
  

Modelica Multi-core Parallel Simulation using 
OpenMP and Optional Decoupling Elements

Martin Sjölund <martin.sjolund@liu.se>
Peter Fritzson <peter.fritzson@liu.se>

Linköping University, Sweden

OpenModelica Workshop
Feb 2012, Linköping University, Sweden

mailto:martin.sjolund@liu.se
mailto:peter.fritzson@liu.se


  

Symptom: Simulation is slow
Why?



  

Simple Model (10 years ago)



  

Simple Computer (10 years ago)



  

Complex Model (Today)



  

Computers Today



  

The Problem

 Algorithms for numerical simulation
 Mostly designed for single CPUs
 Scaled well until we got multi-core CPUs
 Not much research to parallelize simulations



  

Computer We Want Today



9

Single-processor Performance Scaling

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

19
84
19
86
19
88
19
90
19
92
19
94
19
96
19
98
20
00
20
02
20
04
20
06
20
08
20
10
20
12
20
14
20
16
20
18
20
20

L
o

g
2

 S
p

e
e
d

u
p

Limit: Clock rate

Limit: RISC ILP

Throughput incr. 55%/year

65 nm 45 nm 32nm 22nm90 nm

Pipelining

RISC/CISC CPI

Device speed

Parallelism

Assumed increase
17%/year possible

Source: Doug Burger, UT Austin 2005
2006

Modern computation units

 Multi-Core is the 
standard even for 
home users

 Penalizes single-
threaded applications

 Stuck with CPU 
performance from 
2004



  

Idea: Map Submodels to CPUs



  

Partitioning Algorithm



  

Incidence Matrix

*
*

*
* * *

* *
* *
* * *



  

Incidence Matrix

 Adjacency of variables/equations
 The matrix represents an undirected graph
 We want to find the trees in this graph

 Apply standard graph algorithm



  

Bipartite Graph

equations variables



  

Found Independent Systems

*
*

*
* * *

* *
* *
* * *



  

Sorted Systems

*
*

* * *
* *

*
* *
* * *



  

Using the Partitioned System



  

Backend

 Many algorithms scale non-linearly
 Having smaller systems speeds things up



  

Code Generation

 Split ODE function into 
several smaller ones

 GCC performs better 
due to complexity with 
large functions and 
optimization

 Can be trivially 
parallelized

 Static scheduling
 Requires calculating 

expected or worst-case 
runtime of each system

#pragma omp parallel for 
private(id,th_id) 
schedule(static)

for (id=0; id<2; id++) {

  th_id = 
omp_get_thread_num();

  functionODE_systems[id]
(data,th_id);

}



  

Secondary Uses



  

Non-square systems

*
*

* * * *

*
* *
* * *



  

How Well Does It Work?



  

Speed-Up

 Perfectly balanced subsystems
 Linear scaling with number of CPUs
 Are very rare



  

Limitations

 Requires models with independent submodels
 In Modelica, connections using pre() or delay()

 Most models are very strongly coupled



25

c1, c2 are the TLM-parameters
Ttlm is the information propagation time
Zf is the implicit impedance

 TLM – Transmission Line Modeling – numerically stable co-simulation
 Physically motivated time delays are inserted between components
 Originally used in hydraulics with propagation delays along pipes
 Generalized to other engineering domains

Transmission Line Modeling



26

SubSystem 1
Solver: Dassl 
Stepsize:0.1

SubSystem 2
Solver: Lsode2 
Stepsize:0.01

SubSystem 3
Solver: Euler 
Stepsize:0.001

SubSystem 4
Solver: LAPACK 
Stepsize:1.0

Distributed model



  

Future Work

 Parallelize algebraic part of the system
 Only the ODE so far

 Test system on larger models
 Using TLM connectors to take advantage of 

parallelism using the delay() operator in Modelica



  


