Design aspects of
Bioprocess Library®
for Modelica

Jan Peter Axelsson

Vascaia AB, Stockholm, Sweden
OpenModelica workshop 2021-02-02

Note, “Bioprocess Library” is a registered trademark.



Outline

* Scope
e Structure Library /Application — flexibility needed

* Key is parametrization of the library
* Media packages
* Reactor model — part library part application

* Jupyter notebook — Python3, PyFMI, FMU

e Command line interaction!

* Conclusion



Scope

* Quicker to setup first model — key as consultant

e Document model with focus on the customer
* Play down standard components

 Clarity of code!
e Useful also in teaching context for biotech-people

* Teach myself Modelica.... ©



Example: Batch cultivation

. s




Example: Fedbatch cultivation
Fixed feedrate profile

Feedtank

L
X

Feedprofile .

g=! ="}




Example: Fedbatch cultivation
Feedprofile with on-line control

Feedtank

= - ,Sj“ %
Substrate.. PID
Ref [ r PID J

2021-02-02 J P Axelsson / Open Modelica workshop 2021

SSSSSS

" e
X




Example: Perfusion cultivation

FeedSystem

DosageFeed

i

DosageFilter

Bioreactor

|
-

L >

2021-02-02

HarvestTank

FilterSyste’mA:

J P Axelsson / Open Modelica workshop 2021



Flexibility needed

* Process configuration may vary
e Batch, Fedbatch, Continous, Perfusion, ... (up-stream)
* Scale-down
* Later include down-stream processing

* Process control
* Substrate levels, Dissolved oxygen, pH, temperature...
* Feeding strategies...
* Optimization

* Cells cultivated
* Yeast, Ecoli, CHO.... Hosts for recombinant proteins
* Liquid- and gas-phase varies



Object orientation...
- connectors

* Liquid pipes - LiquidCon
* Gas pipes - GasCon
 Electrical sighals - MSL Reallnput, RealOutput etc

* Provide flexibility
e Re-configuration of process setup
* Change of control systems

* Provide flexibility for different cultures, liquids...?
e Parametrize EquipmentLib with Application def parts!



Structure of code

Application Library

Liquid-, gas-phases
EquipmentLib
 Tank

* Pump

* Reactor

* Sensor

ControlLib



Structure of code

Application Library
* LiquidphaseYeast * Liquid-, gas- phases,
signals
* EquipmentLib
* Tank
* Pump
* Reactor
* Sensor

* GasphaseYeast

e ControlLib



Structure of code

Application Library
e LiquidphaseYeast Liquid-, gas- phases,

* GasphaseYeast } \ signals

EquipmentLib

* Tank

* Pump
* Reactor
* Sensor

e ControlLib



Structure of code

Application Library
e LiquidphaseYeast * Liquid-, gas- phases,
* GasphaseYeast signals

* EquipmentLib

* Tank

* CultureYeast model e Pump
* BufferYeast model —¢ Reactor
e GasLiquidTransferYeast * Sensor

e ControlLib



Structure of code

Application Library

e LiquidphaseYeast * Liquid-, gas- phases,
* GasphaseYeast signals
EquipmentLib

‘1 ¢ Tank

* Pump
3¢ Reactor
* Sensor

e ControlLib

e CultureYeast model

e BufferYeast model

e GasliquidTransferYeast

2021-02-02 J P Axelsson / Open Modelica workshop 2021

14



Try to improve...

Proceedings 7th Modelica Conference, Como, Italy, Sep. !

rently Dymola 7.2 [2] and SimulationX 3.2 [8] sup-

port stream connectors. Other tool vendors already

announced to support the concept, too.

The streams concept is a big step forward for
fluid modeling in Modelica. However, stream con-
nectors are not yet the ultimate solution for fluid
modeling because there are still missing features:

e The used medium has currently to be defined for
every component. It would be nicer if the me-
dium was defined at one source and the medium
definition would then be propagated through the
connection structure.

e When components are connected together, the
connection semantics ensures that the mass and
the energy balance are fulfilled exactly (in the
sense of “ideal” mixing). The momentum bal-

Ref Franke et al 2009 “Stream connectors — an extension of Modelica for device-
oriented modeling of convective transport phenomena”, Proc 7th Modelica, Italy.

2021-02-02 J P Axelsson / Open Modelica workshop 2021 15



Application...
- Yeast in airated reactor

Work from “templates” partial packages, models...

Extend partial package LiquidphaseBase -> LiquidphaseYeast
Extend partial package GasphaseBase -> GasphaseYeast
(Define number of components, provide index etc)

Extend partial model Reactorinterface -> CultureYeast model

Extend partial model Reactorinterface -> GasLiquidTransfer

(Define mappings concentration to flows: c[i] -> q[i] - static or
dynamical systems)



Structure: Application - Library

encapsulated package BPL _YEAST AIR
package LiquidphaseYeast
package GasphaseYeast
model CultureYeast
model GasLiquidTransferYeast
package EquipmentYeast
import BPL.EquipmentLib
.... extend, redeclare
model Fedbatch
... configure with redeclared BPL components
end BPL_YEAST AIR;



Application: package Equipment
- formal parameters

package EquipmentYeast
import BPL.EquipmentLib;
extends EquipmentLib(
redeclare package Liquidphase = LiquidphaseYeast,
redeclare package Gasphase = GasphaseYeast,
redeclare model Culture = CultureYeast(
redeclare package Liquidphase=LiquidphaseYeast),
redeclare model GasLiquidTransfer=GasLiquidTransferYeast(
redeclare package Liquidphase=LiquidphaseYeast,
redeclare packate Gasphase=GasYeast),
redeclare model Buffer = NoBuffer(
redeclare package Liquidphase=LiquidphaseYeast));

end EquipmentYeast;



Library — formal parameter

package BPL

package EquipmentLib
replaceable package Liquidphase=LiquidphaseBase
constrainedby LiquidphaseBase;
replaceable package Gasphase=GasphaseBase
constrainedby GasphaseBase;
replaceable model Culture = NoCulture
constrainedby Reactorinterface;

package ControlLib...
end BPL;



Liguidphase - “template”

partial package LiquidphaseBase
constant String name;
constant Integer nc;
type Concentration = Real[nc];
end LiquidphaseBase;



cont’ Liguidphase

package LiquidphaseYeast

import BPL.LiquidphaseBase;

extends LiquidphaseBase

(name=“Yeast medium...”, nc=3);

constant Integer X=1;

constant Integer G=2;

constant Integer E=3;

constant Real[nc] mw = {24.6, 180.0, 46.0};
end LiquidphaseYeast;



cont’ Liguidphase

Record LiquidphaseYeast data
constant String name = LiquidphaseYeast.name;
constant Integer nc = LiquidphaseYeast.nc;
constant Integer X = LiquidphaseYeast.X;

constant Real[nc] mw = LiquidphaseYeast.mw
End LiquidphaseYeast_data;

Repetious but seems to be needed



Connector LiquidCon - “template”

package EquipmentLib

replaceable package Liquidphase = LiquidphaseBase
constrainedby LiqguidphaseBase;

connector LiquidCon
stream Liquidphase.Concentration c;
flow Real F;
Real p;

end LiquidCon;

model Pump, Tank, Reactor, Sensor etc



BPL Reactorlype

General reactor with
* n_inlets, n_outlets, n_ports

e connector LiquidCon — common for EquipmentLib
e connector GasCon — common for EquipmentLib

e model Culture
* model GasLiquidTransfer
 model Buffer




Library

Library code

- Define general liquid-

- Define general reactor O

- Define general pumps,

tanks, filters, sensors... Q

- Define controllers...

and gas-phases

2021-02-02

Gas Feed

J P Axelsson / Open Modelica workshop 2021

25



Application

B
Application code

- Use library media partial model
Specify components

- Define cell culture Q
- Define gas-liquid-transfer

- Define buffer reactions

Cell culture

/'

Gasphase -

- Adapt library to Q

application -
- Make instances for

application process

and connect sub- O
models

—/

Gas-Liquid-transfer

2021-02-02 J P Axelsson / Open Modelica workshop 2021 26



cont” BPL ReactorType

Reactor concentration c[i] affects everything
User inner/outer connection to application

* model Culture

* model GaslLiquidTransfer

* model Buffer

These models static or dynamic of c[i]

e culture_qli] — cell specific flow qi]

e gas_to liquid _transfer_Q]i] — total flow QJi]
* liquid_to gas transfer Q]i]

e buffer_Q]i]



cont” BPL ReactorType

// Mass-balance for the liquid phase of the reactor:
foriin 1:Liquidphase.nc loop
der(mli]) = culture_qg[i]*m[X] + buffer_Q]i]
+ gas_to_liquid transfer_Qi]
+ sum(actualStream(inlet[j].c[i])*inlet][j].F for j)
+ sum(c[i] *outlet[k].F for k);
for jin 1:n_inlets loop inlet[j].c[i] = c]i]; end for;
end for;
der(V) = sum(inlet[j].F for j) + sum(outlet[k].F for k);



Applications with Yeast
- processes Batch and Fedbatch

package EquipmentYeast

import BPL.EquipmentLib;
extends EquipmentLib(redeclare package Liquidphase = LiquidphaseYeast

redeclare model Culture = CultureYeast

end EquipmentYeast;
model Batch
LiguidphaseYeast_data liquidphase;
EquipmentYeast.ReactorType bioreactor(X=liquidphase.X);
equation
end Batch;
model Fedbatch....



... and process Fedbatch

model Fedbatch "Fedbatch cultivation of yeast"
LiguidphaseYeast_data liquidphase;
EquipmentYeast.ReactorType bioreactor

(X=liguidphase.X, n_inlets=1);
EquipmentYeast.Feedsystem feedtank;
Control.DosageSchemeExp dosagescheme;
equation

connect(bioreactor.inlet[1], feedtank.outlet);
connect(dosagescheme.F, feedtank.Fsp);

end Fedbatch;



Jupyter notebook and Bioprocess Library for Modelica

In [3]: newplot()
for x in [6.7, 1.6, 1.3]: init(VX_©=x); simu()

Batch cultivation
10 4

o
L

F=y

X and S [g/L]

=]
-
~
w

\
1}
1
1
1
]
1
]
1
]
1)
1
]
1
1
]
1
1
\

0 1 2 3 4
Time [h]

In [4]: describe('bioreactor.V')

Reactor broth volume [ L ]

Comment: In the diagram above we see the impact of variation in the initial cell concentration during batch cultivation.

2021-02-02 J P Axelsson / Open Modelica workshop 2021

31



More pedestrian way...

In [5]: # Script bp6a_batch_setup - defines fmu_model, parDict[] and more

# - newplot()

plt.figure()

ax1l=plt.subplot(2,1,1); axl.grid(); axl.set_ylabel('X and S [g/L]")
ax2=plt.subplot(2,1,2); ax2.grid(); ax2.set_ylabel('mu [1/h]"); ax2.set_xlabel('Time [h]')
lines=["'-","'--",":"]; linecycler = cycle(lines)

for x in [0.7, 1.0, 1.3]:
# - init(vX_6=x)
parDict['bioreactor.m_8[1]'] = x
# - simu(7)
model = load_fmu(fmu_model)
for key in parDict.keys(): model.set(key, parDict[key])
sim_res = model.simulate(®, 7, options=opts)
linetype = next(linecycler)
axl.plot(sim_res['time"], sim_res['bioreactor.c[1]'], color="r", linestyle=linetype); axl.legend(['X',
axl.plot(sim_res['time"'], sim_res['bioreactor.c[2]'], color="b", linestyle=linetype)
ax2.plot(sim_res['time"'], sim_res['bioreactor.culture_q[1]"'], color="b"', linestyle=linetype)

2021-02-02 J P Axelsson / Open Modelica workshop 2021

s

32



Jupyter with Python3 and PyFMI

* Jupyter combine: code, diagrams, and text
* PyFMI (Modelon) — runs FMU

(Modelon but on Github since a year)
* OpenModelica export FMU...

e Teaching — simplify command line interaction
* newplot()
e par(), init()
e simu()
e disp(), describe()

Run Modelica as if Simnon! (H. EImqvist, 1975)



Larger example
- Yeast continous (incl gas-phase

Notes_bp6a_YEAST_AIR_chemostat_data

12
10 0.50
_os g
- g
B 06 2 045
w <
04 o A d
“ 040 1
02
0.0 0.35 1
0 10 15 20 b3 30 0 5 10 15 20 5 30
142
0425
14.0
s % 0400
o S
2136 £ 0375
x =
134 3 0350
13.0
10 15 20 b3 30 0 5 10 15 20 5 30
13
0.28 1
=12 =
) = 026
™™ o
1 0.24
10 022
5 10 15 20 b3 30 0 5 10 15 20 5 30
Time {h} Time {h}

2021-02-02 J P Axelsson / Open Modelica workshop 2021



Conclusion

* Application code clearly separated from library

* Got flexibility needed

* "Work with structure”
- Object-orientation, connectors...
* “Keep structure, change content”

- Type level: Redeclaration... formal parameter: packages, models ... “polymorphism”
- Instance level: Smaller changes for readability, eg what conc variable is cell conc etc

Key words: Formal parameter, redeclare, replaceable, see Fritzon section 4.4

e Adapt EquipmentLib at one place, cf MSL Fluid differs
* DRY still difficult...

* Modelica can bring very neat and compact code, cf library ReactorType

* FMU
* OpenModelica do not propagate constants, cf LiquidphaseYeast.mw etc
* List of continuous time state variables available, but not discrete time?

* Jupyter notebooks very useful also in teaching context
* Good to simplify command line interaction!



Acknowledgement
Stackoverflow — name: janpeter

* Extending packages and access to the content

* Parametrised Modelica library and possibility to use
models as parameters —part 1, 2, 3

* How to construct a balanced connector for liquids
in Mocelica

Discussion are around simplified code examples that
can be run — see you there!



2021-02-02

J P Axelsson / Open Modelica workshop 2021

37



Appendix Modelica 1999
6. Design Rationale — Code Reuse

Code reuse is a desirable but hard-to-reach goal for
software development. Modelica contributes to this
goal in several ways. Its non-causal equation-based
modeling style permits model components to be
reused in different contexts, automatically adapting
to the data flow order in specific simulation
applications, i.e. the Modelica compiler
automatically arranges equations for solution with
particular inputs or outputs. Object orientation and
polymorphism significantly enhances the potential
for reuse of Modelica model components.



