Timed Petri Nets with OpenModelica

Lennart Ochel

OpenModelica Annual Workshop, February 6, 2017

Outline

- Petri nets
 - Basic concepts
 - Modelica library "PNlib"
- Application cases
 - Nursing staff planning in a hospital
 - Carbon fluxes in metabolic systems
- Further developments

Petri nets

- Basic concepts
- Modelica library "PNlib"

Basic concepts

- Petri nets consist of
 - Places
 - Transitions
 - Edges

Basic concepts

- Petri nets consist of
 - Places
 - Transitions
 - Edges
- Petri nets describe state (marking) and behaviour (firing) of systems

5

FEBRUARY 6, 2017

Basic concepts

- Multitude of extensions, e.g.
 - Timed Petri nets
 - Continuous Petri nets
 - Coloured Petri nets
 - Fuzzy Petri nets

- ...

Modelica library "PNlib"

• xHPN: Extended Hybrid Petri Nets

- Mathematical formalism
 - pub.uni-bielefeld.de/publication/2562185

Modelica library "PNlib"

- Freely available
 - github.com/modelica-3rdparty/PNlib
- Version 2.0 released in December '16
- Fully supported by OpenModelica

Modelica library "PNlib"

• OpenModelica coverage trend for the last 2 years

Application cases

- Nursing staff planning in a hospital
- Carbon fluxes within metabolic systems

- Problem behind the scenes:
 - Expert deficit
 - Early career exit
 - Early retirement
- Objective: Increase the attractiveness of the working time concept

GEFÖRDERT VON

- Objective: Increase the attractiveness of the working time concept
 - Employee-oriented human resources planning
 - Employee-oriented working time organization
- Case study by a geriatric ward (*Lask et al. 2016*)
 - Current situation: 12-day week using 3 shifts
 - Comparison of different shift systems using 10-day week

GEFÖRDERT VON

- Agent-based simulation of the ward
 - Nursing staff with different qualifications
 - Shift system and weekend arrangement
 - Illness-related failures
 - Weekly working hours

— ...

• Result: Stochastic feasibility statement about expected care deficit based on different shift systems

- Metabolic pathways describe connected enzyme reactions and their intermediate products
- Metabolic pathways are usually highly connected and contain a lot of competitive paths
- Most relevant metabolites contain carbon

- Objective: Investigation of the influence of certain metabolites, e.g. glucose
- Modelling using Petri net formalism

 Places represent metabolites and other intermediate products
 The intermediate products
 - Transitions represent (enzyme) reactions

- Simple example: Glucose-6-phosphate isomerase $G6P \stackrel{v^+}{\underset{v^-}{\rightleftharpoons}} F6P$
- ODE system based on Michaelis-Menten kinetics

$$\frac{d[G6P]}{dt} = v^{-} - v^{+} = \frac{v_{max}^{r} / K_{mP} \cdot [G6P] - v_{max}^{f} / K_{mS} \cdot [F6P]}{1 + [G6P] / K_{mS} + [F6P] / K_{mP}}$$
$$\frac{d[F6P]}{dt} = v^{+} - v^{-} = \frac{v_{max}^{f} / K_{mS} \cdot [F6P] - v_{max}^{r} / K_{mP} \cdot [G6P]}{1 + [G6P] / K_{mS} + [F6P] / K_{mP}}$$

• Continuous Petri nets can be used as intuitive representation of such ODE systems

- Glucose (food) is consumed
- Glyc and EtOH are produced
- Objective: Distribution of products based on feeding

• Uncoloured simulation of Glyc and EtOH production

• Decomposition of Glyc and EtOH production based on (un)labelled carbon

Further developments

New graphical interface

- Graphical Petri net editor
- Fast, slim, and extendible
- Intuitive support of arc weights
- Build-in connection to OpenModelica
- OpenModelica feedback for modelling purpose
- Online simulation visualization

Thanks for your attention.

www.liu.se

