
Is OpenModelicaIs OpenModelica
Finally Coming of Age?Finally Coming of Age?

Francesco CasellaFrancesco Casella
(francesco.casella@polimi.it)(francesco.casella@polimi.it)



2

Historical Historical 
PerspectivePerspective



3

A Historical Perspective on the OMC Development

• Infancy: 2002-2007

– A Compiler developer’s playground

– Nearly impossible to use on practical applications applications

• Childhood: early OSMC years 2008-2013

– OpenModelica gradually starts being usable for work in selected areas

– Very strong limitations in terms of coverage, speed, GUI usability

• Adolescence: 2014-2020

– Serious work possible in some areas, some OSMC members depend on 
OMC for their daily operation

– Good coverage, speed and usability in some areas of interest for OSMC

– Fairly solid performance in most aspects

– Still falling short in many areas of applications and use cases

 

What’s next?



4

Current StatusCurrent Status



5

Coming of Age by Components

• Frontend

• Backend + Codegen

• Runtime

• FMI

• OMEdit

• MetaModelica → Julia

• OSMC

 



6

Coming of Age: Frontend

• Success story

• Frontend rewritten from scratch

– More rational design

– Using MetaModelica 3.0

– Delayed scalarization, ready for array-based backend

• Development nearly complete after 4 years

• Much faster than old one (20 X on average)

• Better coverage and performance in nearly all cases
provide the source code is strictly conforming to the Modelica Specification

• Default choice in OMEdit and command line from version 1.17.0

• Extra features coming ahead

– Conversion scripts

– Improved checking and diagnostics

– Support for faster API and GUI performance



7

Coming of Age: Backend + Codegen

• The current backend has reached the end of useful life

– Quite sophisticated capabilities

• State-of-the-art solvers, including sparse ones

• Tearing

• Homotopy

• Advanced index reduction 

• Dynamic state selection

– Increasingly difficult to develop and maintain due
to evolutionary design and development

• New backend rewritten from scratch

– More rational structure

– No repeated similar functionality for different phase

– Can exploit new frontend features

• Existing functionality ported and improved within 1-2 years

• Will allow efficient handling of non-expanded arrays for large models with 
many instances of the same model

• Full-fledged support of non-expanded arrays will require extra resources 
than currently planned

• Code generation will need to be updated accordingly



8

Coming of Age: Runtime

• Several runtimes available in OMC

– C runtime

– “old” C++ runtime (kept for backwards compatibility)

– “new” OMSI C++ (improved design)

– FMI runtime

– RT experimental runtimes

• The current C runtime is pretty sophisticated and currently includes 
bleeding edge developments

– Dense and sparse algebraic solvers

– Wide array of dense and sparse ODE solver

– Dense and sparse IDA solver for DAEs

– Good performance

• Development and maintenance is very inefficient

• Long-term goal: converge to a single (C++?) runtime. 
Requires additional resources



9

Coming of Age: FMI (and SSP)

• FMI export has been available for many years in OMC

• In practice, the quality of implementation was not
particularly high

• Recent projects allowed the OSMC to focus more on

– FMU generation

– FMU use via SSP and OMSimulator

• FMI is a successful technology – OMC can also be successful 

– as convenient way to generate royalty-free FMUs

– as a convienient way to simulate third-party FMUs

• On-going work to improve the overall quality of implementation
of these features in the short term (2021)



10

Coming of Age: OMEdit

• OMEdit is currently used

– For professional use (with some limitations)

– For research

– For teaching

• Overall perfomance and end-user experience has 
greatly improved over the last 2-3 years

• Several critical missing features for uncompromised professional use

– Support for replaceable classes with parameters

– Faster GUI response

– Fully functional Duplicate feature

– Diagnostics of unbalanced models based on Modelica 3.x rules

– Full support of parameter-driven conditional connectors and dialogs

– Parameter editing in hierarchically structured models

– Code refactoring (changing names across opened libraries)

– Library management support, including conversion scripts

– Consistent handling of non-parameter modifiers

– Array parameter input dialogs



11

How much work was that (2019-2020)?

• Number of tickets fixed, for v.1.14.0 and later: 785 

• About one ticket every day on average by a team of about 8 people

• Note: most of these resources are mainly allocated on funded projects, 
not on fixing known issues. 

Development
of fancy new 

features

Development
& maintenance
of mainstream 

features

The Developers’ Dilemma
(a.k.a. the Director’s Dilemma)

https://trac.openmodelica.org/OpenModelica/query?status=closed&resolution=fixed&milestone=1.16.0&milestone=1.16.1&milestone=1.16.2&milestone=1.16.3&milestone=1.17.0&milestone=1.14.2&milestone=1.14.1&milestone=1.14.0&milestone=2.0.0&group=priority&max=1000&col=id&col=summary&col=milestone&col=status&col=type&col=priority&col=component&order=id


12

Some Ticket Bookkeeping

• Number of tickets fixed, for v.1.14.0 and later (two years): 785 

• Number of valid tickets opened 2019-2020 (two years): 898
of which 403 were fixed in the same period.

• Number of pending tickets as of 1 Feb 2021: 683

The situation is under control 

Extra resources needed to overcome
backlog and do what must be done

Order of magnitude: 
10-20 full-time person-year

https://trac.openmodelica.org/OpenModelica/query?status=closed&resolution=fixed&milestone=1.16.0&milestone=1.16.1&milestone=1.16.2&milestone=1.16.3&milestone=1.17.0&milestone=1.14.2&milestone=1.14.1&milestone=1.14.0&milestone=2.0.0&group=priority&max=1000&col=id&col=summary&col=milestone&col=status&col=type&col=priority&col=component&order=id
https://trac.openmodelica.org/OpenModelica/query?status=closed&resolution=fixed&time=2019-01-01..2020-12-31&or&status=accepted&status=assigned&status=new&status=reopened&time=2019-01-01..2020-12-31&group=resolution&max=1054&col=id&col=summary&col=status&col=type&col=priority&col=milestone&col=component&order=id
https://trac.openmodelica.org/OpenModelica/query?status=accepted&status=assigned&status=new&status=reopened&milestone=!Future&milestone=!never&col=id&col=summary&col=status&col=type&col=priority&col=milestone&col=component&desc=1&order=id


13

Coming of Age: MetaModelica → Julia

• The automatic translation of the OMC
codebase from MetaModelica into Julia is
currently under evaluation
(John Tinnerholm’s PhD)

• Goals

– Reduce dependency on an exotic language known and used by
a handful of programmers

– Increase the chances of incoming contributions to the OMC codebase
from the OS community

– Leverage on the progress of the Julia language and OS community

– Leverage on the Julia mathematical libraries for advanced features
(e.g. variable-structure system support)

• Some interesting early results (see later talk)

• Feasibility of MetaModelica → Julia transition will be clearer in 1-2 yrs.



14

Coming of age: The OSMC

• Current OSMC members number: 52
– 24 Companies and Institutes

– 28 Universities

• Several OSMC member companies regularly use OMC in their operation 
and have long-term staks in the Consortium

– ABB

– Bosch Rexroth

– Dynamica

– EDF

– RTE

– ...

• Sustainable long-term OMC development and maintenance requires to
at least double the number of Companies and Institute members
in the Consortium



15

Coming of Age: Advanced Features

• Functional Debugger

– Step-by-step execution of Modelica Functions

• Declarative Debugger

– User-friendly visualization of solved equations

– Solved equations traced back to source code

– Integration with runtime for simulation-time debugging

• Sparse Solvers and daeMode

– Increased efficiency in cases with large noninear implicit systems

– Increased efficiency in cases with large numbers of state variables

• Sensitivity computation and analysis (OMSens)

– Compute and rank sensitivities of variables along transients

• Custom extensions, e.g. data reconciliation

– Much lower barrier to developer’s access, compared to commercial tools



16

The Wish ListThe Wish List



17

The 2018 OSMC User’s Survey

• At the end of 2017, we collected data from OSMC members with a 
survey on their use of OpenModelica

• The results were presented at the 2018 OpenModelica Workshop

• It is interesting to have a look at some of them in retrospective



18

Q9: Most Appreciated Improvements in 2017



19

Q10: Most Wanted or Missing Features



20

Q10: Most Wanted or Missing Features - cont’d



21

Q10: Most Wanted or Missing Features - cont’d



22

Who Are Our Users, and Who Could Contribute More?

• User type A

– Wants a decent Modelica tool, free of charge

– School and University particularly important to spread the use
of Modelica and OpenModelica

• User type B
– Wants a good open-source Modelica tool, willing to contribute

• Becoming a member of OSMC and paying the membership fee

• Providing bug reports with MWE

• Contributing to the code base

• Contributing with DFD / MSA contract

• User type C

– Wants a free Modelica tool for his/her customers/partners/users

– Possibly willing to contribute to enhance user experience

• User type D

– Needs some customized extensions

– Lower entry barrier to developers than commercial tools



23

Who Are Our Users, and Who Could Contribute More?

Further quality increase required 
to get more type B, C, D users!



24

The Digital Twin Opportunity

• What is a Digital Twin? 
(it depends on who you ask…)

– A repository of product documentation

– A repository of operation data with AI to 
operate on it

– A simulation model (or set of models)

• A very, very big market

• Modelica is a very good candidate to provide an open, standardized way 
to represent executable models in digital twins

• OpenModelica could provide an open-source engine to run and 
manipulate them

• Significant investment required to improve speed, robustness,
reliability and ease of use

OpenModelica’s chance of a lifetime?



25

Conclusions

• OpenModelica is 18+ years old

• From CS playground to serious modelling and simulation environment

• Solid background, on-going work on many fronts

• Some parts now coming of age, others still need to grow

• More resources required in the next 2-5 years to reach adulthood



26

Thank you for yourThank you for your
 kind attention! kind attention!


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26

