

Development and Continuous Integration of the OpenIPSL

Modelica Library for Power Systems Simulation

Maxime Baudette, Tin Rabuzin and Luigi Vanfretti

Assoc. Prof. Luigi Vanfretti - luigiv@kth.se

https://www.kth.se/profile/luigiv/

This work was supported in part by:

OpenModelica Annual Workshop

February 6th, 2017 Linköping University, Sweden

- OpenIPSL
 - Modelica and Power Systems
 - OpenIPSL
 - Project Documentation
 - Latest Developments
- Continuous Integration
 - A Collaborative Workflow
 - Toward Continuous Integration
 - Continuous Integration Service
 - Extensions
 - Model Validation
 - GitHub Integration

Smart Transmission Systems L-

MODELICA and Power Systems

Previous and Related Efforts

- Modelica for power systems *was first attempted* in the early 2000's (Wiesmann & Bachmann, Modelica 2000) "electro-magnetic transient (EMT) modeling" approach.
 - SPOT (Weissman, EPL-Modelon) and its close relative PowerSystems (Franke, 2014); supports multiple modeling approaches –i.e. 3phase, steady-state, "transient stability", etc.
- <u>Electro-mechanical modeling or "transient stability" modeling:</u>
 - Involves electro-mechanical dynamics, and neglects (very) fast transients
 - For system-wide analysis, easier to simulate/analyze domain specific tools approach
- ObjectStab (Larsson, 2002; Winkler, 2015) adopts transient modeling.
- The PEGASE EU project (2011) developed a small library of components in Scilab, which where ported to proper Modelica in the FP7 iTesla project (2012-2016).
- The iPSL iTesla Power Systems Library (Vanfretti et al, Modelica 2014, SoftwareX 2016), was released during 2015. Most models validated against typical power system tools.

OpenIPSL takes iPSL as a starting point and moves it forward (this presentation).

• F. Casella (OpenModelica 2016, Modelica 2017) presents the challenges of dealing with large power networks using Modelica, and a dedicated library to investigate them using OM.

MODELICA and Power Systems

Why another library for power systems?

- Why not use one of the existing Modelica projects?
 - *There is no technical argument:* in principle, either SPOT, PowerSystems, or ObjecStab could have been used instead of creating a new library (iPSL or OpenIPSL)

Social Aspects (Vanfretti et al, Modelica 2014):

- Resistance to change: irrational and dysfunctional reaction of users
 - Users of conventional power system tools are skeptical about any other tools different to the one they use (or develop), and have concerns about new technologies (lack of knowledge)
- Change agents contribute (+/-) to address resistance through actions and interactions:
 - Did not impose the use of a software tool, instead:
 - Propose a common math. "description": use of Modelica for unambiguous model exchange.
- Decrease avoidance forces:
 - SW-to-SW validation give quantitatively an similar answer than domain specific tools.

A never-ending effort:

- Our (my) goal has been to bridge the gap between the Modelica and power systems community by
 - Addressing resistance to change (see above)
 - Interacting with both communities different levels of success...

The **OpenIPSL** Project

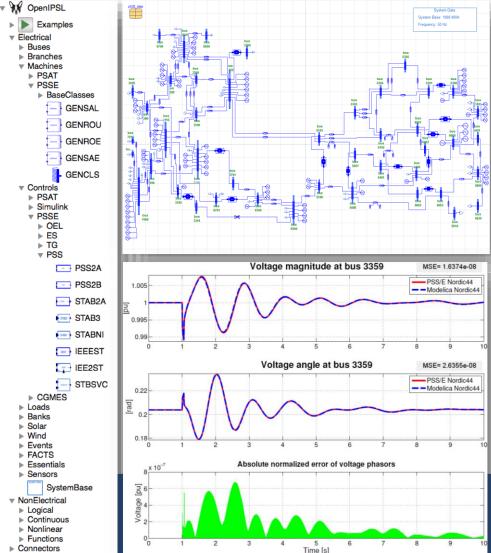
- KTH SmarTS Lab (my research team) actively participated in the group or partners developing iPSL until the end of the *iTesla* project (March 2016)
- **iPSL** is a nice prototype, *but we identified the following issues:*
 - **Development:** Need for compatibility with OpenModelica, (better) use of object orientation and proper use of the Modelica language features.
 - Maintenance: poor harmonization, lack of code factorization, etc.
 - Human issues: The development workflow was complex, because of
 - Different parties with disparate objectives, levels of knowledge, philosophy, etc.

New research requirements and the experiences from previous effort indicated:

- a clear need for a different development approach –

one that should address a complex development & maintenance workflow!

- OpenIPSL started as a fork of iPSL
- OpenIPSL is hosted on GitHub at https://github.com/SmarTS-Lab/OpenIPSL
- OpenIPSL is actively developed by SmarTS Lab members and friends, as a research and education oriented library for power systems
 - \rightarrow it is ok to try things out !

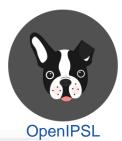


The OpenIPSL Library

OpenIPSL is an open-source Modelica library for power systems

- It contains a set of power system components for phasor time domain modeling and simulation
- Models have been validated against a number of reference tools
- **OpenIPSL** enables:
- Unambiguous model exchange
- Formal mathematical description of models
- Separation of models from IDEs and solvers
- Use of object-oriented paradigms

OPENMODELICA WORKSHOP


The OpenIPSL Project Documentation

Oper

Pub

User Com

Tech

The intention is to have comprehensive documentation in the repositories:

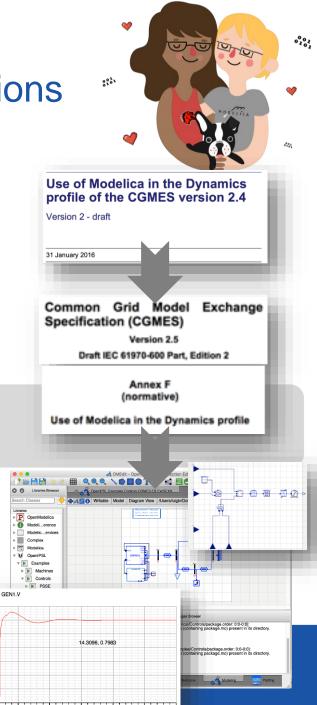
- Documentation of the code changes
- → Explicit messages in commits and pull-requests
- Documentation of the project
 - Presentation
 - User guide
 - Dev. guidelines & How to contribute
- → The documentation is written in reStructuredText (reST) hosted on http://openipsl.readthedocs.io/

Note: Model documentation is not included, users are referred to the proprietary documentations.

Checking for § master (#144)	the case when E1-E2 == 0	
🧝 tinrabuzin co	ommitted 14 days ago	
E Showing 1 chang	ed file with 1 addition and 1 deletion.	
# OpenIPSL	Docs » OpenIPSL's documentation!	itHub
docs		
DF CONTENTS	OpenIPSL's documentation!	
SL's documentation!	Welcome to OpenIPSL - The Open-	
tions	Instance Power System Library.	1
uide	This documentation is the main source of	
unity	information for users and developers	
cal Documentation	working with (or contributing to) the	
	OpenIPSL project.	
urce (including Read the Docs) is ① unded. This report from the Ford Foundation is a must-read.	OpenIPSL in short	
	The OpenIPSL or Open-Instance Power System Library is a Modelie	ca
	library, fork of of the iTesla Power System Library developed and	
	maintained by the SmarTS Lab research group, collaborators and fr (contributions are welcome!).	iends
	The library contains a set of power system component models and	
	power system networks adopting the "phasor" modeling approach.	

The OpenIPSL Project Latest Developments/Contributions

Some of the latest development in the library:


- 100% Compatibility with OM (100% Check, 100% Simulation for components) through efforts in Continuous Integration adoption
- Change in the models to include inheritance (code factorizing)
- Fixing and validating network models (thanks to CI)
- Component for interfacing OpenIPSL with 3 phase models (aka MonoTri)
 - For distribution grid (unbalanced) simulations
 - Starting point for mixed transmission and distribution network simulations

ENTSO-E IOP:

- Proof of concept and test model
- Excitation system and small network model

OpenCPS Models

- Small power network models for analysis of continuous and hybrid systems (sampling and discretized AVR model)
- Use case examples being developed will be added soon.

OPENMODELICA WORKSHOP

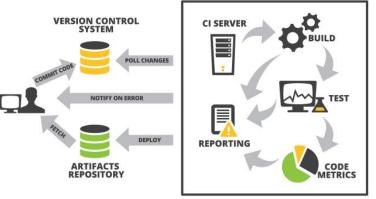
New research requirements and the experiences from previous effort indicated a clear *need for a different development approach - one* that should address a complex development and maintenance workflow!

How to master a complex development workflow? Continuous Integration

A Collaborative Workflow

We adopted the *pull-request* workflow (or GitHub workflow):

- Participants fork the repository and work in their repository
- Changes are submitted to the main repository as *pull-requests*
- The pull-requests are *reviewed* by "admin" members of the repository
 - o upon *validation* the changes are merged in the code of the repository

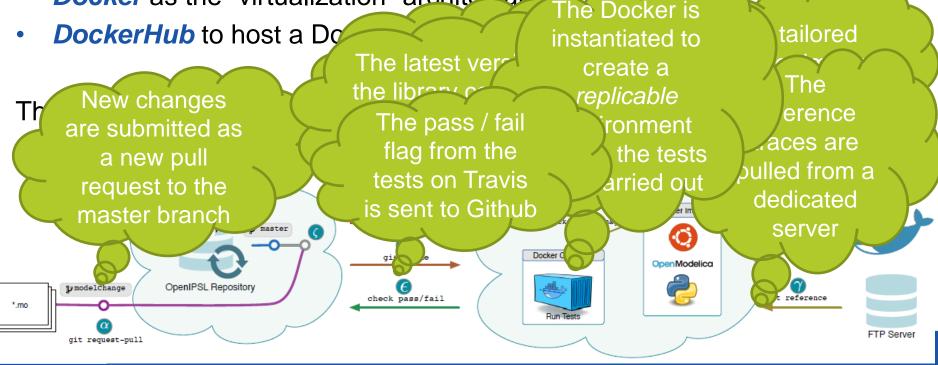


- Mistakes can be made by members of our team, we are still learning!
- The Git workflow adopted allows to minimize the impact of these errors.
- Increased library quality!

Toward Continuous Integration

- The previous workflow was used by only few people and resulted in no control over the code quality, even though DVCS was being used.
- The *newly adopted* workflow turned suitable for the development *team*, but generated a strong *burden* for the *code review*

This sparked the idea of implementing a *Continuous Integration workflow:*


- → Focus on "*lighter*", *more frequent* pull-requests, containing *less code* change, all related to a *single feature* to facilitate the code validation
- → Implement a CI service to *automate* recurring code *validation tests*, to liberate "admin" resources.

Continuous Integration (CI) Service

A CI service was implemented and integrated to the repository. The Modelica support was achieved with the following architecture:

- Travis as CI service provider
- Docker as the "virtualization" architecture

Application Exam	Increment the version number for v1 c Go to the OpenIPSL	0.0 <u>3 months ado</u> Github repo: <u>https://github.com/SmarTS-Lab/OpenIPSL</u> , see runTest.py	
DpenIPSL	Merged branch master into master	2 months ago	
Support	Update addCopyright with all App E		
docs	(doc) Update some links	III README.md	
Justice gitattributes	Add a git attributes file that allows I		
June : .gitignore	Merge branch 'docUpdate' into rele	build passing Click to see the IO from Travis	
.travis.yml	no message		
	Initial Commit for launching OpenIP	OpenIPSL: Open-Instance Power System Library:	
LICENSE.txt	Resets the EOL of all files and remo	The OpenIPSL or Open-Instance Power System Library is a fork of of the iTesla Power System Library, currently	
README.md	(dod) Fix link to the Get Started doc		

Travis Cl Blog Status Help	116 Check Summary for OpenIPSL 117 Number of models that passed the check is: 268 118 Number of models that failed the check is: 0
SmarTS-Lab / OpenIPSL 🖓 💵	 119 /Application Examples/TwoAreas/package.mo is successfully loaded. 120 Check Summary for TwoAreas 121 Number of models that passed the check is: 16 122 Number of models that failed the check is: 0 123 /Application Examples/SevenBus/package.mo is successfully loaded.
Current Branches Build History Pull Requests	124 ==== Check Summary for SevenBus ==== 125 Number of models that passed the check is: 4
 ✓ Pull Request #86 Update tutorial package Fix presentation slides ☑ Commit 1f8d1ff ☑ We Media to to independent 	125 Number of models that possed the check is: 4 126 Number of models that failed the check is: 0 127 /Application Examples/N44/package.mo is successfully loaded. 128 ==== Check Summary for N44 ==== 129 Number of models that passed the check is: 38 130 Number of models that failed the check is: 0 131 /Application Examples/KundurSMIB/package.mo is successfully loaded.
 #86: Update tutorial package Branch master Maxime Baudette authored and committed 	 131 /Application Examples/Kundursmip/package.mo is successfully todaed. 132 ==== Check Summary for KundurSmip package.mo is successfully todaed. 133 Number of models that failed the check is: 0 135 /Application Examples/IEEE9/package.mo is successfully loaded.
Job log View config	136 ==== Check Summary for IEEE9 ==== 137 Number of models that passed the check is: 5 138 Number of models that failed the check is: 0 139 /Application Examples/IEEE14/package.mo is successfully loaded. 140 ==== Check Summary for IEEE14 ====
Worker information Build system information Build system information 79 \$ export DEBIAN_FRONTEND=noninteractive \$ git clonedepth=50 https://github.com/SmarTS-Lab/OpenIPSL.g \$ 3 sudo service docker start 106 \$ bash -c 'echo \$BASH_VERSION' 107 4.3.11(1)-release \$ docker pull smartslab/ci_openipsl 113 \$ docker run -i -t -v \$(pwd):/OpenIPSL smartslab/ci_openipsl sh 114 2017-01-30 10:57:35,609 - OMCSession - INFO - OMC Server is up file:////tmp/openmodelica.smartslab.objdi.ccfdcd8d55c94521a04f0d 115 /OpenIPSL/package.mo is successfully loaded.	/OpenIPSL/CI/changeUser ind running at 149 The command "docker run -i -t -v \$(pwd):/OpenIPSL smartslab/ci_openipsl sh /OpenIPSL/CI/changeUser.sh" exited with

Extension of the CI Service

The *first implementation* eliminated parts of the '*rebarbative*' tasks by automating the *code checks*:

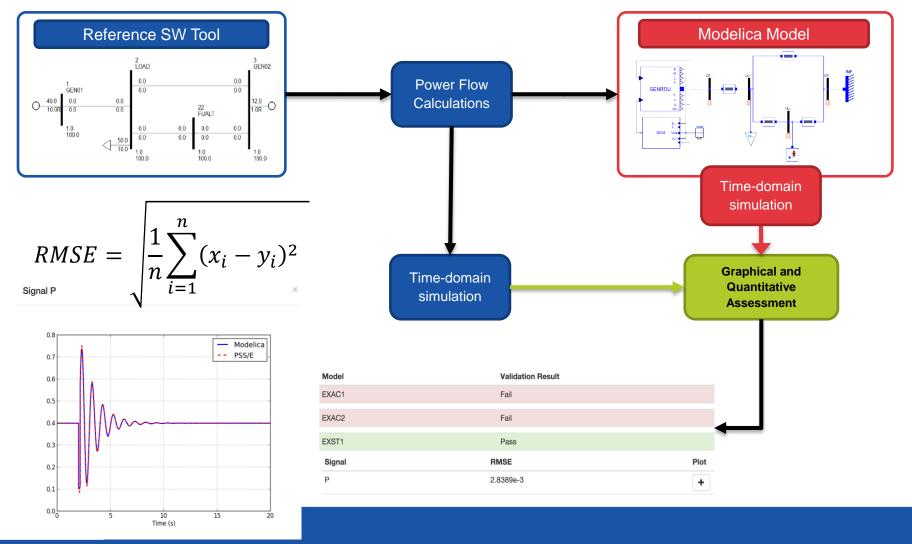
- Avoid error propagation in the library, models "out-of-sync"
- Implementation entirely based on OpenModelica
 → 100% OM Compatibility achieved !

From this successful implementation, an extension was investigated to *include model validation* into the CI service:

- Model validation tests were carried out "offline" during the model development stages
 → We did it before!
- Automated model validation (aka regression testing), ensures code changes won't affect existing models
 → Library *integrity guaranteed*

Model Validation Workflow (SW-to-SW) (1/2)

In the original implementation of the models of the OpenIPSL, a softwareto-software validation workflow was designed and carried out "offline":

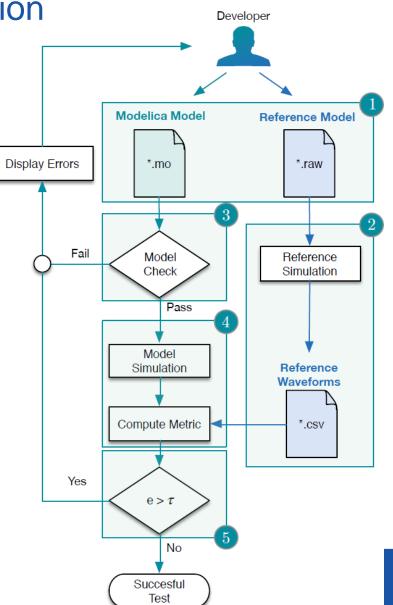

- Models are implemented from several *reference programs*
 - **PSAT**, domain specific tool in MATLAB/Simulink by F. Milano
 - **PSS/E**, domain specific tool from Siemens PTI
- Modelica models were validated using *small scale* power network
- The traces from the Modelica models were qualitatively and quantitatively assessed: compared to the *reference traces*

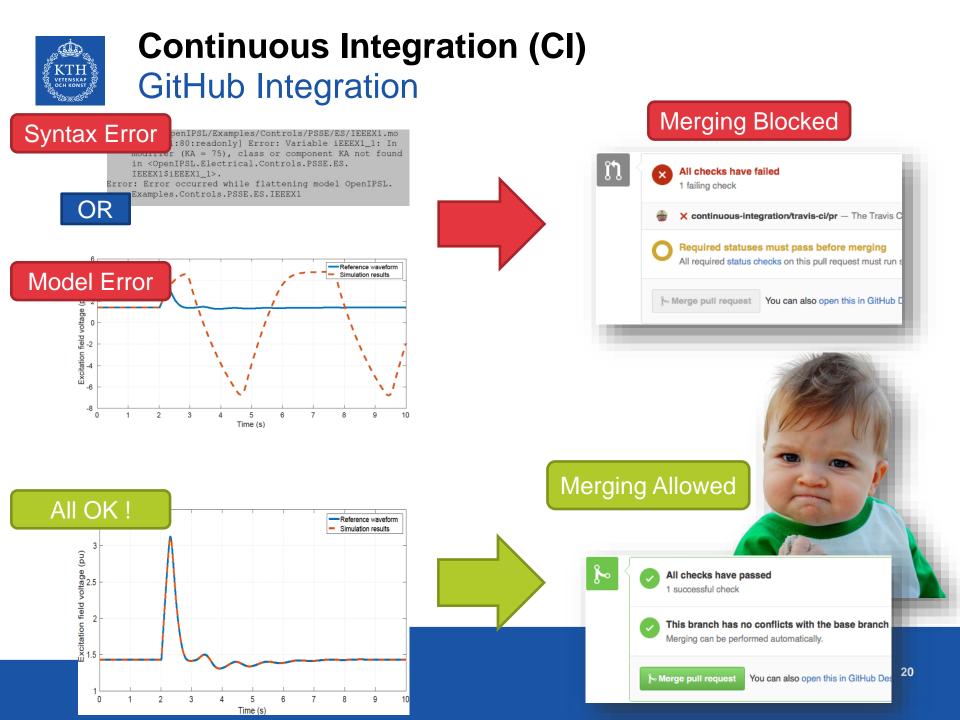
 \rightarrow Gives *confidence* to users having a long experience with these reference software ...

Model Validation Workflow (SW-to-SW) (2/2)

OPENMODELICA WORKSHOP

18

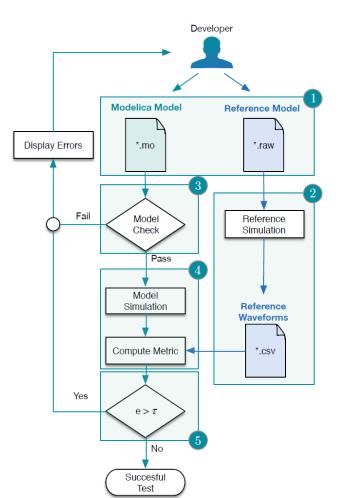



Continuous Integration (CI)

Full workflow implementation

Workflow Summary:

- A two-stage process
 - Modelica syntax check
 - Model validation check
- Fully automated through online CI services
- → Diagnostic help to the developers to locate the error


Main Take Away(s)

The implementation of Continuous Integration services allows to:

- Systematically check the code syntax
- Systematically check the integrity of the library (through SW-to-SW validation)
- \rightarrow Easier collaboration with more developers
- \rightarrow Easier to diagnostic potential errors
- → Better code quality

Other existing Modelica libraries could adopt CI:

- \rightarrow Better compatibility with OM and
- \rightarrow Modelica language version(s).

The **OpenIPSL** library can be found online: <u>https://github.com/SmarTS-Lab/OpenIPSL</u> Come to the MODPROD Tutorial 3 to learn to use OpenIPSL!

The **OpenIPSL** can be found online

https://github.com/SmarTS-Lab/OpenIPSL

Our work on **OpenIPSL** has been published in the SoftwareX Journal:

http://dx.doi.org/10.1016/j.softx.2016.05.001

D & 0

RaPId, a system identification software that uses OpenIPSL can be found at:

- https://github.com/SmarTS-Lab/iTesla_RaPId
- http://dx.doi.org/10.1016/j.softx.2016.07.004

- C Schlab, Inc. (US) https://gthub.com/SmartS-Lab/Teela, RaPid

Luigi Vanfretti

Jan Lavenius

Achour

Amazouz

Le Qi

Mohammed Ahsan Adib

Maxime Baudette

Francisco José Gómez

Mengjia

Zhang

Giusseppe Laera

Tetiana

Bogodorova

Tin Rabuzin

Joan Russiñol Mussons

Thanks to all current and former students and developers at

Smart Transmission Systems Laboratory