
mailto:francesco.casella@polimi.it

2

Introduction and Motivation

• Accelerating pace of innovation and change in European PG&T networks

– Intermittent renewables

– Distributed generation

– Innovative components (DC links, power electronics)

– Tighter integration between different countries

3

Introduction and Motivation

• Accelerating pace of innovation and change in European PG&T networks

– Intermittent renewables

– Distributed generation

– Innovative components (DC links, power electronics)

– Tighter integration between different countries

• Mandate to Transmission System Operators (TSO) to exchange data about the
national systems

– CIM standard (parameters) → good for static analysis

– Transient analysis requires exchanging models (→ equations)

4

Introduction and Motivation

• Accelerating pace of innovation and change in European PG&T networks

– Intermittent renewables

– Distributed generation

– Innovative components (DC links, power electronics)

– Tighter integration between different countries

• Mandate to Transmission System Operators (TSO) to exchange data about the
national systems

– CIM standard (parameters) → good for static analysis

– Transient analysis requires exchanging models (→ equations)

• Currently used network simulation tools

– In-house legacy codes (SICRE, EUROSTAG)

– Commercial power system simulation tools (PSS/E, DigSILENT)

– Old-fashioned, procedural, inflexible, closed-source, etc.

– Adding new models is difficult

– Doing things other than simulation is difficult
(calibration, estimation, optimization, etc.)

6

To Probe Further

Please attend Luigi Vanfretti's
 tutorial and presentation

tomorrow @ MODPROD workshop
 on the use of Modelica in the field of

Power System Simulation

7

Research Question:

8

Can OpenModelica handle
regional / national / continental
sized PG&T system models?

Research Question:

9

Electro-Mechanical Models of PG&T Systems

• Power Generation units

– Low-order models of prime mover and governor

– Low-order model of synchronous generator in Park coordinates

– Rotating mechanical generator with inertia

– Linear dynamics plus saturations

– Causal models, heritage of developements in the '90s

10

Electro-Mechanical Models of PG&T Systems

• Power Generation units

– Low-order models of prime mover and governor

– Low-order model of synchronous generator in Park coordinates

– Rotating mechanical generator with inertia

– Linear dynamics plus saturations

– Causal models, heritage of developements in the '90s

• Transmission lines, transformers
– Sinusoidal steady-state models (electromagnetic transients neglected)

– Phasor-based models (complex numbers)

– (Very large) linear implicit systems of algebraic equations

11

Electro-Mechanical Models of PG&T Systems

• Power Generation units

– Low-order models of prime mover and governor

– Low-order model of synchronous generator in Park coordinates

– Rotating mechanical generator with inertia

– Linear dynamics plus saturations

– Causal models, heritage of developements in the '90s

• Transmission lines, transformers
– Sinusoidal steady-state models (electromagnetic transients neglected)

– Phasor-based models (complex numbers)

– (Very large) linear implicit systems of algebraic equations

• Load models
– Linear models (constant impedance)

– PQ models (nonlinear)

– Pseudo-PQ models (controlled impedance)

12

Electro-Mechanical Models of PG&T Systems

• Mathematical structure of the DAEs

– Very large, very sparse DAEs
(few nonzero elements for each equation)

– Index-1 DAEs

13

Electro-Mechanical Models of PG&T Systems

• Mathematical structure of the DAEs

– Very large, very sparse DAEs
(few nonzero elements for each equation)

– Index-1 DAEs

• Mathematical structure of the causalized ODEs
– One big implicit linear system (transmission lines, loads, transformers)

– Explicit assigments or small linear systems for the rest of the equations

– Dense Jacobian f / x → unsuitable for implicit solvers!

14

Electro-Mechanical Models of PG&T Systems

• Mathematical structure of the DAEs

– Very large, very sparse DAEs
(few nonzero elements for each equation)

– Index-1 DAEs

• Mathematical structure of the causalized ODEs
– One big implicit linear system (transmission lines, loads, transformers)

– Explicit assigments for the rest of the equations

– Dense Jacobian f / x → unsuitable for implicit solvers!

• Explicit ODE solvers (Runge-Kutta)
– Fixed time step around 20 ms

– Sparse solver for the large implicit linear system – no tearing!

– Avoid nonlinear systems (stemming from rigorous PQ loads)

15

Electro-Mechanical Models of PG&T Systems

• Mathematical structure of the DAEs

– Very large, very sparse DAEs
(few nonzero elements for each equation)

– Index-1 DAEs

• Mathematical structure of the causalized ODEs
– One big implicit linear system (transmission lines, loads, transformers)

– Explicit assigments for the rest of the equations

– Dense Jacobian f / x → unsuitable for implicit solvers!

• Explicit ODE solvers (Runge-Kutta)
– Fixed time step around 20 ms

– Sparse solver for the large implicit linear system – no tearing!

– Avoid nonlinear systems (stemming from rigorous PQ loads)

• Implicit DAE Sparse Solvers (IDA/Kinsol)
– Exploiting sparsity is essential (up to one million equations!)

– Can handle much larger time steps if nothing happens on the system

– Event handling can be problematic (large event iterations)

– Nonlinear (PQ) loads are not a problem, only one nonlinear iteration for
each time step

16

Feasibility Study in OMC

• Study carried out by Dynamica for CESI in partnership with Politecnico

• Basic standard models for all components, no fancy stuff

• Use appropriate formalisms
– Complex numbers for equation-based phasor models

– Block diagrams for controllers (IEEE standards)

• Focus on performance (compilation & simulation), not on results

17

Feasibility Study in OMC

• Study carried out by Dynamica for CESI in partnership with Politecnico

• Basic standard models for all components, no fancy stuff

• Use appropriate formalisms
– Complex numbers for equation-based phasor models

– Block diagrams for controllers (IEEE standards)

• Focus on performance (compilation & simulation), not on results

• Integration strategy tested so far
– Causalized ODEs

– Explict Runge-Kutta 4th order @ 20 ms time step

– KLU sparse solver for the large linear network model

• Three test cases
– Rete C (Ireland, 600 nodes, public domain)

– Rete E (Italy, 1800 nodes, proprietary)

– Rete D (France, detailed, 5000 nodes, public domain)

18

Feasibility Study in OMC

• Study carried out by Dynamica for CESI in partnership with Politecnico

• Basic standard models for all components, no fancy stuff

• Use appropriate formalisms
– Complex numbers for equation-based phasor models

– Block diagrams for controllers (IEEE standards)

• Focus on performance (compilation & simulation), not on results

• Integration strategy tested so far
– Causalized ODEs

– Explict Runge-Kutta 4th order @ 20 ms time step

– KLU sparse solver for the large linear network model

• Three test cases
– Rete C (Ireland, 600 nodes, public domain)

– Rete E (Italy, 1800 nodes, proprietary)

– Rete D (France, detailed, 5000 nodes, public domain)

• Modelica code generated automatically from PSS/E netlists
by a Python script

• Small library developed for this project (rapid prototyping approach)

23

Improving The Compilation & Simulation Performance

• Using a sparse linear solver and avoiding tearing on the large algebraic
system of equations is essential

– UMFPACK tried out first

– KLU implemented recently, turns out to be much faster (2X or more)
on this kind of problems

24

Improving The Compilation & Simulation Performance

• Using a sparse linear solver and avoiding tearing on the large algebraic
system of equations is essential

– UMFPACK tried out first

– KLU implemented recently, turns out to be much faster (2X or more)
on this kind of problems

• Many stack overflow problems, solved by using tail recursion

• Some functions in the back-end scaled very badly with size, the worst
ones have been fixed (more on this later)

• The two largest examples require 64-bit OMC because of memory
requirements, all examples run under Linux

• The preOpt and postOpt settings need to be carefully selected to avoid
excessive code generation times

25

Improving The Compilation & Simulation Performance

• Using a sparse linear solver and avoiding tearing on the large algebraic
system of equations is essential

– UMFPACK tried out first

– KLU implemented recently, turns out to be much faster (2X or more)
on this kind of problems

• Many stack overflow problems, solved by using tail recursion

• Some functions in the back-end scaled very badly with size, the worst
ones have been fixed (more on this later)

• The two largest examples require 64-bit OMC because of memory
requirements, all examples run under Linux

• The preOpt and postOpt settings need to be carefully selected to avoid
excessive code generation times

• Very significant progress between Oct 2015 and Jan 2016, but still much
remains to be done

26

Data of the Test Models

of
Nodes
of the
power

network

Eqs/
Vars

State
vars

Linear
systems

Linear
system
density

[%]

Assignments

Rete C 751 60135 615 1x12246 +
42x2

1x <0,01
+ 42x 100

14227

Rete E 1815 156729 1894 1x36400 +
6x2

1x <0,01
+ 6x 100

35536

Rete D 8376 470000 16219 1x90208 1x <0,01 160408

27

Data of the Test Models

Objects Nodes Connec
tions

Loads Genera
tors

Transm
lines

Transf
ormers

Rete C 1661 751 423 255 73 359 551

Rete E 4178 1815 807 742 266 1338 1025

Rete D 12809 8376 2676 3383 2317 1944 2489

28

Results of the Feasibility Study

Tests run under Linux on a Intel Xeon E5-2670 @ 2.6GHz with 160 GB RAM

Simulation: 20 s @ 20 ms time step, Runge-Kutta 4th order, KLU linear solver

Objects Nodes Eqs/
Vars

Front-
end
[s]

Back-
end
[s]

Sim
Code

[s]

Templa
tes
[s]

C
compile

[s]

Total
compile

[min]

Sim
time
 [s]

Rete C 1661 751 60135 57 47 26 15 15 2,7 22,7

Rete E 4178 1815 156729 185 161 104 33 41,9 8,8 74,6

Rete D 12809 8376 470000 1099 1852 2060 182 186 89 203,7

Scaling
w.r.t.

Rete C

Rete E 2,52 2,42 2,61 3,23 3,43 3,98 2,22 2,86 3,28 3,28

Rete D 7,71 11,15 7,82 19,14 39,4 78,8 12,2 12,7 33,6 8,96

29

Lessons learned

• The front-end processing time scales as O(N). The new one migh be faster.

• If arrays of objects were not unrolled by the front-end, performance might
benefit a lot – currently no difference between using arrays or not.

• Connections will always be declared individually (no repetitive structure)

30

Lessons learned

• The front-end processing time scales as O(N). The new one migh be faster.

• If arrays of objects were not unrolled by the front-end, performance might
benefit a lot – currently no difference between using arrays or not.

• Connections will always be declared individually (no repetitive structure)

• Many functions in the Back-End and SimCode phase scale as O(N3)
– Expected performance is usually O(N) or O(N2)

– From a certain size up they become the bottleneck

– Naive implementations in terms of efficiency;
inefficiency only shows up for large N

– Some of these functions have already been fixed, others need to do so

31

Lessons learned

• The front-end processing time scales as O(N). The new one migh be faster.

• If arrays of objects were not unrolled by the front-end, performance might
benefit a lot – currently no difference between using arrays or not.

• Connections will always be declared individually (no repetitive structure)

• Many functions in the Back-End and SimCode phase scale as O(N3)
– Expected performance is usually O(N) or O(N2)

– From a certain size up they become the bottleneck

– Naive implementations in terms of efficiency;
inefficiency only shows up for large N

– Some of these functions have already been fixed, others need to do so

• Some unnecessary (or utterly useless) optimizations can be skipped
– detectJacobianSparsePattern: explicit algorithms don't need this

– disableLinearTearing: mandatory for the largest algebraic loop

– indexReductionMethod=uode: we know a priori the system is index-1

32

Lessons learned

• The front-end processing time scales as O(N). The new one migh be faster.

• If arrays of objects were not unrolled by the front-end, performance might
benefit a lot – currently no difference between using arrays or not.

• Connections will always be declared individually (no repetitive structure)

• Many functions in the Back-End and SimCode phase scale as O(N3)
– Expected performance is usually O(N) or O(N2)

– From a certain size up they become the bottleneck

– Naive implementations in terms of efficiency;
inefficiency only shows up for large N

– Some of these functions have already been fixed, others need to do so

• Some unnecessary (or utterly useless) optimizations can be skipped
– detectJacobianSparsePattern: explicit algorithms don't need this

– disableLinearTearing: mandatory for the largest algebraic loop

– indexReductionMethod=uode: we know a priori the system is index-1

Premature optimization is the root of all evil,
but it is now time to do something about it!

33

Lessons learned - II

• All stages of code generation are very expensive in terms of RAM usage:
– about 100 kBytes (!) of memory are allocated for each scalar equation

– The test case requires to instantiate only a handful of different classes

– There is arguably a lot of uselessly repeated work in the process

• The generated C-code and simulation executables are unnecessary large
– The size of the executable for the largest test case (ReteD) is 435 MB!

• The simulation executable allocates a lot of RAM to store the results
– A test case generating 4.8 GB of result data allocates over 40 GB

during the simulation!

34

Lessons learned - II

• All stages of code generation are very expensive in terms of RAM usage:
– about 100 kBytes (!) of memory are allocated for each scalar equation

– The test case requires to instantiate only a handful of different classes

– There is arguably a lot of uselessly repeated work in the process

• The generated C-code and simulation executables are unnecessary large
– The size of the executable for the largest test case (ReteD) is 435 MB!

• The simulation executable allocates a lot of RAM to store the results
– A test case generating 4.8 GB of result data allocates over 40 GB

during the simulation!

Despite the inefficiencies in the code generation process
 the simulation code already outperforms

legacy domain-specific tools!

35

Research Question:

Can OpenModelica handle
regional / national / continental
sized PG&T system models?

36

Research Question:

Can OpenModelica handle
regional / national / continental
sized PG&T system models?

Yes, definitely!

(better with some more work...)

37

Future Developments and Optimizations

• Test native sparse DAE solvers (e.g., IDA/Kinsol)

• Investigate optimizations for DAE solvers (w/o causalization)

• Investigate efficient event handling for these large systems

38

Future Developments and Optimizations

• Test native sparse DAE solvers (e.g., IDA/Kinsol)

• Investigate optimizations for DAE solvers (w/o causalization)

• Investigate efficient event handling for these large systems

• Avoid loop unrolling in the front-end when declaring arrays of objects of
the same type

• Apply basic simplifications (e.g. removing alias equations) to classes,
before instantiating them N times and doing the same thing N times

• Avoid generating N instances of the same C-code for each object, call
the same function with different parameters instead

– Much less code generation time and
much less memory footprint

39

Future Developments and Optimizations

• Test native sparse DAE solvers (e.g., IDA/Kinsol)

• Investigate optimizations for DAE solvers (w/o causalization)

• Investigate efficient event handling for these large systems

• Avoid loop unrolling in the front-end when declaring arrays of objects of
the same type

• Apply basic simplifications (e.g. removing alias equations) to classes,
before instantiating them N times and doing the same thing N times

• Avoid generating N instances of the same C-code for each object, call
the same function with different parameters instead

– Much less code generation time and
much less memory footprint

• Streamline all Back-End and SimCode functions so that they scale
properly with the system size

• Link specialized solvers for these models into OMC to get even faster
simulation performance (could be done as proprietary development)

40

Acknowledgement

Special thanks to:

Willi Braun
Adrian Pop
Vitalij Ruge

Martin Sjölund
Volker Waurich

for their help in getting these
preliminary results out of OMC in

the last three months!

41

Thank you for you kind attention!

(I hope I'll be able to take questions
via Skype...)

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41

