R. Franke, ABB AG, Mannheim

OpenModelica Workshop 2016

© ABB
February 1, 2016 Slide 1

Overview

Motivation and treatment of optimal control programs

Embedded revolution

C++ for a modern real-time runtime

New development: synchronous equations

© ABB
February 1, 2016 Slide 2

Dynamic Optimization
Treat optimal control programs basing on simulation models

For dynamic system model and sample time points t,, t; <t; < ... <ty
- find control u (and/or initial states x(0)) that minimize criterion J
= subject to mixed discrete/continuous model, initial conditions

- and further constraints g

: |
1= A OGN~ o
k=0 xc(to) ue(tr)

Xd (k + 1) — fd [k; Xd (k);xc(tk)tud (k)]; Xd (O) = Xd0» k = 0'1' 'K

dx,
xd ft) = [t xa(k (), (0, uc(®)], xc(to) = X, t € [to, ti]

gt xa(k@®), 2. (0), uq(k(©), uc ()] = 0

Some industrial applications of model-based control with HQP solver

The power of mathematical programming

Wagenpfeil et al, 2014: Water canal system (Uni Stuttgart)

Franke et al, 2014: Virtual power plants (ABB)

Neupert et al, 2010: Boom cranes (Uni Stuttgart, Liebherr)

Nagy et al, 2007: Polymerization reactors (Uni Stuttgart, BASF)

Franke et al, 2006: Power plant start-up (ABB)

Linke et al, 1997: Water canal system (Uni limenau, MLK)

e it ey | .
e e e M e 8L MECKLENBURG -
g bt -\t R ! VORPOMMERN
. - bt P
5. B g T
b -] b} -
= 8 1 nee iy INOIC] g, M CONTROL ENGINEERING _IFX
¢ BRANDEN - 2
", BURG C PRACTICE
, e TC Best Paper Prize
;/ g Cooling water ¥ e ittt .
[] '
Y i -
_G.mn o i ! 2K Nogy. B. Makn, B. Franke and F. Allgower
1 | LOEep—
= E eerseaald b s
% 1 ! b ralaptomn ctudy of sn oS wnd cspd ol l mealowes mads
\ i ! 1
L7 Rheino S o ; i " Yo 39T gy
Monster #Foen, 0 bEA N ganginer s Heater il ,.

© ABB
February 1, 2016 Slide 4

Heating/Cooling system e By R
=4 -]

ABB'’s BoilerMax cuts fuel used
during boiler starts by up to

20%

at an E.ON power plant
in Ingolstadt, Germany.

Overview

= Motivation and treatment of optimal control programs

- Embedded revolution

time runtime

= C++ for a modern real

- New development: synchronous equations

ﬁj
.E%—

.. m. _.. ﬂh\h_ﬁ&
7\ uﬁvﬁ_—’-:-’
N 1]

s ‘YTI %sh&

gl
-I

© ABB

)
)
=]
%)

February 1, 2016

Embedded revolution
Hardware leaped ahead during last decade — Software still too expensive

Embedded traditional
- Special purpose hardware
- Very low computing resources — kHz, kBytes, no floating point, ...

- Simple special purpose operating systems

Embedded revolution
Hardware leaped ahead during last decade — Software still too expensive

Embedded traditional

- Special purpose hardware

- Very low computing resources — kHz, kBytes, no floating point, ...
- Simple special purpose operating systems

Embedded in the 21st century

- General purpose hardware (mobile platforms) — cf. Raspberry PI starting at 5$ N
= High computing power — GHz, GBytes, HD Graphics, System on Chip (SoC) '

- General purpose operating systems

Way forward
- Powerful hardware has become available for embedded at low cost
- Software still too expensive — need to increase productivity

- need to develop and exploit appropriate software technologies, such as C++ A DD
February 1, 2016 Side 7 ;a1 4]

C++
High-level programming / type safety / high runtime performance

Initiated by Bjarne Stroustrup in 1979; motivated by object-oriented Simula 67

C++98 (ISO/IEC 14882:1998)
= Including Standard Template Library

C++03 (ISO/IEC 14882:2003)
= revised C++98

C++11 (ISO/IEC 14882:2011) Basis for

- New library modules, largely impacted by boost library: Cpp runtime
regular expressions, threads, time, containers, static array, ...

- auto keyword, simpler array initialization, lambdas, ...

C++14 (ISO/IEC 14882:2014)
= revised C++11

C++17 (upcoming)

© ABB
February 1, 2016 Slide 8

C++ features used by the OpenModelica Cpp runtime

- Classes with public interfaces and protected implementations

- Deterministic memory management (no need for garbage collection)

- Templates (e.g. Arrays of different types, up to array of std::string or records)
- Type safety (e.g. dimension of static array being part of type)

- Exception handling

=>»High-level features reduce implementation effort while C++ compilers generate
very fast code

C++ aims to “leave no room for a lower-level language ...
(except for assembly code in rare cases)” (Stroustrup, 2014)

© ABB
February 1, 2016 Slide 9

Obtained CPU times with different runtimes for same DrumBoliler example
Considerable speed-ups, in particular with C++ compiler optimization

Modelica Tool for CPU time with gcc 4.9.2 flag
FMU export -0O0 -02 -Ofast
OpenModelica 1.9.3 9.1s 8.1s 7.0s

OpenModelica 1.9.3 4.0s 3.3s 3.1s
+cseCall

Dymola 2015FDO01 3.4s 1.7s 1.3s

OpenModelica 1.9.3 5.6s 19s 1.0s
+simCodeTaget=Cpp

OpenModelica 1.9.3 2.7S 1.0s 0.6s
+simCodeTaget=Cpp
+cseCall

See: R. Franke, M. Walther, N. Worschech, W. Braun, B. Bachmann: Model-based control with FMI A DD
© BB and a C++ runtime for Modelica, Modelica Conference, Paris 2015.
February 1, 2016 Slide 10 " I'l.

Overview

Motivation and treatment of optimal control programs

Embedded revolution

C++ for a modern real-time runtime

New development: synchronous equations

/\

7riitin P A 4
W "y \ &

ke

S
.-ill'wﬂ.
N

4

«\i
F 'E.:" il
'. =E= By

© ABB
February 1, 2016 Slide 11

Example: Double Integrator Discrete-time

model DID "Double Integrator Discrete-time"
parameter Real p = 1 "gain for input";
parameter Real y1 start = 1 "start value for first state";
parameter Real y2_start = 0 "start value for second state";
input Real u(start = -2);
Real xd1(start = y1 start), xd2(start = y2_start);
output Real y1, y2;
equation
when Clock(1, 20) then
xd1l = previous(xdl) + p * u * interval(u);
xd2 = previous(xd2) + previous(xdl) * interval(u) + 0.5 * u * interval(u)"2;
y1l = previous(xdl);
y2 = previous(xd2);
end when;
end DID;

© ABB
February 1, 2016 Slide 12

Example: simulation in Dymola 2015 FDO1

EEXrTs =
File Edit Simulation Plot Animation Commands Window Help Linear analysis HER

BrHQAS R €8 o - B-re-voR @ &5-BEEELORE A &~

b Il [44> W [Tme: o B Speed: 1~

Variable Browser g X |

u ¥2

Variables Un

- y2_start
Wl

Cxd1

<Cnd2

"'5!'1

w2
-[xd1_previous
- xd2_previous
+_Clocks

-1.04

-1.54

=20

I
-2.5

Advanced] 0.00
X | Text style: Custom v IE' I un . =

= |
-2.5+ T T T T
0.0 0.1 0.2 0.3 0.4

Advanced FMI .ExposeDiscreteStatesForFMUI2 = true
tranalateModel FMU ("DID", falae, "™, "2", "all", falae);

= L il
‘E = "DID
m
E| 4|
E
(=]
5]
= Modeling v Simulation
© ABB =
February 1, 2016 Slide 13 R R e e

Example: simulation in OpenModelica (simCodeTarget=Cpp)

© ABB
February 1, 2016

Slide 14

OMEdit - OpenModelica Connection Editor x

File Edit Miew Simulation FMI Export Tools Help

T*TEe B RA oo " oOBOT -E-B - & &-

Libraries Browser 3] [x Plot: 1 x Variables Browser 3]
|S~earch Classes ‘ Cr — o i _ |Finc| Variables ‘ Cr
Zoom Pan Auto Scale Fit in View Save Print Grid »
Libraries Variables ¥ o Val
1 2 u)
+IE OpenModelica ¥ ¥ ~lla} DID
+ o ModelicaReference 1] I:' p
+ D ModelicaServices] ::: prevpus[xj;_}
i _| previous(x
+ . Complex 0.5] - P. (xd2)
) | time 1
+P%) Modelica) — 7o
AVECEN — | L o =
i B I] xdl
8] '_'_'_ =
] [Il xd2
]
] ‘l_l_‘) y1_start
-0.5 1 Iy 2
] ILL [) y2 _start
_1]
-1.5 i
-2 T T T T T T T T T T T T T T T
8] 0.2 0.4 06 0.8 1
© CE— 2

X:-72.95 Y: 100.05 | t Welcome | oﬁ Maodeling ‘ﬂ Plotting ‘l l! l.

Double Integrator optimal control example

Minimize K

- control effort J= Z u® (k) u(—k;min
k=0

subject to model equations and

= initial states yi(ty) = 1, y, (to) =0

- final states y1(tg) = —1, Y2 (tx) =0

- State/output constraint y,(t) <01, tE€E [ty tx]

Example: simulation and optimization using HQP
Importing FMU exported with OpenModelica (simCodeTarget=Cpp)

runtk x runtl #2 x
Omuses 1.9.8.15.09.20 Omuses 1.9.8.15.09.20
Exit Exit
DynamicOpt demo DynamicOpt demo
-1.8 — —1 " 0 — —1
-y -y
- -
-1.8 — —0.5 —0.5
_2 —
E. 5] 0§ E. 0§
B
_4 p—
2.1 - — 0.5 — 0.5
2.2 o 57 o
I | | | | | | | | | | |
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Time Time

Conclusions

- Model-based applications are often treated as optimal control programs
- New embedded trends enable more applications

- Powerful hardware has become available at low cost
- Software still too expensive — need to increase productivity
- Need to develop and exploit appropriate software technologies, such as C++

- OpenModelica C++ runtime

- Exploit C++ features (e.g. memory management, templates, type safety)

- Achieved superior results, compared to other Modelica tools or runtimes

- Drawback of C++: higher compile/linker requirements — encapsulate in FMI
- Increased maturity with new compilers supporting C++11 (replacing boost)

- Serve as basis for new development of FMI export with clocked equations

© ABB
February 1, 2016 Slide 17

Power and productivity “ I. I!
for a better world™ ’ ‘ .' l.

	Embedded optimizing control using�the OpenModelica C++ runtime�OpenModelica Workshop 2016
	Overview
	Dynamic Optimization
	Some industrial applications of model-based control with HQP solver
	Overview
	Embedded revolution
	Embedded revolution
	C++
	C++ features used by the OpenModelica Cpp runtime
	Obtained CPU times with different runtimes for same DrumBoiler example
	Overview
	Example: Double Integrator Discrete-time
	Example: simulation in Dymola 2015 FD01
	Example: simulation in OpenModelica (simCodeTarget=Cpp)
	Double Integrator optimal control example
	Example: simulation and optimization using HQP
	Conclusions
	Slide Number 18

