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A Historical Perspective on the OMC Development

• Infancy: 2002-2007

– A Compiler developer’s playground

– Nearly impossible to use on practical applications applications

• Childhood: early OSMC years 2008-2013

– OpenModelica gradually starts being usable for work in selected areas

– Very strong limitations in terms of coverage, speed, GUI usability

• Adolescence: 2014-2020

– Serious work possible in some areas, some OSMC members depend on 
OMC for their daily operation

– Good coverage, speed and usability in some areas of interest for OSMC

– Fairly solid performance in most aspects

– Still falling short in many areas of applications and use cases

 

What’s next?
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Current StatusCurrent Status
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Coming of Age by Components

• Frontend

• Backend + Codegen

• Runtime

• FMI

• OMEdit

• MetaModelica → Julia

• OSMC
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Coming of Age: Frontend

• Success story

• Frontend rewritten from scratch

– More rational design

– Using MetaModelica 3.0

– Delayed scalarization, ready for array-based backend

• Development nearly complete after 4 years

• Much faster than old one (20 X on average)

• Better coverage and performance in nearly all cases
provide the source code is strictly conforming to the Modelica Specification

• Default choice in OMEdit and command line from version 1.17.0

• Extra features coming ahead

– Conversion scripts

– Improved checking and diagnostics

– Support for faster API and GUI performance
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Coming of Age: Backend + Codegen

• The current backend has reached the end of useful life

– Quite sophisticated capabilities

• State-of-the-art solvers, including sparse ones

• Tearing

• Homotopy

• Advanced index reduction 

• Dynamic state selection

– Increasingly difficult to develop and maintain due
to evolutionary design and development

• New backend rewritten from scratch

– More rational structure

– No repeated similar functionality for different phase

– Can exploit new frontend features

• Existing functionality ported and improved within 1-2 years

• Will allow efficient handling of non-expanded arrays for large models with 
many instances of the same model

• Full-fledged support of non-expanded arrays will require extra resources 
than currently planned

• Code generation will need to be updated accordingly
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Coming of Age: Runtime

• Several runtimes available in OMC

– C runtime

– “old” C++ runtime (kept for backwards compatibility)

– “new” OMSI C++ (improved design)

– FMI runtime

– RT experimental runtimes

• The current C runtime is pretty sophisticated and currently includes 
bleeding edge developments

– Dense and sparse algebraic solvers

– Wide array of dense and sparse ODE solver

– Dense and sparse IDA solver for DAEs

– Good performance

• Development and maintenance is very inefficient

• Long-term goal: converge to a single (C++?) runtime. 
Requires additional resources
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Coming of Age: FMI (and SSP)

• FMI export has been available for many years in OMC

• In practice, the quality of implementation was not
particularly high

• Recent projects allowed the OSMC to focus more on

– FMU generation

– FMU use via SSP and OMSimulator

• FMI is a successful technology – OMC can also be successful 

– as convenient way to generate royalty-free FMUs

– as a convienient way to simulate third-party FMUs

• On-going work to improve the overall quality of implementation
of these features in the short term (2021)
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Coming of Age: OMEdit

• OMEdit is currently used

– For professional use (with some limitations)

– For research

– For teaching

• Overall perfomance and end-user experience has 
greatly improved over the last 2-3 years

• Several critical missing features for uncompromised professional use

– Support for replaceable classes with parameters

– Faster GUI response

– Fully functional Duplicate feature

– Diagnostics of unbalanced models based on Modelica 3.x rules

– Full support of parameter-driven conditional connectors and dialogs

– Parameter editing in hierarchically structured models

– Code refactoring (changing names across opened libraries)

– Library management support, including conversion scripts

– Consistent handling of non-parameter modifiers

– Array parameter input dialogs
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How much work was that (2019-2020)?

• Number of tickets fixed, for v.1.14.0 and later: 785 

• About one ticket every day on average by a team of about 8 people

• Note: most of these resources are mainly allocated on funded projects, 
not on fixing known issues. 

Development
of fancy new 

features

Development
& maintenance
of mainstream 

features

The Developers’ Dilemma
(a.k.a. the Director’s Dilemma)

https://trac.openmodelica.org/OpenModelica/query?status=closed&resolution=fixed&milestone=1.16.0&milestone=1.16.1&milestone=1.16.2&milestone=1.16.3&milestone=1.17.0&milestone=1.14.2&milestone=1.14.1&milestone=1.14.0&milestone=2.0.0&group=priority&max=1000&col=id&col=summary&col=milestone&col=status&col=type&col=priority&col=component&order=id
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Some Ticket Bookkeeping

• Number of tickets fixed, for v.1.14.0 and later (two years): 785 

• Number of valid tickets opened 2019-2020 (two years): 898
of which 403 were fixed in the same period.

• Number of pending tickets as of 1 Feb 2021: 683

The situation is under control 

Extra resources needed to overcome
backlog and do what must be done

Order of magnitude: 
10-20 full-time person-year

https://trac.openmodelica.org/OpenModelica/query?status=closed&resolution=fixed&milestone=1.16.0&milestone=1.16.1&milestone=1.16.2&milestone=1.16.3&milestone=1.17.0&milestone=1.14.2&milestone=1.14.1&milestone=1.14.0&milestone=2.0.0&group=priority&max=1000&col=id&col=summary&col=milestone&col=status&col=type&col=priority&col=component&order=id
https://trac.openmodelica.org/OpenModelica/query?status=closed&resolution=fixed&time=2019-01-01..2020-12-31&or&status=accepted&status=assigned&status=new&status=reopened&time=2019-01-01..2020-12-31&group=resolution&max=1054&col=id&col=summary&col=status&col=type&col=priority&col=milestone&col=component&order=id
https://trac.openmodelica.org/OpenModelica/query?status=accepted&status=assigned&status=new&status=reopened&milestone=!Future&milestone=!never&col=id&col=summary&col=status&col=type&col=priority&col=milestone&col=component&desc=1&order=id
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Coming of Age: MetaModelica → Julia

• The automatic translation of the OMC
codebase from MetaModelica into Julia is
currently under evaluation
(John Tinnerholm’s PhD)

• Goals

– Reduce dependency on an exotic language known and used by
a handful of programmers

– Increase the chances of incoming contributions to the OMC codebase
from the OS community

– Leverage on the progress of the Julia language and OS community

– Leverage on the Julia mathematical libraries for advanced features
(e.g. variable-structure system support)

• Some interesting early results (see later talk)

• Feasibility of MetaModelica → Julia transition will be clearer in 1-2 yrs.
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Coming of age: The OSMC

• Current OSMC members number: 52
– 24 Companies and Institutes

– 28 Universities

• Several OSMC member companies regularly use OMC in their operation 
and have long-term staks in the Consortium

– ABB

– Bosch Rexroth

– Dynamica

– EDF

– RTE

– ...

• Sustainable long-term OMC development and maintenance requires to
at least double the number of Companies and Institute members
in the Consortium
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Coming of Age: Advanced Features

• Functional Debugger

– Step-by-step execution of Modelica Functions

• Declarative Debugger

– User-friendly visualization of solved equations

– Solved equations traced back to source code

– Integration with runtime for simulation-time debugging

• Sparse Solvers and daeMode

– Increased efficiency in cases with large noninear implicit systems

– Increased efficiency in cases with large numbers of state variables

• Sensitivity computation and analysis (OMSens)

– Compute and rank sensitivities of variables along transients

• Custom extensions, e.g. data reconciliation

– Much lower barrier to developer’s access, compared to commercial tools
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The Wish ListThe Wish List



17

The 2018 OSMC User’s Survey

• At the end of 2017, we collected data from OSMC members with a 
survey on their use of OpenModelica

• The results were presented at the 2018 OpenModelica Workshop

• It is interesting to have a look at some of them in retrospective
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Q9: Most Appreciated Improvements in 2017
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Q10: Most Wanted or Missing Features
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Q10: Most Wanted or Missing Features - cont’d
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Q10: Most Wanted or Missing Features - cont’d
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Who Are Our Users, and Who Could Contribute More?

• User type A

– Wants a decent Modelica tool, free of charge

– School and University particularly important to spread the use
of Modelica and OpenModelica

• User type B
– Wants a good open-source Modelica tool, willing to contribute

• Becoming a member of OSMC and paying the membership fee

• Providing bug reports with MWE

• Contributing to the code base

• Contributing with DFD / MSA contract

• User type C

– Wants a free Modelica tool for his/her customers/partners/users

– Possibly willing to contribute to enhance user experience

• User type D

– Needs some customized extensions

– Lower entry barrier to developers than commercial tools
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Who Are Our Users, and Who Could Contribute More?

Further quality increase required 
to get more type B, C, D users!
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The Digital Twin Opportunity

• What is a Digital Twin? 
(it depends on who you ask…)

– A repository of product documentation

– A repository of operation data with AI to 
operate on it

– A simulation model (or set of models)

• A very, very big market

• Modelica is a very good candidate to provide an open, standardized way 
to represent executable models in digital twins

• OpenModelica could provide an open-source engine to run and 
manipulate them

• Significant investment required to improve speed, robustness,
reliability and ease of use

OpenModelica’s chance of a lifetime?
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Conclusions

• OpenModelica is 18+ years old

• From CS playground to serious modelling and simulation environment

• Solid background, on-going work on many fronts

• Some parts now coming of age, others still need to grow

• More resources required in the next 2-5 years to reach adulthood
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Thank you for yourThank you for your
 kind attention! kind attention!
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