
Dynamic Load Balancing in Parallelization of
Equation-based Models

Mahder Gebremedhin

Programing Environments Laboratory (PELAB), IDA
Linköping University

mahder.gebremedhin@liu.se

Annual OpenModelica Workshop
2016-02-01

Linköping, Sweden

1 / 25

Overview

Introduction

Extracting Parallelism

Task System Library

Performance

Future work

2 / 25

FourBitBinaryAdder: Dependency Task Graph

Original

1122 tasks

1360 edges

3 / 25

Automatic Parallelization

Improving the compiler

Design and implementation of new automatic parallelization support
for the OpenModelica compiler.

Design and implementation of customizable task system handling
library.

Multiple clustering and scheduling options.

Targeting shared-memory multi-core architectures.

4 / 25

Dependency Analysis

f1(x1, x2, t) = 0

f2(x3, t) = 0

f3(x1, x3, x4, t) = 0

f4(x3, x5, t) = 0

f5(x1, x4, x5, t) = 0

f6(x6, t) = 0

f7(x6, x7, t) = 0

x1 x2 x3 x4 x5 x6 x7
f1
f2
f3
f4
f5
f6
f7

5 / 25

Dependency Analysis

x3 := g2(t)

x5 := g4(x3, t)

g3(x1, x3, x4, t) = 0

g5(x1, x4, x5, t) = 0

x2 := g1(x1, t)

x6 := g6(t)

x7 := g7(x6, t)

x3 x5 x1 x4 x2 x6 x7
g2
g4
g3
g5
g1
g6
g7

6 / 25

Strongly Connected Components

x3 := g2(t)

x5 := g4(x3, t)

{x1, x4} := g35(x3, x5, t)

x2 := g1(x1, t)

x6 := g6(t)

x7 := g7(x6, t)

x3 x5 {x1,x4} x2
g2
g4
g35
g1

g6
g7

x6 x7

7 / 25

TLM and Decoupled Systems

Decoupled Systems

Systems {g6,g7} and {g2,g4,g35,g1} are not connected and can potentially
run in parallel.

Transmission Line Modeling (TLM)

Introduces delays to the system.

Better decoupling by eliminating some dependencies in each time step.

Coarse Grained Parallelization

Find all decoupled systems.

Balance these systems.

Evaluate them simultaneously.

8 / 25

TLM and Decoupled Systems

Problems with the approach

Most models are heavily connected, i.e. limited decoupling.

Improving decoupling with TLM requires modification to existing
models.

Problems with the implementation

Implemented as part of the normal code-generation runtime system.

Complicates development process.

New approach

Task graph based representation of whole system.

Library based implementation.

9 / 25

From Equation Systems to Task Graphs

Directed Acyclic Graphs

G = (~V , ~E , c)

x3 x5 {x1,x4} x2
g2
g4
g35
g1

g6
g7

x6 x7

10 / 25

The Task Systems Library

What?

Generic C++ template task system library.

Tasks
Clusters
Clustering algorithms
Scheduling algorithms
Profiling and execution

Dependecies

Boost

Intel Threading Building Blocks (TBB).

11 / 25

Tasks and Clusters

Tasks

Abstract task representation that can be customized.

Define dependency and execution rules.

Clusters

Every vertex is a cluster.

Originaly each cluster contains one task.

Tasks in a single cluster are executed sequentially and in order.

12 / 25

Clustering Algorithms

Cost Oblivious

Merge Single Parent (MSP)

Merge Level Parents (MLP).

Cost Based

Merge Children Recursive (MCR)

Merge Level for Cost (MLC)

13 / 25

Profiling and Cost Estimation

Static Cost Estimation

User provided cost values.

Suitable for handling tasks that are executed only once.

For simulation environments

Can be estimated by traversing abstract syntax trees or internal
representation.

Limitations

Not accurate.

Some tasks are not easy to estimate, e.g. function calls, loops...

Costs vary on different architectures.

14 / 25

Profiling and Cost Estimation

Dynamic Cost Estimation

Execute once and record.

Suitable for simulation environments.

Simulations execute systems repeatedly.

Current implementation

First time step of simulation used for profiling.

Clustering, Scheduling and subsequent evaluations use this profiling
information.

Should be done periodically.

15 / 25

Schedulers

Schedulers

Collection of clustering algorithms.

Profiling.

Executors and synchronizations.

Available Schedulers

Level Scheduler.

TBB Flow Graph Based Scheduler.

16 / 25

Level Scheduler

Clustering

Merge Children Recursive.

Merge Level for Cost.

Executor

StepSync

Execute all tasks in the same level.
Synchronize.

Level Scheduler Class

template<typename TaskType>

struct LevelScheduler :

StepSync < TaskType

,MCR

,MLC

> {};

17 / 25

TBB Flow Graph Based Scheduler

Wrapper for TBB flow graph

Profile the system.

Perform Clustering.

Construct flow graph and execute.

Why not directly create flow graph

Clustering improves performance by reducing overhead.

Consistency in external interface.

18 / 25

FourBitBinaryAdder: Dependency Task Graph Before
Clustering

Original

1122 tasks

1360 edges

19 / 25

FourBitBinaryAdder: Dependency Graph after Clustering
for Level Scheduler

8-way 4-way

After Merge Children Recursive

569 tasks

620 edges

After Merge Level for Cost: 8

27 tasks

121 edges

After Merge Level for Cost: 4

18 tasks

72 edges

20 / 25

Performance Measurements

Measurement Setup

64-bit Intel(R) Xeon(R) W3565 CPU with 4 cores at 3.2 GHz.

Simulation 0 to 1 second.

Default OpenModelica Solver (DASSL)

Only the ODE system is parallelized for each model.

Estimated Level Scheduler Speedup

Ratio of the sequential cost to the ideal parallel cost.

21 / 25

CauerLowPassSC (Electrical Analog)

2 threads 4 threads
0

1

2

3

1.92

3.3

1.55

2.03

1.19

1.5

S
p

ee
d

u
p

Estimated Level Scheduler

Achieved Level Scheduler

Achieved Flow Graph Scheduler

22 / 25

BranchingDynamicPipes (Fluid)

2 threads 4 threads
0

1

2

3

4

1.88

3.82

1.73

2.13

2.37 2.44

S
p

ee
d

u
p

Estimated Level Scheduler

Achieved Level Scheduler

Achieved Flow Graph Scheduler

23 / 25

Future work

More clustering and scheduling algorithms.

Better adaptive rescheduling with continuous dynamic scheduling.

Extensive testing and comparison.

24 / 25

Thank You!

25 / 25

	Extracting Parallelism
	Equation Systems and Dependency Analysis
	Decoupled systems and TLM for Coarse Grained Parallelization

	Task System Library
	The Task Systems Library

	Performance
	Performance Measurements

	Future work

