Efficient Generation of Jacobian Matrices in
OpenModelica

Using Jacobians for Simulation

Willi Braun, Bernhard Bachmann and Lennart Ochel

Department of Applied Mathematics
University of Applied Sciences Bielefeld
33609 Bielefeld, Germany

February 6, 2012

Motivation

What are Jacobians useful for?

Motivation

What are Jacobians useful for?

For example
@ Simulation
@ Linear models
o Optimization
@ Model analysis

Outline

@ Analytic Jacobian

@ Efficent Generation and Evaluation

© Results

Introduction: Jacobian

Which matrix is meant by the term Jacobian?

State-Space Equations

Introduction: Jacobian

Which matrix is meant by the term Jacobian?

State-Space Equations

Jacobian matrices
o A(t)= 2

&(t) = A(t) * z(t) + B(¢) = u(t) Oz
y(t) = C(t) *a(t) + D(t) * u(t) o B(t)= 2

o C(t) = %

Linearization is done by Taylor series ok
approximation and cancelling quadratic ° D(t) = Ju

and higher order terms.

Introduction: Jacobian

Which matrix is meant by the term Jacobian?

State-Space Equations

— Oh

Simulation ° Al =5
@ Many integration algorithms need o B(t) = 2—2
“the Jacobian” : g—g o C(t)=2

e D(t) = g—z

Introduction: Differentiation

Numeric method

Differentiation methods
@ Numeric
o Automatic
@ Symbolic

Forward difference:

He) =t 210~ 1)

6—0 1)

Drawback

Even if § is selected optimal:

0f(z)

| _(f(x—’_éopt) —f(.’L'))|
oz

5opt

~ \ERND

Some significant digits get lost by
truncation.

Introduction: Differentiation

Numeric method

Differentiation methods
@ Numeric
@ Automatic

@ Symbolic

Forward difference:

Ho) — 1im S +0) = a)

6—0 0

Numerical Jacobian

Calculate the Jacobian numerical for a
Modelica model needs n + 1 call of the
ODE-Block.

Introduction: Differentiation

automatic vs. symbolic differentiation

Differentiation methods
@ Numeric
@ Automatic

@ Symbolic

Introduction: Differentiation

automatic vs. symbolic differentiation

Differentiation methods
@ Numeric
@ Automatic

@ Symbolic

Basic differentiation rules

Chain rule:

Arithmetic operations:

V(iutv) = VuxVou
V(w) = uVv+ovVu
u (Vu— 2Vo)
vt = PV

v v

Introduction: Differentiation

automatic vs. symbolic differentiation

Basic differentiation rules
Chain rule:

Arithmetic operations:

V(iutv) = VuxVou
V(w) = uVv+ovVu
u (Vu— 2Vo)
vE) = el

v v

Example

y = f(a1, 1) = (2122 +sin(21)) (22 +cos())

Introduction: Differentiation

automatic vs. symbolic differentiation

Basic differentiation rules
Chain rule:

Arithmetic operations:

V(iutv) = VuxVou
V(w) = uVv+ovVu
u (Vu— 2Vo)
vE) = el
v v

Example

y = f(a1, 1) = (2122 +sin(21)) (22 +cos())

Introduction: Differentiation

automatic vs. symbolic differentiation

Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
t1 = x1 Vit = [1,0]

t2 = T2 Vtg = [0, 1]

t3 = t1ta Vits = t1Vis + Vi ts
ts = sin(t1) Vity = cos(t1)Viy

ts = t3 + ta Vits = Vit + Viy

te = cos(t2) Vits = —sin(t2)Via

tr = tg + t2 Vit; = Vi + Via

ts = sty Vitg = Visty + tsVir

8/17

Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
t1 = o1 Vit = [1,0]

tz = T2 Vtg = [0, 1]

t3 = t1ta Vis = t1Vis + Vi ts
ts = sin(t1) Vits = cos(t1) Vi

ts = t3 + 14 Vits = Vit + Viy

te = cos(t2) Vits = —sin(t2)Via

tr = tg + t2 Vit; = Vi + Vi

tg = tstly Vitg = Visty + tsVir

8/17

Introduction: Differentiation

automatic vs. symbolic differentiation

Operations eval Differentiate(t;, {z1, z2}) Vf

t1 = o1 1 Vit = [1,0] 1,0

tQ = T2 2 Vtg = [0, 1] O, 1

ts = ti1t2 2 Vits = t1Vits + Vit 2,1

ty = sin(t1) 0.84 Vits = cos(t1) Vi 0.54,0

ts = t3 + ta 2.84 Vis = Vits + Vs 2.54,1

te = COS(tg) —0.42 Vit = —Sin(tz)vtz 0, —0. 1]
ty = te + to 1.58 Vit; = Vig + Via 0,0.09]

tg = tstly 4.50 Vitg = Visty + tsVir 4.02, 184]

8/17

Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
tl = th = [1,0]

to = o Vi, = [01 1]

t3 = tite Vits = t1Vits + Vi ts
tg = sin(tl) Vity = COS(tl)th

ts = t3 + ta Vits = Vi + Via

te = COS(tg) Vitg = — Sin(tg)vtg

tr = tg + t2 Vitr = Vitg + Via

s = sty Vitg = Vistr + tsVir

9/17

Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
tl = th = [1,0]

to = o Vit = [0, 1]

t3 = tite Vits = t1 Vie + Vi to
ty = Sin(t1) Vity = COS(t1)Vt1

ts = t3 + ta Vits = Vis + Via

ts = COS(tQ) VtG = — Sin(tQ)Vtg

tr = tg + t2 Vitr = Vitg + Via

tyg = tstr Vitgs = Visty + t5Vir

Introduction: Differentiation

automatic vs. symbolic differentiation

of (z1,22)
T -

Operations Differentiate(t;, {z1, z2})
tl = th = [1,0]

to = o Vit = [0, 1]

t3 = tite Vits = t1 Vie + Vi to
ty = Sin(t1) Vity = COS(t1)Vt1

ts = t3 + ta Vits = Vis + Via

ts = COS(tQ) VtG = — Sin(tQ)Vtg

tr = tg + t2 Vitr = Vitg + Via

tyg = tstr Vitgs = Visty + t5Vir

Vts[l]

Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
tl = th = [1,0]
to = o Viy = [01 1]
ts = t1ta Vits = t1Vits + Vi ts
tg = sin(tl) Vity = COS(tl)th
ts = t3 + {4 Vits = Vits + Viy
ta = COS(tg) Vte = - Siﬂ(t2)vt2
tr = tg + t2 Vit; = Vig + Vi
s = tstr Vitg = Vistr + tsVir
0, 1, z2
Of(=l,22) _ Vis]1]
x1
Vtg[l] = (Vt5[1]t7 aF t5Vt7[1])
Vig[l] = (Vis[1] + Vita[1])(t6 + t2) + t5(Vis[1] + Vi2[1])
vtg[l] = (t1Vt2[1] =+ th[l]tg + COS(tl)th[l])(COS(tQ) =+ tz) + t5(— Sin(t2)vt2[1])
Vig[l] = (t2 + cos(t1))(cos(t2) + t2)
of (z1,x2)

(z2 + cos(z1))(cos(m2) + z2)
1

Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})

tl = I th = [1,0]

t2 = T2 Vt2 = [0, 1]

i3 = t1t2 Vits = t1Vie + Viita

1y = Sil’l(tl) Vity = COS(tl)th

ts = t3 + ta Vits = Vits + Viy

te = cos(t2) Vis = —sin(t2)Via

t7 = tg + 12 Vitr = Vieg + Via

ts = tsiy Vitg = Visty + t5sVir
of (z1, 22)

Z1

(z2 + cos(z1))(z2 + cos(z2))

Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
tl = I th = [1,0]
t2 = T2 Vt2 = [0, 1]
t3 = tita Vits = t1Vie + Viita
1y = Sil’l(tl) Vity = COS(tl)th
ts = t3 + ta Vits = Vits + Viy
te = cos(t2) Vis = —sin(t2)Via
t7 = te + t2 Vit; = Vitsg + Via
g = tsty Vits = Visty + t5 Vir
of (z1, 22
w = (@2 + cos(z1)) (@2 + cos(z2))
1
Of (1, 22
w = (21 (22 + cos(a2)) +
2

(z122 + sin(z1))(1 — sin(z2))

Efficent generation and evaluation of the Jacobian

Estimate complexity

Jacobian
o
on [
L\ o
811

ony
oz,

0h,
oz,

Determination of the full Jacobian
depends at least on O(n?) using the

presented method.

10/17

Efficent generation and evaluation of the Jacobian

Estimate complexity

Jacobian
oy oy State-Space Equations
Bh oz e oz,
M (z(t)) _ (m(t),y(t),g,t))
b - O y(t) k(z(), u(t), p, t)

Determination of the full Jacobian
depends at least on O(n?) using the
presented method.

Actually it is more than that! |

10/17

Efficent generation and evaluation of the Jacobian

Estimate complexity

Jacobian
ohy oy
on _ ("
JA = — =
oz :
Ohy, oh,,
Oz T oz,

State-Space Equations

(4)=

h(z(t), u(t),
k u

Z b, t))
k(z(t), u(t), p, t)]

Determination of the full Jacobian
depends at least on O(n?) using the
presented method.

Actually it is more than that!

Determination of the full Jacobian
depends at least on O(n * m) where
m > n number of equation in the
ODE-Block.

10/17

Efficent generation and evaluation of the Jacobian

A faster way

Operations Differentiate(t;, {z1, z2})
th =11 Vi = [1,0]
i = Vi = [0, 1]
Example i3 = tite Vits = t1Vits + Vit
ty = sin(t1) Vits = cos(t1) Vi
ts = t3 + ta Vits = Vit + Viy
21, ®2) = (112 +sin(xy)) (22 + cos(» tc = cos(tz) | Vic = —sin(t2)Viy
f(ar, 22) = (m122 (21)) (2 (22)) Loembl D it
ts = tstr Vitg = Vistr + t5Vir

11/17

Efficent generation and evaluation of the Jacobian

A faster way

Example

f(@1, 22) = (m122 +sin(z1)) (22 + cos(z2))

Operations Differentiate(#;, z)
t1 = o1 dt; = Ezrl

t2 = T2 dt2 = Exrz

t3 = t1i2 dts = t1dts + dtita
ty = sin(ty) dty = cos(t1)dty

ts = t3 + 14 dts = dtz + dity

iy = COS(tz) dtg = — Sin(t2)dt2
t7 = tg + 12 dt7 = dtg + dito

tg = tsty dts = dtsty + tsditz

11/17

Efficent generation and evaluation of the Jacobian

A faster way

Operations Differentiate(#;, z)
t1 = o1 dt; = Ezr;
ty = x3 diy = &2
EXample t3 = ti1t2 dts = t1dts + dtits
ty = sin(ty) dty = cos(t1)dty
ts = t3 + 14 dts = dtz + dity
1, T2) = (2122 +sin(z1)) (22 + cos(xo te = cos(ta) | dig = —sin(tz)dts
fla, 2) = ((z1))((22)) ot ekl
tg = tsty dts = dtsty + tsditz

of (z1,22) ,dz1 Ox2

=, =)

2 22 02 = (=1 %ff + %ZQ) + (cos(z1) ‘%le)(cos(z2) + z2) +

z

((z1 + @2) + sin(z1))(F2 — sin(z2) G2

11/17

Efficent generation and evaluation of the Jacobian

A faster way

Operations Differentiate(#;, z)
t1 = o1 dt; = Ezr;
ty = x3 diy = &2
EXample t3 = ti1t2 dts = t1dts + dtits
ty = sin(ty) dty = cos(t1)dty
ts = t3 + 14 dts = dtz + dity
1, T2) = (2122 +sin(z1)) (22 + cos(xo te = cos(ta) | dig = —sin(tz)dts
fzy, 2) = ((z1))((22)) ot ekl
tg = tsty dts = dtsty + tsditz

of (z1,22) ,dz1 Ox2

2 Bz E) = (=1 %ff + %ZQ) + (cos(z1) ‘%le)(cos(z2) + z2) +
((z1 + @2) + sin(z1))(65”22 — sin(z2) 8;22
M(% =1 92 =0) = (22 + cos(z1))(z2 + cos(z2))

1 oz "oz

11/17

Efficent generation and evaluation of the Jacobian

A faster way

Example

f(z1, 12) = (2172 +5in(z1)) (22 + cos(22))

of (z1,22) ,dz1 Ox2

Operations Differentiate(#;, z)
t1 = o1 dt; = Q(Trl

t2 = T2 dt2 = Q(cvr2

t3 = t1i2 dts = t1dts + dtita
ty = sin(ty) dty = cos(t1)dty

ts = t3 + 14 dts = dtz + dity

te = COS(tz) dtg = — Sin(tQ)dtz
t7 = tg + 12 dt7 = dtg + dito

tg = tsty dts = dtsty + tsditz

gy 5 E) = (92 z2) + (cos(z1) %)) (cos(z2) + z2) +
((z1 + @2) + sin(z1))(65”22 — sin(z2) ‘9;3
af(z1, z2) Ozl 922
w a—zz =1, 8—2 =0) = (22 + cos(z1))(z2 + cos(z2))
1
of (z1, z2) Ozl ox2
%(% =0, 92 1) = (21 (22 + cos(z2)) +

(z122 + sin(z1)) (1 — sin(z2))

11/17

Efficent generation and evaluation of the Jacobian

A faster way

Jacobian
Oy
8h 8-z1
& Oh,

Oz

Ohy,
oz,

Evaluate the Jacobian

oh
Ja=5-

(ex)

e, € R" := k — th coordinate vector

12/17

Efficent generation and evaluation of the Jacobian

A faster way

Jacobian
o
aﬁ 8-z1
& Oh,
Oz

Ohy,
oz,

Evaluate the Jacobian

Oh
Ja = a—;(ﬁk)

e, € R" := k — th coordinate vector

v

Evaluation while the simulation still
takes n call.

12/17

Efficent generation and evaluation of the Jacobian

Which color has the Jacobian?

Jacobian
i jiz O
0 0 o3
J=10 Jjs2 Jjs3
ju 0 0
0 0 0

0 s

0 0
Jaa 0

0 0

Jsa Jss

13/17

Efficent generation and evaluation of the Jacobian

Which color has the Jacobian?

Jacobian
i jiz O
0 0 o3
J=10 Jjs2 Jjs3
ju 0 0
0 0 0

0 Jis

0 0
Jsa O

0 0

Jsa Jss

13/17

Efficent generation and evaluation of the Jacobian

Which color has the Jacobian?

Jacobian

13/17

Efficent generation and evaluation of the Jacobian

Which color has the Jacobian?

Jacobian

0 J15
J23 0
J = j‘i:’; 0
0 0
0 J55

Jis

J23

JR = (/':33

0

Js5)

13/17

Efficent generation and evaluation of the Jacobian

Explore the sparse pattern

Example system
2(t) = f(z(t), 1) J

14 /17

Efficent generation and evaluation of the Jacobian

Explore the sparse pattern

@) @
(1)

23 falz1

filza

Example system
2(t) = f(z(t), 1) J

14 /17

Efficent generation and evaluation of the Jacobian

Explore the sparse pattern

@

filza

®

(o)

|23 falz1

Example system
2(t) = f(z(t), 1) J

@

<

|
* ¥ O O ¥
coo % ©
* % OO %
* ¥ ¥ * O
o x oo o

14 /17

Results
Model for Testing

Eine

&y

freqHz=0.0

rampl

1

T

duration=200

prescribed...

prescribed...

ramp2

-

uration=30

15/17

Results
Model for Testing

sparse pattern

* X X ¥ X X X

* K X X X

* X X X X X

EE S

*

15/17

Results

Evaluation measurements

40

35

30

25

20

dassl

dassljac

Details
N
M Simulation states
H Compile .
W Jacobian equatlons
SimCode JacElements
W BackEnd
FrontEnd NonZero
Colors

19
231
1006
53361
3032
79

16

17

Results

Evaluation measurements

40

35

30

25

20

dassl

dassljac

Details
N
M Simulation states
H Compile .
W Jacobian equatlons
SimCode JacElements
W BackEnd
FrontEnd NonZero
Colors
Dymola

19
231
1006
53361
3032
79

~ lsec

16

17

Results

Evaluation measurements

160

140

120

100

80

60

40

20

dassl

dassljac

Details
N
states
M Simulation .
H Compile equations
 Jacopian JacElements
SimCode
mBackEnd NonZero
FrontEnd
Colors

50

603
2587
363609
17261
203

16

17

Results

Evaluation measurements

160
140 .
Details
120
100
80

60

40

20

50

603
2587
363609
17261
203

~ Tsec

N
states
M Simulation .
H Compile equations
 Jacopian JacElements
SimCode
mBackEnd NonZero
FrontEnd
Colors
Dymola

dassl| dassljac

16

17

Results

Evaluation measurements

700

600

500

400

300

200

100

dassl

dassljac

Details
N
W Simulation states
H Compile .
m Jacobian €q uations
SimCod
= Backeng JacElements
FrontEnd NOﬂZeI’O
Colors

100
1203
5137
1447209
64511
403

16

17

Results

Evaluation measurements

700

600

500

400

300

200

100

dassl

dassljac

Details
N
W Simulation states
H Compile .
m Jacobian €q uations
SimCod
= Backeng JacElements
FrontEnd NOﬂZeI’O
Colors
Dymola

100
1203
5137
1447209
64511
403

~ 35sec

16

17

Summary

@ OpenModelica generates Jacobians efficently.

@ Simulation speed can be increased using Jacobians.

17 /17

Summary

@ OpenModelica generates Jacobians efficently.

@ Simulation speed can be increased using Jacobians.

@ Outlook

» Utilize the Jacobian for FMI 2.0.
> Improving the usability.
> Improving the algorithms.

17 /17

	Analytic Jacobian
	Efficent Generation and Evaluation
	Results

