
© ABB
Slide 1February 1, 2016

R. Franke, ABB AG, Mannheim

Embedded optimizing control using
the OpenModelica C++ runtime
OpenModelica Workshop 2016

© ABB
Slide 2February 1, 2016

Overview

 Motivation and treatment of optimal control programs

 Embedded revolution

 C++ for a modern real-time runtime

 New development: synchronous equations

© ABB
Slide 3February 1, 2016

Dynamic Optimization

For dynamic system model and sample time points tk , t0 < t1 < … < tK
 find control u (and/or initial states x(0)) that minimize criterion J

 subject to mixed discrete/continuous model, initial conditions

 and further constraints g

FMU MEFMU MEJ = �
𝑘𝑘=0

𝐾𝐾

𝑓𝑓0 𝑘𝑘,
)𝑥𝑥𝑑𝑑(𝑘𝑘
)𝑥𝑥𝑐𝑐(𝑡𝑡𝑘𝑘

,
)𝑢𝑢𝑑𝑑(𝑘𝑘
)𝑢𝑢𝑐𝑐(𝑡𝑡𝑘𝑘

→ min
)𝑥𝑥𝑑𝑑(0
)𝑥𝑥𝑐𝑐(𝑡𝑡0

)𝑢𝑢𝑑𝑑(𝑘𝑘
)𝑢𝑢𝑐𝑐(𝑡𝑡k

𝑥𝑥𝑑𝑑 𝑘𝑘 + 1 = 𝑓𝑓𝑑𝑑 𝑘𝑘, 𝑥𝑥𝑑𝑑 𝑘𝑘 , 𝑥𝑥𝑐𝑐 𝑡𝑡𝑘𝑘 ,𝑢𝑢𝑑𝑑 𝑘𝑘 , 𝑥𝑥𝑑𝑑 0 = 𝑥𝑥𝑑𝑑0, 𝑘𝑘 = 0,1, … ,𝐾𝐾

𝑑𝑑𝑥𝑥𝑐𝑐 𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑐𝑐 𝑡𝑡, 𝑥𝑥𝑑𝑑 𝑘𝑘 𝑡𝑡 , 𝑥𝑥𝑐𝑐 𝑡𝑡 ,𝑢𝑢𝑐𝑐 𝑡𝑡 , 𝑥𝑥𝑐𝑐 𝑡𝑡0 = 𝑥𝑥𝑐𝑐0, 𝑡𝑡 ∈ 𝑡𝑡0, 𝑡𝑡𝐾𝐾

𝑔𝑔 𝑡𝑡, 𝑥𝑥𝑑𝑑 𝑘𝑘 𝑡𝑡 , 𝑥𝑥𝑐𝑐 𝑡𝑡 ,𝑢𝑢𝑑𝑑 𝑘𝑘 𝑡𝑡 ,𝑢𝑢𝑐𝑐 𝑡𝑡 ≥ 0

Treat optimal control programs basing on simulation models

© ABB
Slide 4February 1, 2016

Some industrial applications of model-based control with HQP solver

 Wagenpfeil et al, 2014: Water canal system (Uni Stuttgart)

 Franke et al, 2014: Virtual power plants (ABB)

 Neupert et al, 2010: Boom cranes (Uni Stuttgart, Liebherr)

 Nagy et al, 2007: Polymerization reactors (Uni Stuttgart, BASF)

 Franke et al, 2006: Power plant start-up (ABB)

 Linke et al, 1997: Water canal system (Uni Ilmenau, MLK)

The power of mathematical programming

© ABB
Slide 5February 1, 2016

Overview

 Motivation and treatment of optimal control programs

 Embedded revolution

 C++ for a modern real-time runtime

 New development: synchronous equations

© ABB
Slide 6February 1, 2016

Embedded revolution

Embedded traditional

 Special purpose hardware

 Very low computing resources – kHz, kBytes, no floating point, …

 Simple special purpose operating systems

Hardware leaped ahead during last decade – Software still too expensive

© ABB
Slide 7February 1, 2016

Embedded revolution

Embedded traditional

 Special purpose hardware

 Very low computing resources – kHz, kBytes, no floating point, …

 Simple special purpose operating systems

Embedded in the 21st century

 General purpose hardware (mobile platforms) – cf. Raspberry PI starting at 5$

 High computing power – GHz, GBytes, HD Graphics, System on Chip (SoC)

 General purpose operating systems

Way forward

 Powerful hardware has become available for embedded at low cost

 Software still too expensive – need to increase productivity

 need to develop and exploit appropriate software technologies, such as C++

Hardware leaped ahead during last decade – Software still too expensive

© ABB
Slide 8February 1, 2016

C++

Initiated by Bjarne Stroustrup in 1979; motivated by object-oriented Simula 67

C++98 (ISO/IEC 14882:1998)
 Including Standard Template Library

C++03 (ISO/IEC 14882:2003)
 revised C++98

C++11 (ISO/IEC 14882:2011)
 New library modules, largely impacted by boost library:

regular expressions, threads, time, containers, static array, …
 auto keyword, simpler array initialization, lambdas, …

C++14 (ISO/IEC 14882:2014)
 revised C++11

C++17 (upcoming)

High-level programming / type safety / high runtime performance

Basis for
Cpp runtime

© ABB
Slide 9February 1, 2016

C++ features used by the OpenModelica Cpp runtime

 Classes with public interfaces and protected implementations

 Deterministic memory management (no need for garbage collection)

 Templates (e.g. Arrays of different types, up to array of std::string or records)

 Type safety (e.g. dimension of static array being part of type)

 Exception handling

High-level features reduce implementation effort while C++ compilers generate
very fast code

C++ aims to “leave no room for a lower-level language …
(except for assembly code in rare cases)” (Stroustrup, 2014)

© ABB
Slide 10February 1, 2016

Obtained CPU times with different runtimes for same DrumBoiler example
Considerable speed-ups, in particular with C++ compiler optimization

Modelica Tool for
FMU export

CPU time with gcc 4.9.2 flag
-O0 -O2 -Ofast

OpenModelica 1.9.3 9.1 s 8.1 s 7.0 s

OpenModelica 1.9.3
+cseCall

4.0 s 3.3 s 3.1 s

Dymola 2015FD01 3.4 s 1.7 s 1.3 s

OpenModelica 1.9.3
+simCodeTaget=Cpp

5.6 s 1.9 s 1.0 s

OpenModelica 1.9.3
+simCodeTaget=Cpp
+cseCall

2.7 s 1.0 s 0.6 s

See: R. Franke, M. Walther, N. Worschech, W. Braun, B. Bachmann: Model-based control with FMI
and a C++ runtime for Modelica, Modelica Conference, Paris 2015.

© ABB
Slide 11February 1, 2016

Overview

 Motivation and treatment of optimal control programs

 Embedded revolution

 C++ for a modern real-time runtime

 New development: synchronous equations

© ABB
Slide 12February 1, 2016

Example: Double Integrator Discrete-time

model DID "Double Integrator Discrete-time"
parameter Real p = 1 "gain for input";
parameter Real y1_start = 1 "start value for first state";
parameter Real y2_start = 0 "start value for second state";
input Real u(start = -2);
Real xd1(start = y1_start), xd2(start = y2_start);
output Real y1, y2;

equation
when Clock(1, 20) then

xd1 = previous(xd1) + p * u * interval(u);
xd2 = previous(xd2) + previous(xd1) * interval(u) + 0.5 * u * interval(u)^2;
y1 = previous(xd1);
y2 = previous(xd2);

end when;
end DID;

© ABB
Slide 13February 1, 2016

Example: simulation in Dymola 2015 FD01

© ABB
Slide 14February 1, 2016

Example: simulation in OpenModelica (simCodeTarget=Cpp)

© ABB
Slide 15February 1, 2016

Minimize

 control effort

subject to model equations and

 initial states

 final states

 state/output constraint

Double Integrator optimal control example

𝐽𝐽 = �
𝑘𝑘=0

𝐾𝐾

𝑢𝑢2 𝑘𝑘
𝑢𝑢(𝑘𝑘)

𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦1 𝑡𝑡0 = 1, 𝑦𝑦2 𝑡𝑡0 = 0

𝑦𝑦1 𝑡𝑡𝐾𝐾 = −1, 𝑦𝑦2 𝑡𝑡𝐾𝐾 = 0

𝑦𝑦2 𝑡𝑡 ≤ 0.1, 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝐾𝐾]

© ABB
Slide 16February 1, 2016

Example: simulation and optimization using HQP
Importing FMU exported with OpenModelica (simCodeTarget=Cpp)

© ABB
Slide 17February 1, 2016

Conclusions

 Model-based applications are often treated as optimal control programs

 New embedded trends enable more applications

 Powerful hardware has become available at low cost

 Software still too expensive – need to increase productivity

 Need to develop and exploit appropriate software technologies, such as C++

 OpenModelica C++ runtime

 Exploit C++ features (e.g. memory management, templates, type safety)

 Achieved superior results, compared to other Modelica tools or runtimes

 Drawback of C++: higher compile/linker requirements – encapsulate in FMI

 Increased maturity with new compilers supporting C++11 (replacing boost)

 Serve as basis for new development of FMI export with clocked equations

	Embedded optimizing control using�the OpenModelica C++ runtime�OpenModelica Workshop 2016
	Overview
	Dynamic Optimization
	Some industrial applications of model-based control with HQP solver
	Overview
	Embedded revolution
	Embedded revolution
	C++
	C++ features used by the OpenModelica Cpp runtime
	Obtained CPU times with different runtimes for same DrumBoiler example
	Overview
	Example: Double Integrator Discrete-time
	Example: simulation in Dymola 2015 FD01
	Example: simulation in OpenModelica (simCodeTarget=Cpp)
	Double Integrator optimal control example
	Example: simulation and optimization using HQP
	Conclusions
	Slide Number 18

