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Introduction and Motivation

• Accelerating pace of innovation and change in European PG&T networks

– Intermittent renewables

– Distributed generation

– Innovative components (DC links, power electronics)

– Tighter integration between different countries

• Mandate to Transmission System Operators (TSO) to exchange data about the 
national systems

– CIM standard (parameters) → good for static analysis

– Transient analysis requires exchanging models (→ equations)

• Currently used network simulation tools

– In-house legacy codes (SICRE, EUROSTAG)

– Commercial power system simulation tools (PSS/E, DigSILENT)

– Old-fashioned, procedural, inflexible, closed-source, etc.

– Adding new models is difficult

– Doing things other than simulation is difficult
(calibration, estimation, optimization, etc.)
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To Probe Further

Please attend Luigi Vanfretti's
 tutorial and presentation 

tomorrow @ MODPROD workshop
 on the use of Modelica in the field of 

Power System Simulation
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Research Question:
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Can OpenModelica handle 
regional / national / continental
sized PG&T system models?

Research Question:
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Electro-Mechanical Models of PG&T Systems

• Power Generation units

– Low-order models of prime mover and governor

– Low-order model of synchronous generator in Park coordinates

– Rotating mechanical generator with inertia

– Linear dynamics plus saturations

– Causal models, heritage of developements in the '90s
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Electro-Mechanical Models of PG&T Systems

• Power Generation units

– Low-order models of prime mover and governor

– Low-order model of synchronous generator in Park coordinates

– Rotating mechanical generator with inertia

– Linear dynamics plus saturations

– Causal models, heritage of developements in the '90s

• Transmission lines, transformers
– Sinusoidal steady-state models (electromagnetic transients neglected)

– Phasor-based models (complex numbers)

– (Very large) linear implicit systems of algebraic equations

• Load models
– Linear models (constant impedance)

– PQ models (nonlinear)

– Pseudo-PQ models (controlled impedance)
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Electro-Mechanical Models of PG&T Systems

• Mathematical structure of the DAEs

– Very large, very sparse DAEs
(few nonzero elements for each equation)

– Index-1 DAEs

• Mathematical structure of the causalized ODEs
– One big implicit linear system (transmission lines, loads, transformers)

– Explicit assigments for the rest of the equations

– Dense Jacobian f / x → unsuitable for implicit solvers!

• Explicit ODE solvers (Runge-Kutta)
– Fixed time step around 20 ms

– Sparse solver for the large implicit linear system – no tearing!

– Avoid nonlinear systems (stemming from rigorous PQ loads)

• Implicit DAE Sparse Solvers (IDA/Kinsol)
– Exploiting sparsity is essential (up to one million equations!)

– Can handle much larger time steps if nothing happens on the system

– Event handling can be problematic (large event iterations)

– Nonlinear (PQ) loads are not a problem, only one nonlinear iteration for 
each time step
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Feasibility Study in OMC

• Study carried out by Dynamica for CESI in partnership with Politecnico

• Basic standard models for all components, no fancy stuff

• Use appropriate formalisms
– Complex numbers for equation-based phasor models

– Block diagrams for controllers (IEEE standards)

• Focus on performance (compilation & simulation), not on results
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Feasibility Study in OMC

• Study carried out by Dynamica for CESI in partnership with Politecnico

• Basic standard models for all components, no fancy stuff

• Use appropriate formalisms
– Complex numbers for equation-based phasor models

– Block diagrams for controllers (IEEE standards)

• Focus on performance (compilation & simulation), not on results

• Integration strategy tested so far
– Causalized ODEs

– Explict Runge-Kutta 4th order @ 20 ms time step

– KLU sparse solver for the large linear network model

• Three test cases
– Rete C (Ireland, 600 nodes, public domain)

– Rete E (Italy, 1800 nodes, proprietary)

– Rete D (France, detailed, 5000 nodes, public domain)

• Modelica code generated automatically from PSS/E netlists
by a Python script

• Small library developed for this project (rapid prototyping approach)
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Improving The Compilation & Simulation Performance

• Using a sparse linear solver and avoiding tearing on the large algebraic 
system of equations is essential

– UMFPACK tried out first

– KLU implemented recently, turns out to be much faster (2X or more) 
on this kind of problems
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Improving The Compilation & Simulation Performance

• Using a sparse linear solver and avoiding tearing on the large algebraic 
system of equations is essential

– UMFPACK tried out first

– KLU implemented recently, turns out to be much faster (2X or more) 
on this kind of problems

• Many stack overflow problems, solved by using tail recursion

• Some functions in the back-end scaled very badly with size, the worst 
ones have been fixed (more on this later)

• The two largest examples require 64-bit OMC because of memory 
requirements, all examples run under Linux

• The preOpt and postOpt settings need to be carefully selected to avoid 
excessive code generation times

• Very significant progress between Oct 2015 and Jan 2016, but still much 
remains to be done
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Data of the Test Models

# of 
Nodes 
of the 
power 

network

Eqs/
Vars

State 
vars

Linear 
systems

Linear 
system 
density 

[%]

Assignments

Rete C 751 60135 615 1x12246 + 
42x2

1x <0,01
+ 42x 100

14227

Rete E 1815 156729 1894 1x36400 + 
6x2

1x <0,01 
+ 6x 100

35536

Rete D 8376 470000 16219 1x90208 1x <0,01 160408
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Data of the Test Models

Objects Nodes Connec
tions

Loads Genera
tors

Transm 
lines

Transf
ormers

Rete C 1661 751 423 255 73 359 551

Rete E 4178 1815 807 742 266 1338 1025

Rete D 12809 8376 2676 3383 2317 1944 2489
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Results of the Feasibility Study

Tests run under Linux on a Intel Xeon E5-2670 @ 2.6GHz with 160 GB RAM

Simulation: 20 s @ 20 ms time step, Runge-Kutta 4th order, KLU linear solver

Objects Nodes Eqs/
Vars

Front-
end 
[s]

Back-
end 
[s]

Sim
Code 

[s]

Templa
tes 
[s]

C 
compile 

[s]

Total 
compile  

[min]

Sim 
time
 [s]

Rete C 1661 751 60135 57 47 26 15 15 2,7 22,7

Rete E 4178 1815 156729 185 161 104 33 41,9 8,8 74,6

Rete D 12809 8376 470000 1099 1852 2060 182 186 89 203,7

Scaling
w.r.t.

Rete C

Rete E 2,52 2,42 2,61 3,23 3,43 3,98 2,22 2,86 3,28 3,28

Rete D 7,71 11,15 7,82 19,14 39,4 78,8 12,2 12,7 33,6 8,96
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Lessons learned

• The front-end processing time scales as O(N). The new one migh be faster. 

• If arrays of objects were not unrolled by the front-end, performance might 
benefit a lot – currently no difference between using arrays or not.

• Connections will always be declared individually (no repetitive structure)
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Lessons learned

• The front-end processing time scales as O(N). The new one migh be faster. 

• If arrays of objects were not unrolled by the front-end, performance might 
benefit a lot – currently no difference between using arrays or not.

• Connections will always be declared individually (no repetitive structure)

• Many functions in the Back-End and SimCode phase scale as O(N3)
– Expected performance is usually O(N) or O(N2)

– From a certain size up they become the bottleneck

– Naive implementations in terms of efficiency;
inefficiency only shows up for large N

– Some of these functions have already been fixed, others need to do so

• Some unnecessary (or utterly useless) optimizations can be skipped
– detectJacobianSparsePattern: explicit algorithms don't need this

– disableLinearTearing: mandatory for the largest algebraic loop

– indexReductionMethod=uode: we know a priori the system is index-1

Premature optimization is the root of all evil, 
but it is now time to do something about it!
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Lessons learned - II

• All stages of code generation are very expensive in terms of RAM usage:
– about 100 kBytes (!) of memory are allocated for each scalar equation

– The test case requires to instantiate only a handful of different classes

– There is arguably a lot of uselessly repeated work in the process

• The generated C-code and simulation executables are unnecessary large
– The size of the executable for the largest test case (ReteD) is 435 MB!

• The simulation executable allocates a lot of RAM to store the results
– A test case generating 4.8 GB of result data allocates over 40 GB 

during the simulation!
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Lessons learned - II

• All stages of code generation are very expensive in terms of RAM usage:
– about 100 kBytes (!) of memory are allocated for each scalar equation

– The test case requires to instantiate only a handful of different classes

– There is arguably a lot of uselessly repeated work in the process

• The generated C-code and simulation executables are unnecessary large
– The size of the executable for the largest test case (ReteD) is 435 MB!

• The simulation executable allocates a lot of RAM to store the results
– A test case generating 4.8 GB of result data allocates over 40 GB 

during the simulation!

Despite the inefficiencies in the code generation process
 the simulation code already outperforms

legacy domain-specific tools!
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Can OpenModelica handle 
regional / national / continental
sized PG&T system models?
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Research Question:

Can OpenModelica handle 
regional / national / continental
sized PG&T system models?

Yes, definitely!

(better with some more work...)



37

Future Developments and Optimizations

• Test native sparse DAE solvers (e.g., IDA/Kinsol)

• Investigate optimizations for DAE solvers (w/o causalization)

• Investigate efficient event handling for these large systems
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Future Developments and Optimizations

• Test native sparse DAE solvers (e.g., IDA/Kinsol)

• Investigate optimizations for DAE solvers (w/o causalization)

• Investigate efficient event handling for these large systems

• Avoid loop unrolling in the front-end when declaring arrays of objects of 
the same type

• Apply basic simplifications (e.g. removing alias equations) to classes, 
before instantiating them N times and doing the same thing N times

• Avoid generating N instances of the same C-code for each object, call 
the same function with different parameters instead

– Much less code generation time and
much less memory footprint

• Streamline all Back-End and SimCode functions so that they scale 
properly with the system size

• Link specialized solvers for these models into OMC to get even faster 
simulation performance (could be done as proprietary development)
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Thank you for you kind attention!

(I hope I'll be able to take questions
via Skype...)
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