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Symptom: Simulation is slow
Why?



  

Simple Model (10 years ago)



  

Simple Computer (10 years ago)



  

Complex Model (Today)



  

Computers Today



  

The Problem

 Algorithms for numerical simulation
 Mostly designed for single CPUs
 Scaled well until we got multi-core CPUs
 Not much research to parallelize simulations



  

Computer We Want Today
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Single-processor Performance Scaling
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Limit: Clock rate

Limit: RISC ILP

Throughput incr. 55%/year

65 nm 45 nm 32nm 22nm90 nm

Pipelining

RISC/CISC CPI

Device speed

Parallelism

Assumed increase
17%/year possible

Source: Doug Burger, UT Austin 2005
2006

Modern computation units

 Multi-Core is the 
standard even for 
home users

 Penalizes single-
threaded applications

 Stuck with CPU 
performance from 
2004



  

Idea: Map Submodels to CPUs



  

Partitioning Algorithm



  

Incidence Matrix
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Incidence Matrix

 Adjacency of variables/equations
 The matrix represents an undirected graph
 We want to find the trees in this graph

 Apply standard graph algorithm



  

Bipartite Graph

equations variables



  

Found Independent Systems
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Sorted Systems
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Using the Partitioned System



  

Backend

 Many algorithms scale non-linearly
 Having smaller systems speeds things up



  

Code Generation

 Split ODE function into 
several smaller ones

 GCC performs better 
due to complexity with 
large functions and 
optimization

 Can be trivially 
parallelized

 Static scheduling
 Requires calculating 

expected or worst-case 
runtime of each system

#pragma omp parallel for 
private(id,th_id) 
schedule(static)

for (id=0; id<2; id++) {

  th_id = 
omp_get_thread_num();

  functionODE_systems[id]
(data,th_id);

}



  

Secondary Uses



  

Non-square systems
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How Well Does It Work?



  

Speed-Up

 Perfectly balanced subsystems
 Linear scaling with number of CPUs
 Are very rare



  

Limitations

 Requires models with independent submodels
 In Modelica, connections using pre() or delay()

 Most models are very strongly coupled
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c1, c2 are the TLM-parameters
Ttlm is the information propagation time
Zf is the implicit impedance

 TLM – Transmission Line Modeling – numerically stable co-simulation
 Physically motivated time delays are inserted between components
 Originally used in hydraulics with propagation delays along pipes
 Generalized to other engineering domains

Transmission Line Modeling
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SubSystem 1
Solver: Dassl 
Stepsize:0.1

SubSystem 2
Solver: Lsode2 
Stepsize:0.01

SubSystem 3
Solver: Euler 
Stepsize:0.001

SubSystem 4
Solver: LAPACK 
Stepsize:1.0

Distributed model



  

Future Work

 Parallelize algebraic part of the system
 Only the ODE so far

 Test system on larger models
 Using TLM connectors to take advantage of 

parallelism using the delay() operator in Modelica



  


