Modelica Multi-core Parallel Simulation using
OpenMP and Optional Decoupling Elements

Martin Sjolund <martin.sjolund@liu.se>
Peter Fritzson <peter.fritzson@liu.se>
Linkoping University, Sweden

OpenModelica Workshop
Feb 2012, Linkoping University, Sweden

mailto:martin.sjolund@liu.se
mailto:peter.fritzson@liu.se

Symptom: Simulation is slow
Why?

Simple Model (10 years ago)

Simple Computer (10 years ago)

Complex Model (Today)

Computers Today

/

°*

~

The Problem

= Algorithms for numerical simulation

= Mostly designed for single CPUs
= Scaled well until we got multi-core CPUs
= Not much research to parallelize simulations

Computer We Want Today

Modern computation units

Single-processor Performance Scaling

= Multi-Core is the)
Standard even fOI’ 12:0 Throughput incr. 55%/year/,//
home users -

= Penalizes single-
threaded appllcatlons e

= Stuck with CPU | “mitg;gcc',tg,sc e
performance from feff s s e Fedy S s s ss
2004 90 nm: 65 nm 45 nm 32nm 22nm

ldea: Map Submodels to CPUs

Partitioning Algorithm

Incidence Matrix

*

Incidence Matrix

= Adjacency of variables/equations
= The matrix represents an undirected graph

= We want to find the trees in this graph
= Apply standard graph algorithm

Bipartite Graph

equations variables

e

Found Independent Systems

Sorted Systems

Using the Partitioned System

= Many algorithms scale non-linearly

= Having smaller systems speeds things up

Code Generation

= Split ODE function into
several smaller ones

= GCC performs better
due to complexity with
large functions and
optimization

= Can be trivially
parallelized
= Static scheduling

= Requires calculating
expected or worst-case
runtime of each system

#pragma omp parallel for
private (1d, th 1d)
schedule (static)

for (1d=0; 1d<2; i1d++) {

th id =
omp get thread num() ;

functionODE systems[1d]
(data, th 1d);

}

Secondary Uses

Non-square systems

How Well Does It Work?

Speed-Up

= Perfectly balanced subsystems

= Linear scaling with number of CPUs
= Are very rare

= Requires models with independent submodels

= |n Modelica, connections using pre () or delay ()

= Most models are very strongly coupled

Transmission Line Modeling

= TLM — Transmission Line Modeling — numerically stable co-simulation
= Physically motivated time delays are inserted between components

= Originally used in hydraulics with propagation delays along pipes

= (Generalized to other engineering domains

c1(t) =Va(t — Tigw) + Zrlz(t — Tip) c1, c2 are the TLM-parameters
c2(t) =Wt — Titm) + ZEN (1 — Tiw) Ttim is the information propagation time
Zf is the implicit impedance
Py(t) = ZzIy (1) + 1 (1) °
Pty =Zrh(t) +ca(t) c2
>
v1,il V2,i2
> <

c1

25

Distributed model

SubSystem 3
Solver: Euler

Stepsize:0.001
SubSystem 4
Solver: LAPACK
Stepsize:1.0
SubSystem 1 SubSystem 2
Solver: Dassl Solver: Lsode2

Stepsize:0.1 Stepsize:0.01

26

= Parallelize algebraic part of the system
= Only the ODE so far
= Test system on larger models

= Using TLM connectors to take advantage of
parallelism using the delay () operator in Modelica

