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For example
@ Simulation
@ Linear models
o Optimization
@ Model analysis
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Introduction: Jacobian

Which matrix is meant by the term Jacobian?

State-Space Equations

Jacobian matrices
o A(t)= 2

&(t) = A(t) * z(t) + B(¢) = u(t) Oz
y(t) = C(t) *a(t) + D(t) * u(t) o B(t)= 2

o C(t) = %

Linearization is done by Taylor series ok
approximation and cancelling quadratic ° D(t) = Ju

and higher order terms.



Introduction: Jacobian

Which matrix is meant by the term Jacobian?

State-Space Equations

— Oh

Simulation ° Al =5
@ Many integration algorithms need o B(t) = 2—2
“the Jacobian” : g—g o C(t)=2

e D(t) = g—z




Introduction: Differentiation

Numeric method

Differentiation methods
@ Numeric
o Automatic
@ Symbolic

Forward difference:

He) =t 210~ 1)

6—0 1)

Drawback

Even if § is selected optimal:

0f(z)

| _(f(x—’_éopt) —f(.’L'))|
oz

5opt

~ \ERND

Some significant digits get lost by
truncation.




Introduction: Differentiation

Numeric method

Differentiation methods
@ Numeric
@ Automatic

@ Symbolic

Forward difference:

Ho) — 1im S +0) = a)

6—0 0

Numerical Jacobian

Calculate the Jacobian numerical for a
Modelica model needs n + 1 call of the
ODE-Block.
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Differentiation methods
@ Numeric
@ Automatic

@ Symbolic

Basic differentiation rules

Chain rule:

Arithmetic operations:

V(iutv) = VuxVou
V(w) = uVv+ovVu
u (Vu— 2Vo)
vt = PV

v v
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automatic vs. symbolic differentiation

Basic differentiation rules
Chain rule:

Arithmetic operations:

V(iutv) = VuxVou
V(w) = uVv+ovVu
u (Vu— 2Vo)
vE) = el

v v

Example

y = f(a1, 1) = (2122 +sin(21)) (22 +cos())
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Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
t1 = x1 Vit = [1,0]

t2 = T2 Vtg = [0, 1]

t3 = t1ta Vits = t1Vis + Vi ts
ts = sin(t1) Vity = cos(t1)Viy

ts = t3 + ta Vits = Vit + Viy

te = cos(t2) Vits = —sin(t2)Via

tr = tg + t2 Vit; = Vi + Via

ts = sty Vitg = Visty + tsVir
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automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
t1 = o1 Vit = [1,0]

tz = T2 Vtg = [0, 1]

t3 = t1ta Vis = t1Vis + Vi ts
ts = sin(t1) Vits = cos(t1) Vi

ts = t3 + 14 Vits = Vit + Viy

te = cos(t2) Vits = —sin(t2)Via

tr = tg + t2 Vit; = Vi + Vi

tg = tstly Vitg = Visty + tsVir
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Introduction: Differentiation

automatic vs. symbolic differentiation

Operations eval Differentiate(t;, {z1, z2}) Vf

t1 = o1 1 Vit = [1,0] 1,0

tQ = T2 2 Vtg = [0, 1] O, 1

ts = ti1t2 2 Vits = t1Vits + Vit 2,1

ty = sin(t1) 0.84 Vits = cos(t1) Vi 0.54,0

ts = t3 + ta 2.84 Vis = Vits + Vs 2.54,1

te = COS(tg) —0.42 Vit = —Sin(tz)vtz 0, —0. 1]
ty = te + to 1.58 Vit; = Vig + Via 0,0.09]

tg = tstly 4.50 Vitg = Visty + tsVir 4.02, 184]

8/17



Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
tl = th = [1,0]

to = o Vi, = [01 1]

t3 = tite Vits = t1Vits + Vi ts
tg = sin(tl) Vity = COS(tl)th

ts = t3 + ta Vits = Vi + Via

te = COS(tg) Vitg = — Sin(tg)vtg

tr = tg + t2 Vitr = Vitg + Via

s = sty Vitg = Vistr + tsVir
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Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
tl = th = [1,0]

to = o Vit = [0, 1]

t3 = tite Vits = t1 Vie + Vi to
ty = Sin(t1) Vity = COS(t1)Vt1

ts = t3 + ta Vits = Vis + Via

ts = COS(tQ) VtG = — Sin(tQ)Vtg

tr = tg + t2 Vitr = Vitg + Via

tyg = tstr Vitgs = Visty + t5Vir




Introduction: Differentiation

automatic vs. symbolic differentiation

of (z1,22)
T -

Operations Differentiate(t;, {z1, z2})
tl = th = [1,0]

to = o Vit = [0, 1]

t3 = tite Vits = t1 Vie + Vi to
ty = Sin(t1) Vity = COS(t1)Vt1

ts = t3 + ta Vits = Vis + Via

ts = COS(tQ) VtG = — Sin(tQ)Vtg

tr = tg + t2 Vitr = Vitg + Via

tyg = tstr Vitgs = Visty + t5Vir

Vts[l]




Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
tl = th = [1,0]
to = o Viy = [01 1]
ts = t1ta Vits = t1Vits + Vi ts
tg = sin(tl) Vity = COS(tl)th
ts = t3 + {4 Vits = Vits + Viy
ta = COS(tg) Vte = - Siﬂ(t2)vt2
tr = tg + t2 Vit; = Vig + Vi
s = tstr Vitg = Vistr + tsVir
0, 1, z2
Of(=l,22) _ Vis]1]
x1
Vtg[l] = (Vt5[1]t7 aF t5Vt7[1])
Vig[l] = (Vis[1] + Vita[1])(t6 + t2) + t5(Vis[1] + Vi2[1])
vtg[l] = (t1Vt2[1] =+ th[l]tg + COS(tl)th[l])(COS(tQ) =+ tz) + t5(— Sin(t2)vt2[1])
Vig[l] = (t2 + cos(t1))(cos(t2) + t2)
of (z1,x2)

(z2 + cos(z1))(cos(m2) + z2)
1




Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})

tl = I th = [1,0]

t2 = T2 Vt2 = [0, 1]

i3 = t1t2 Vits = t1Vie + Viita

1y = Sil’l(tl) Vity = COS(tl)th

ts = t3 + ta Vits = Vits + Viy

te = cos(t2) Vis = —sin(t2)Via

t7 = tg + 12 Vitr = Vieg + Via

ts = tsiy Vitg = Visty + t5sVir
of (z1, 22)

Z1

(z2 + cos(z1))(z2 + cos(z2))




Introduction: Differentiation

automatic vs. symbolic differentiation

Operations Differentiate(t;, {z1, z2})
tl = I th = [1,0]
t2 = T2 Vt2 = [0, 1]
t3 = tita Vits = t1Vie + Viita
1y = Sil’l(tl) Vity = COS(tl)th
ts = t3 + ta Vits = Vits + Viy
te = cos(t2) Vis = —sin(t2)Via
t7 = te + t2 Vit; = Vitsg + Via
g = tsty Vits = Visty + t5 Vir
of (z1, 22
w = (@2 + cos(z1)) (@2 + cos(z2))
1
Of (1, 22
w = (21 (22 + cos(a2)) +
2

(z122 + sin(z1))(1 — sin(z2))




Efficent generation and evaluation of the Jacobian

Estimate complexity

Jacobian
o
on [
L\ o
811

ony
oz,

0h,
oz,

Determination of the full Jacobian
depends at least on O(n?) using the

presented method.
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Efficent generation and evaluation of the Jacobian

Estimate complexity

Jacobian
oy oy State-Space Equations
Bh oz e oz,
M (z(t) ) _ ( m(t),y(t),g,t))
b - O y(t) k(z(), u(t), p, t)

Determination of the full Jacobian
depends at least on O(n?) using the
presented method.

Actually it is more than that! |
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Efficent generation and evaluation of the Jacobian

Estimate complexity

Jacobian
ohy oy
on _ ("
JA = — =
oz :
Ohy, oh,,
Oz T oz,

State-Space Equations

(4 )=

h(z(t), u(t),
k u

Z b, t) )
k(z(t), u(t), p, t) ]

Determination of the full Jacobian
depends at least on O(n?) using the
presented method.

Actually it is more than that!

Determination of the full Jacobian
depends at least on O(n * m) where
m > n number of equation in the
ODE-Block.

10/17



Efficent generation and evaluation of the Jacobian

A faster way

Operations Differentiate(t;, {z1, z2})
th =11 Vi = [1,0]
i = Vi = [0, 1]
Example i3 = tite Vits = t1Vits + Vit
ty = sin(t1) Vits = cos(t1) Vi
ts = t3 + ta Vits = Vit + Viy
21, ®2) = (112 +sin(xy)) (22 + cos(» tc = cos(tz) | Vic = —sin(t2)Viy
f(ar, 22) = (m122 (21)) (2 (22)) Loembl D it
ts = tstr Vitg = Vistr + t5Vir

11/17



Efficent generation and evaluation of the Jacobian

A faster way

Example

f(@1, 22) = (m122 +sin(z1)) (22 + cos(z2))

Operations Differentiate(#;, z )
t1 = o1 dt; = Ezrl

t2 = T2 dt2 = Exrz

t3 = t1i2 dts = t1dts + dtita
ty = sin(ty) dty = cos(t1)dty

ts = t3 + 14 dts = dtz + dity

iy = COS(tz) dtg = — Sin(t2)dt2
t7 = tg + 12 dt7 = dtg + dito

tg = tsty dts = dtsty + tsditz
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Efficent generation and evaluation of the Jacobian

A faster way

Operations Differentiate(#;, z )
t1 = o1 dt; = Ezr;
ty = x3 diy = &2
EXample t3 = ti1t2 dts = t1dts + dtits
ty = sin(ty) dty = cos(t1)dty
ts = t3 + 14 dts = dtz + dity
1, T2) = (2122 +sin(z1)) (22 + cos(xo te = cos(ta) | dig = —sin(tz)dts
fla, 2) = ( (z1))( (22)) ot ekl
tg = tsty dts = dtsty + tsditz

of (z1,22) ,dz1 Ox2

=, =)

2 22 02 = (=1 %ff + %ZQ) + (cos(z1) ‘%le )(cos(z2) + z2) +

z

((z1 + @2) + sin(z1))(F2 — sin(z2) G2
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A faster way

Operations Differentiate(#;, z )
t1 = o1 dt; = Ezr;
ty = x3 diy = &2
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ty = sin(ty) dty = cos(t1)dty
ts = t3 + 14 dts = dtz + dity
1, T2) = (2122 +sin(z1)) (22 + cos(xo te = cos(ta) | dig = —sin(tz)dts
fzy, 2) = ( (z1))( (22)) ot ekl
tg = tsty dts = dtsty + tsditz

of (z1,22) ,dz1 Ox2

2 Bz E) = (=1 %ff + %ZQ) + (cos(z1) ‘%le )(cos(z2) + z2) +
((z1 + @2) + sin(z1))( 65”22 — sin(z2) 8;22
M(% =1 92 =0) = (22 + cos(z1))(z2 + cos(z2))

1 oz "oz
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Efficent generation and evaluation of the Jacobian

A faster way

Example

f(z1, 12) = (2172 +5in(z1)) (22 + cos(22))

of (z1,22) ,dz1 Ox2

Operations Differentiate(#;, z )
t1 = o1 dt; = Q(Trl

t2 = T2 dt2 = Q(cvr2

t3 = t1i2 dts = t1dts + dtita
ty = sin(ty) dty = cos(t1)dty

ts = t3 + 14 dts = dtz + dity

te = COS(tz) dtg = — Sin(tQ)dtz
t7 = tg + 12 dt7 = dtg + dito

tg = tsty dts = dtsty + tsditz

gy 5 E) = (92 z2) + (cos(z1) %)) (cos(z2) + z2) +
((z1 + @2) + sin(z1))( 65”22 — sin(z2) ‘9;3
af(z1, z2) Ozl 922
w a—zz =1, 8—2 =0) = (22 + cos(z1))(z2 + cos(z2))
1
of (z1, z2) Ozl ox2
%(% =0, 92 1) = (21 (22 + cos(z2)) +

(z122 + sin(z1)) (1 — sin(z2))

11/17



Efficent generation and evaluation of the Jacobian

A faster way

Jacobian
Oy
8h 8-z1
& Oh,

Oz

Ohy,
oz,

Evaluate the Jacobian

oh
Ja=5-

(ex)

e, € R" := k — th coordinate vector
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Efficent generation and evaluation of the Jacobian

A faster way

Jacobian
o
aﬁ 8-z1
& Oh,
Oz

Ohy,
oz,

Evaluate the Jacobian

Oh
Ja = a—;(ﬁk)

e, € R" := k — th coordinate vector

v

Evaluation while the simulation still
takes n call.

12/17



Efficent generation and evaluation of the Jacobian

Which color has the Jacobian?

Jacobian
i jiz O
0 0 o3
J=10 Jjs2 Jjs3
ju 0 0
0 0 0

0 s

0 0
Jaa 0

0 0

Jsa Jss
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Efficent generation and evaluation of the Jacobian

Which color has the Jacobian?

Jacobian
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Efficent generation and evaluation of the Jacobian

Which color has the Jacobian?

Jacobian

0 J15
J23 0
J = j‘i:’; 0
0 0
0 J55

Jis

J23

JR = (/':33

0

Js5 )

13/17



Efficent generation and evaluation of the Jacobian

Explore the sparse pattern

Example system
2(t) = f(z(t), 1) J
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Efficent generation and evaluation of the Jacobian

Explore the sparse pattern

@) @
(1)

23 falz1

filza

Example system
2(t) = f(z(t), 1) J
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Efficent generation and evaluation of the Jacobian

Explore the sparse pattern

@

filza

®

(o)

|23 falz1

Example system
2(t) = f(z(t), 1) J

@

<

|
* ¥ O O ¥
coo % ©
* % OO %
* ¥ ¥ * O
o x oo o
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Results
Model for Testing

Eine

&y

freqHz=0.0

rampl

1

T

duration=200

prescribed...

prescribed...

ramp2

-

uration=30
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Results
Model for Testing

sparse pattern

* X X ¥ X X X
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Results

Evaluation measurements
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Results

Evaluation measurements
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Summary

@ OpenModelica generates Jacobians efficently.

@ Simulation speed can be increased using Jacobians.
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Summary

@ OpenModelica generates Jacobians efficently.

@ Simulation speed can be increased using Jacobians.

@ Outlook

» Utilize the Jacobian for FMI 2.0.
> Improving the usability.
> Improving the algorithms.
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