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Motivation
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
I Hessian matrices play a critical role for dynamic optimization

problems
I performance of the optimizer heavily depends on the availability

of derivative information
I whole symbolic machinery available in OpenModelica
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Dynamic Optimization Problem

Dynamic Optimization Problem

min
u(t)

M(x(tf ), u(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t)dt

s.t.

x(t0) = x0 (1)
ẋ(t) = f (x(t), u(t), t) (2)

g(x(t), u(t), t) ≤ 0 (3)
r(x(tf )) = 0 (4)

I Mayer term M(·)
I Lagrange term L(·)
I state vector x(t)

I control variable
vector u(t)

I constraints (1),
(2), (3) and (4)
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Discretized problem formulation

I collocation methods are highly suitable for discretizing
I collocation with RADAU IIA and LOBATTO IIIA
I approximate Lagrange term with quadrature formulas
I discretized optimization problem can be solved
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Discretized problem formulation

Closer look at collocation process:
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Discretized problem formulation

I collocation methods are highly suitable for discretizing
I collocation with RADAU IIA and LOBATTO IIIA
I approximate Lagrange term with quadrature formulas
I discretized optimization problem can be solved

Finally the dynamic optimization problem can be discretized...
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Discretized problem formulation

Discretized problem

min M(xn,m, un,m, tn,m) + Φ(x, u, t)

s.t.

c(x, u, s, t)
!

= 0
Umax ≤ u ≤ Umin

Xmax ≤ x ≤ Xmin

0 ≤ s

I x := [x0,1, . . . , xn,m], u := [u0,1, . . . , un,m] and slack variables s

⇒ Constraints: c(x, u, s, t)
⇒ Φ(x, u, t) ≈

∫
L(x(t), u(t), t)dt
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Nonlinear optimization

I transformed to nonlinear optimization problem
I optimizer need to find optimal discretized control vector
I requires first order derivatives from M(·), Φ(·) und c(·)
I second order derivatives from the Lagrangian function

Lagrangian function

L(z , λ, t) =M(·) + Φ(·) + λT · c(·),
z = [x, u, s]
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Symbolic Hessian

I capabilities to differentiate symbolically a Modelica model
I generates symbolically partial derivatives
I new module SymbolicHessian.mo
I at the moment just for dynamic optimization implemented
I flag --generateSymbolicHessian
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Generate Symbolic Hessian

Idea
Differentiate the system two times under usage of the Jacobian
matrix!

1 differentiate objective function, ODE and constraints with
respect to x(t) and u(t)

2 multiply the Lagrange multipliers with the Jacobian matrix
3 differentiate resulting vector again under usage of Jacobian

matrix

⇒ ∇2L(·)
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Short example

Mathematical description of the well known Van der Pol oscillator.

Van der Pol oscillator

min
u(t)

∫ tf

t0

x1(t)2 + x2(t)2 + u(t)2dt

s.t.

ẋ1(t) = (1− x2(t)2) · x1(t)− x2(t) + u(t)

ẋ2(t) = x1(t)

x1(t0) = 0
x2(t0) = 1
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Short example

Transform objective function in Mayer term.

Van der Pol oscillator

min
u(t)

cost(tf )

s.t.

˙cost(t) = x1(t)2 + x2(t)2 + u(t)2

ẋ1(t) = (1− x2(t)2) · x1(t)− x2(t) + u(t)

ẋ2(t) = x1(t)

x1(t0) = 0
x2(t0) = 1
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Short example

Collect the information.

Van der Pol oscillator
objective function: cost(tf )

states: cost, x1 and x2

input: u

initial conditions: x1(t0) = 0 and x2(t0) = 1
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Short example

Write it as an Modelica Model.

model VDP
Real x1(start = 0, fixed = true);
Real x2(start = 1, fixed = true);
input u(max = 1, min = -0.5);

equation
der(x1)= (1-x2^2)*x1-x2+u;
der(x2)= x1;

end VDP;
optimization nmpcVDP(objective = cost)

extends VDP;
Real cost(start = 10, fixed = true);

equation
der(cost)= x1^2+x2^2+u^2;

end nmpcVDP;
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Short example

Well known Jacobian matrix calculates first order derivatives.

Van der Pol oscillator


cost x1 x2 u

˙cost 0 2x1 2x2 2u
ẋ1 0 1− x2

2 −2x2x1 − 1 1
ẋ2 0 1 0 0


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Short example

Use vector-matrix product, with λT = (λ1, λ2, λ3)

Van der Pol oscillator

(λ1, λ2, λ3) ·

 0 2x1 2x2 2u
0 1− x2

2 −2x2x1 − 1 1
0 1 0 0

 =

(
0, λ12x1 + λ2(1− x2

2 ) + λ3, λ12x2 + λ2(−2x2x1 − 1), λ12u + λ2
)
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Short example
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For the second order derivatives: Run the Jacobian module again!
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Short example

Result: Hessian of the Lagrangian function, with respect to the states
and the input

Van der Pol oscillator



cost x1 x2 u

cost 0 0 0 0
x1 0 λ12 λ2(−2x2) 0
x2 0 λ2(−2x2) λ12 + λ2(−2x1) 0
u 0 0 0 λ12


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Short example

Van der Pol oscillator



cost x1 x2 u

cost 0 0 0 0
x1 0 λ12 λ2(−2x2) 0
x2 0 λ2(−2x2) λ12 + λ2(−2x1) 0
u 0 0 0 λ12


Representation of the symbolic Hessian in Modelica

1/1 (1): $HessianB =2.0*(x1.SeedB1*x1.SeedB+x2.SeedB1*
x2.SeedB+u.SeedB1*u.SeedB)*$lambda[1]+(-2.0)*(x2.SeedB*(x2*
x1.SeedB1+x2.SeedB1*x1)+x2*x2.SeedB1*x1.SeedB)*$lambda[2]
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Outlook

I possible to generate Hessian matrices with symbolical
differentiation techniques as Modelica expression
→ at the moment it does not work with the discretized

optimization problem
→ goal: fix the issue and make the symbolic Hessian available for

the optimizer
I analyze the influence of the initial guess of Newton-Raphson’s

algorithm
→ used for the sensitivity of the solution after the first

Newton-Raphson iteration
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Thank you for your attention!
If you have any questions please feel free to ask
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