

Modelica Multi-core Parallel Simulation using
OpenMP and Optional Decoupling Elements

Martin Sjölund <martin.sjolund@liu.se>
Peter Fritzson <peter.fritzson@liu.se>

Linköping University, Sweden

OpenModelica Workshop
Feb 2012, Linköping University, Sweden

mailto:martin.sjolund@liu.se
mailto:peter.fritzson@liu.se

Symptom: Simulation is slow
Why?

Simple Model (10 years ago)

Simple Computer (10 years ago)

Complex Model (Today)

Computers Today

The Problem

 Algorithms for numerical simulation
 Mostly designed for single CPUs
 Scaled well until we got multi-core CPUs
 Not much research to parallelize simulations

Computer We Want Today

9

Single-processor Performance Scaling

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

19
84
19
86
19
88
19
90
19
92
19
94
19
96
19
98
20
00
20
02
20
04
20
06
20
08
20
10
20
12
20
14
20
16
20
18
20
20

L
o

g
2

 S
p

e
e
d

u
p

Limit: Clock rate

Limit: RISC ILP

Throughput incr. 55%/year

65 nm 45 nm 32nm 22nm90 nm

Pipelining

RISC/CISC CPI

Device speed

Parallelism

Assumed increase
17%/year possible

Source: Doug Burger, UT Austin 2005
2006

Modern computation units

 Multi-Core is the
standard even for
home users

 Penalizes single-
threaded applications

 Stuck with CPU
performance from
2004

Idea: Map Submodels to CPUs

Partitioning Algorithm

Incidence Matrix

*
*

*
* * *

* *
* *
* * *

Incidence Matrix

 Adjacency of variables/equations
 The matrix represents an undirected graph
 We want to find the trees in this graph

 Apply standard graph algorithm

Bipartite Graph

equations variables

Found Independent Systems

*
*

*
* * *

* *
* *
* * *

Sorted Systems

*
*

* * *
* *

*
* *
* * *

Using the Partitioned System

Backend

 Many algorithms scale non-linearly
 Having smaller systems speeds things up

Code Generation

 Split ODE function into
several smaller ones

 GCC performs better
due to complexity with
large functions and
optimization

 Can be trivially
parallelized

 Static scheduling
 Requires calculating

expected or worst-case
runtime of each system

#pragma omp parallel for
private(id,th_id)
schedule(static)

for (id=0; id<2; id++) {

 th_id =
omp_get_thread_num();

 functionODE_systems[id]
(data,th_id);

}

Secondary Uses

Non-square systems

*
*

* * * *

*
* *
* * *

How Well Does It Work?

Speed-Up

 Perfectly balanced subsystems
 Linear scaling with number of CPUs
 Are very rare

Limitations

 Requires models with independent submodels
 In Modelica, connections using pre() or delay()

 Most models are very strongly coupled

25

c1, c2 are the TLM-parameters
Ttlm is the information propagation time
Zf is the implicit impedance

 TLM – Transmission Line Modeling – numerically stable co-simulation
 Physically motivated time delays are inserted between components
 Originally used in hydraulics with propagation delays along pipes
 Generalized to other engineering domains

Transmission Line Modeling

26

SubSystem 1
Solver: Dassl
Stepsize:0.1

SubSystem 2
Solver: Lsode2
Stepsize:0.01

SubSystem 3
Solver: Euler
Stepsize:0.001

SubSystem 4
Solver: LAPACK
Stepsize:1.0

Distributed model

Future Work

 Parallelize algebraic part of the system
 Only the ODE so far

 Test system on larger models
 Using TLM connectors to take advantage of

parallelism using the delay() operator in Modelica

