Interfaces.mo

model Examplel

’ end Examplel;

within Modelica.Blocks.Examples;

"Usage example 1 for Modelica.Blocks";

within Modelica.Mechanics;
encapsulated package Rotational
encapsulated package Interfaces

\Mechanics
package.mo

import ...;
connector Flange_a;

end Flange_a;

end Interfaces;
model Inertia
end Inertia;

end Rotational;

The subpackage
Rotational stored as the
file Rotational .mo. Note
that Rotational contains
the subpackage
Interfaces, which also
is stored in the same file
since we chose not to
represent Rotational as
adirectory

15 Peter Fritzson

Copyright © Open Source Modelica Consortium

nuué??an pEﬂEiblrll

