Experimenting OMC and --daeMode with large-scale grid models: status and perspectives

Francesco Casella (francesco.casella@polimi.it)

Adrien Guironnet

(adrien.guironnet@rte-france.com)

Background

- Flexibility
 - New models
 - Innovative components
 - Different solvers
 - Multi-domain models
- Ease of model development
 - Declarative equation-based approach
 - Inheritance for basic setups and housekeeping
- Open-Source environments
 - OS component models
 - OS system models
 - OS solvers

Known Issues with Current Modelica Tools

Sparse DAE, Dense ODE

efficient performance!

Large numbers of repeated components + Flattening to scalar equations Huge code generation time and size

Advanced Modelica tools using daeMode and array-based code generation

Open Benchmarks to assess the performance of such tools in this area

Previous Work

- Sparse solver support (Willi Braun)
 - UMFPACK, KLU (linear sparse solvers)
 - KINSOL (Nonlinear Newton solver from Sundials, supports sparse solvers)
 - IDA used as sparse ODE stiff solver instead of DASSL
- DAEMode (Willi Braun)
 - Direct use of IDA for DAE integration after index reduction
 - IDA solves differential and implicit algebraic loops simultaneously
 - Native sparse solver support

W. Braun, F. Casella and B. Bachmann, "Solving large-scale Modelica models: new approaches and experimental results using OpenModelica". Proc. 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017, pp. 557-563

- Feasibility study of national transmission grid modelling using Modelica and OpenModelica 1.11.0
 - Prototype Modelica library with basic component models

Network	Nodes	Gens	Lines	Trafos	Equations	
GRID_C	751	74	369	583	56386	
GRID_E	1817	267	1458	1202	157022	
GRID_D	8376	2317	1946	2489	579470	
GRID_G	8113	407	6833	2824	593886	
Network	Flattening	g Cg	gen. (Compilation	Simulation	
GRID_C	24	1	24	13	12	
GRID_E	73	3	67	35	44	
GRID_D	334	4	315	123	111	
GRID_G	318	3	303	144	180	

Four test cases of HV trasmission systems

• Proprietary library / Confidential example cases

F. Casella, A. Bartolini, S. Pasquini and L. Bonuglia, "Object-Oriented Modelling and Simulation of Large-Scale *Electrical Power Systems using Modelica: a First Feasibility Study*". Proc. IEEE IECON 2016, Firenze, Italy, Oct. 24-27, 2016

F. Casella, A. Leva and A. Bartolini, "Simulation of large grids in OpenModelica: reflections and perspectives". *Proc.* 12th International Modelica Conference, Prague, Czech Republic, 2017, pp. 227-233.

- PowerGrids library
 - Open Source (https://github.com/PowerGrids/PowerGrids)
 - Main goals: demonstrator / teaching / research for power grid models
 - Advanced Modelica concepts / Easy model development
 - Small test cases (up to 14-bus IEEE benchmark)

A. Bartolini, F. Casella and A. Guironnet, "Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a Reference Power System Library". Proc. 13th International Modelica Conference, Regensburg, Germany, Mar 4-6, 2019, pp. 627-636

Current Work

2020 Politecnico MI / Dynamica / RTE

- ScalableTestGrids library
 - Open Source (https://github.com/PowerGrids/ScalableTestGrids)
 - Provide open-source scalable power grid benchmark models in Modelica
 - Assess the performance of existing Modelica tools
 - Drive the development of next-generation Modelica tools
- Features
 - Representative power grid structure
 - Scaled by Integer parameters
 - Includes
 - Generators with voltage and frequency controllers
 - Transformers
 - Transmission lines,
 - PQ loads
 - Large number of individually instantiated components (mimicks grid models generated from netlists by scripts)
 - Modelica functions to generate arbitrarily scaled models
- Simulation
 - Steady-state initialization, using homotopy
 - Step change load of upper half of the grid, causing global and inter-area damped frequency oscillations.

Model Structure (N = 2, M = 2)

2N² Generators 2N²M Loads 4N² Transformers 6N(2N-1) + 2N²M Lines

Simulation with OpenModelica

- Simulation with --daeMode
- Sparse Kinsol/KLU solver for initialization
- Fixed-step homotopy solver, separate $\lambda = 0$ handling
- No tearing
 - Faster code generation
 - Sparse solvers recover efficiency
 - Avoids losing strategic start values of nonlinear variables vs. irrelevant start values of linear variables
- Currently set by ____OpenModelica vendor annotations
- Should be automatically set up by the tool in the future, based on system structure analysis
- Test machines
 - Intel Xeon E5-2650 2.3 GHz 20 virtual cores 72 GB RAM Ubuntu 18.04 LTS
 - Intel i7 8550U 1.8 GHz 8 virtual cores 16 GB RAM Windows 10 Pro
- OMC v1.17.0-dev-356-gc2c52350cb

Problems Highlighted by the Tests

- Symbolic Jacobians for initialization equations were not generated if homotopy was used (*√ fixed*)
- Separate set of initial equation for λ = 0 was not generated if homotopy was used (✓ fixed)
- Symbolic Jacobians for simulation are not generated in --daeMode (**pending*)
- Memory access error in Linux for larger systems, probably due to old version of sparse algebra library (**pending*)
- Proper code generation and simulation options are not selected automatically (**pending*)

Results with OpenModelica

							Xeon E5-2650, Ubuntu 18.04					i7 8550U, Windows 10				
Z	Μ	# equations	# generators	# transformers	# lines	# loads	code gen time / s	C compile time / s	exec size [MB]	sim time / s	# solver steps	code gen time / s	C compile time / s	exec size [MB]	sim time / s	# solver steps
2	4	12174	8	16	14	32	18.8	3.6	13.5	0.9	297.0	19.4	12.7	43.9	0.8	297.0
3	4	28284	18	36	25	72	41.6	8.4	31.2	2.2	319.0	48.8	24.6	59.5	2.0	319.0
4	4	51078	32	64	36	128	84.6	14.8	56.2	4.0	315.0	95.3	35.7	81.6	3.4	315.0
6	4	116718	72	144	58	288	170.0	30.0	110.0	8.0	300.0	219.9	66.0	145.3	8.9	293.0
8	4	209094	128	256	80	512	350.0	60.0	220.0	16.0	300.0	500.0	130.0	300.0	20.0	300.0
11	4	397788	242	484	113	<mark>968</mark>	700.0	120.0	440.0	32.0	300.0	1,000.0	260.0	600.0	40.0	300.0
16	4	~800000	512	1024	168	2048	1,500.0	240.0	900.0	64.0	300.0	2,000.0	500.0	1,200.0	80.0	300.0
23	4	~1600000	1058	2116	245	4232	3,000.0	480.0	1,800.0	128.0	300.0	4,000.0	1,000.0	2,400.0	160.0	300.0
32	4	~3200000	2048	4096	344	8192	6,000.0	1,000.0	3,600.0	256.0	300.0	10,000.0	2,000.0	4,800.0	320.0	300.0
45	4	~6400000	4050	8100	487	16200	12,000.0	2,000.0	7,200.0	512.0	300.0	20,000.0	4,000.0	10,000.0	640.0	300.0
64	4	~12800000	8192	16384	696	32768	24,000.0	4,000.0	14,400.0	1,024.0	300.0	40,000.0	8,000.0	20,000.0	1,300.0	300.0

Experimental results

Projected results – Reasonable performance

Projected results – Not yet reasonable performance

Outlook

- Simulation performance good for size up to about 4000 components
- Improvements needed above that:
 - Symbolic Jacobians for simulation
 - More efficient and streamlined run-time code
 - Faster hardware (latest AMD Ryzen expected to be 3X faster)
- Code generation and compilation OK up to about 200 components
- Vectorized backend and code generation required above that level
- Interesting to test with other Modelica tools

Conclusions

- Growing interest for large-scale power grid simulation in Modelica
- ScalableTestGrid library available as open-source
- Allows testing Modelica tool performance with power grid models of arbitrary size
- Current status with OpenModelica
 - Usable without problems up to 200 components
 - Could be used with some patience up to 1000/2000 components
- Further size increase requires breakthrough in vectorized code generation
- On-going work:
 - FH Bielefeld: new backend
 - Linköping University: LargeDyn project
 - Politecnico di Milano: HiPerMod project

Thank you for your kind attention!