Generation of symbolic Hessian matrices in OpenModelica

Sören Kai Möller Karim Kai Abdelhak Bernhard Bachmann
Bielefeld University of Applied Sciences

February 3, 2020

FH Bielefeld
University of
Applied Sciences

Outline

(1) Motivation
(2) Dynamic optimization in OpenModelica
(3) Symbolic Hessian

Motivation

$$
H_{f}(x)=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}
\end{array}\right)
$$

- Hessian matrices play a critical role for dynamic optimization problems
- performance of the optimizer heavily depends on the availability of derivative information
- whole symbolic machinery available in OpenModelica

Dynamic Optimization Problem

Dynamic Optimization Problem

$$
\begin{align*}
& \min _{u(t)} M\left(x\left(t_{f}\right), u\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} L(x(t), u(t), t) d t \\
& \text { s.t. } \\
& x\left(t_{0}\right)=x_{0} \tag{1}\\
& \dot{x}(t)=f(x(t), u(t), t) \tag{2}\\
& g(x(t), u(t), t) \leq 0 \tag{3}\\
& r\left(x\left(t_{f}\right)\right)=0 \tag{4}
\end{align*}
$$

Discretized problem formulation

- collocation methods are highly suitable for discretizing
- collocation with RADAU IIA and LOBATTO IIIA
- approximate Lagrange term with quadrature formulas
- discretized optimization problem can be solved

Discretized problem formulation

Closer look at collocation process:

Discretized problem formulation

- collocation methods are highly suitable for discretizing
- collocation with RADAU IIA and LOBATTO IIIA
- approximate Lagrange term with quadrature formulas
- discretized optimization problem can be solved

Finally the dynamic optimization problem can be discretized...

Discretized problem formulation

Discretized problem

$$
\min M\left(x_{n, m}, u_{n, m}, t_{n, m}\right)+\Phi(\mathrm{x}, \mathrm{u}, \mathrm{t})
$$

s.t.

$$
\begin{aligned}
c(\mathrm{x}, \mathrm{u}, \mathrm{~s}, \mathrm{t}) & \stackrel{!}{=} 0 \\
\mathcal{U}_{\max } & \leq \mathrm{u} \leq \mathcal{U}_{\min } \\
\mathcal{X}_{\max } & \leq \mathrm{x} \leq \mathcal{X}_{\text {min }} \\
0 & \leq \mathrm{s}
\end{aligned}
$$

- $\mathrm{x}:=\left[x_{0,1}, \ldots, x_{n, m}\right], \mathrm{u}:=\left[u_{0,1}, \ldots, u_{n, m}\right]$ and slack variables s
\Rightarrow Constraints: $c(\mathrm{x}, \mathrm{u}, \mathrm{s}, \mathrm{t})$
$\Rightarrow \Phi(\mathrm{x}, \mathrm{u}, \mathrm{t}) \approx \int L(x(t), u(t), t) d t$

Nonlinear optimization

- transformed to nonlinear optimization problem
- optimizer need to find optimal discretized control vector
- requires first order derivatives from $M(\cdot), \Phi(\cdot)$ und $c(\cdot)$
- second order derivatives from the Lagrangian function

Lagrangian function

$$
\begin{aligned}
\mathcal{L}(z, \lambda, \mathrm{t})= & M(\cdot)+\Phi(\cdot)+\lambda^{T} \cdot \mathrm{c}(\cdot) \\
& z=[\mathrm{x}, \mathrm{u}, \mathrm{~s}]
\end{aligned}
$$

Symbolic Hessian

- capabilities to differentiate symbolically a Modelica model
- generates symbolically partial derivatives
- new module SymbolicHessian.mo
- at the moment just for dynamic optimization implemented
- flag --generateSymbolicHessian

Generate Symbolic Hessian

Idea

Differentiate the system two times under usage of the Jacobian matrix!
(1) differentiate objective function, ODE and constraints with respect to $x(t)$ and $u(t)$
(2) multiply the Lagrange multipliers with the Jacobian matrix

- differentiate resulting vector again under usage of Jacobian matrix

Generate Symbolic Hessian

Idea

Differentiate the system two times under usage of the Jacobian matrix!
(1) differentiate objective function, ODE and constraints with respect to $x(t)$ and $u(t)$
(2) multiply the Lagrange multipliers with the Jacobian matrix
© differentiate resulting vector again under usage of Jacobian matrix

$$
\Rightarrow \nabla^{2} \mathcal{L}(\cdot)
$$

Short example

Mathematical description of the well known Van der Pol oscillator.

Van der Pol oscillator

$$
\min _{u(t)} \int_{t_{0}}^{t_{f}} x_{1}(t)^{2}+x_{2}(t)^{2}+u(t)^{2} d t
$$

s.t.

$$
\begin{aligned}
\dot{x}_{1}(t) & =\left(1-x_{2}(t)^{2}\right) \cdot x_{1}(t)-x_{2}(t)+u(t) \\
\dot{x_{2}}(t) & =x_{1}(t) \\
x_{1}\left(t_{0}\right) & =0 \\
x_{2}\left(t_{0}\right) & =1
\end{aligned}
$$

Short example

Transform objective function in Mayer term.

Van der Pol oscillator

$$
\min _{u(t)} \cos t\left(t_{f}\right)
$$

s.t.

$$
\begin{aligned}
\cos t(t) & =x_{1}(t)^{2}+x_{2}(t)^{2}+u(t)^{2} \\
\dot{x_{1}}(t) & =\left(1-x_{2}(t)^{2}\right) \cdot x_{1}(t)-x_{2}(t)+u(t) \\
\dot{x_{2}}(t) & =x_{1}(t) \\
x_{1}\left(t_{0}\right) & =0 \\
x_{2}\left(t_{0}\right) & =1
\end{aligned}
$$

Short example

Collect the information.

Van der Pol oscillator

- objective function: $\cos \left(\left(t_{f}\right)\right.$
- states: cost, x_{1} and x_{2}
- input: u
- initial conditions: $x_{1}\left(t_{0}\right)=0$ and $x_{2}\left(t_{0}\right)=1$

Short example

Write it as an Modelica Model.

```
model VDP
    Real x1(start = 0, fixed = true);
    Real x2(start = 1, fixed = true);
    input u(max = 1, min = -0.5);
equation
    der}(\textrm{x}1)=(1-\textrm{x}2~2)*x1-x2+u
    der (x2) = x1;
end VDP;
optimization nmpcVDP(objective = cost)
    extends VDP;
    Real cost(start = 10, fixed = true);
equation
    der (cost)= x1~ 2+x 2~2+u^2;
end nmpcVDP;
```


Short example

Well known Jacobian matrix calculates first order derivatives.

Van der Pol oscillator

$$
\begin{aligned}
& \\
& \dot{\cos s} \\
& \dot{x_{1}} \\
& \dot{x_{2}}
\end{aligned}\left(\begin{array}{cccc}
\cos t & x_{1} & x_{2} & u \\
0 & 2 x_{1} & 2 x_{2} & 2 u \\
0 & 1-x_{2}^{2} & -2 x_{2} x_{1}-1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Short example

Use vector-matrix product, with $\lambda^{T}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

Van der Pol oscillator

$$
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \cdot\left(\begin{array}{cccc}
0 & 2 x_{1} & 2 x_{2} & 2 u \\
0 & 1-x_{2}^{2} & -2 x_{2} x_{1}-1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)=
$$

$\left(0, \quad \lambda_{1} 2 x_{1}+\lambda_{2}\left(1-x_{2}^{2}\right)+\lambda_{3}, \quad \lambda_{1} 2 x_{2}+\lambda_{2}\left(-2 x_{2} x_{1}-1\right), \quad \lambda_{1} 2 u+\lambda_{2}\right)$

Short example

Use vector-matrix product, with $\lambda^{T}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$

Van der Pol oscillator

$$
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \cdot\left(\begin{array}{cccc}
0 & 2 x_{1} & 2 x_{2} & 2 u \\
0 & 1-x_{2}^{2} & -2 x_{2} x_{1}-1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)=
$$

$\left(0, \quad \lambda_{1} 2 x_{1}+\lambda_{2}\left(1-x_{2}^{2}\right)+\lambda_{3}, \quad \lambda_{1} 2 x_{2}+\lambda_{2}\left(-2 x_{2} x_{1}-1\right), \quad \lambda_{1} 2 u+\lambda_{2}\right)$

For the second order derivatives: Run the Jacobian module again!

Short example

Result: Hessian of the Lagrangian function, with respect to the states and the input

Van der Pol oscillator

cost
x_{1}
x_{2}
$u$$\left(\begin{array}{cccc}\cos t & x_{1} & x_{2} & u \\ 0 & 0 & 0 & 0 \\ 0 & \lambda_{1} 2 & \lambda_{2}\left(-2 x_{2}\right) & 0 \\ 0 & \lambda_{2}\left(-2 x_{2}\right) & \lambda_{1} 2+\lambda_{2}\left(-2 x_{1}\right) & 0 \\ 0 & 0 & 0 & \lambda_{1} 2\end{array}\right)$

Short example

Van der Pol oscillator

cost
x_{1}
x_{2}
$u$$\left(\begin{array}{cccc}\cos t & x_{1} & x_{2} & u \\ 0 & 0 & 0 & 0 \\ 0 & \lambda_{1} 2 & \lambda_{2}\left(-2 x_{2}\right) & 0 \\ 0 & \lambda_{2}\left(-2 x_{2}\right) & \lambda_{1} 2+\lambda_{2}\left(-2 x_{1}\right) & 0 \\ 0 & 0 & 0 & \lambda_{1} 2\end{array}\right)$

Representation of the symbolic Hessian in Modelica
1/1 (1): \$HessianB $=2.0 *(x 1$.SeedB1*x1.SeedB+x2.SeedB1* x2.SeedB+u.SeedB1*u.SeedB) *\$lambda [1] + (-2.0) * (x2.SeedB* (x2* $x 1$.SeedB1 +x 2 . SeedB1*x1) $+\mathrm{x} 2 * x 2$.SeedB1*x1.SeedB) $* \$$ lambda[2]

Outlook

- possible to generate Hessian matrices with symbolical differentiation techniques as Modelica expression
\rightarrow at the moment it does not work with the discretized optimization problem
\rightarrow goal: fix the issue and make the symbolic Hessian available for the optimizer
- analyze the influence of the initial guess of Newton-Raphson's algorithm
\rightarrow used for the sensitivity of the solution after the first Newton-Raphson iteration

Thank you for your attention!
If you have any questions please feel free to ask

