

OpenModelica Workshop 2013

Chair of Construction Machines and Conveying Technology

Comparison of Tearing Algorithms

Volker Waurich

Linköping, 04/02/2013

Outline

- 1. the concept of tearing
- 2. classification of tearing algorithms
- 3. some tearing methods
- 4. evaluation

tearing:

- symbolic method for large, sparse systems
- for linear, non-linear and mixed systems
- using graph theory
- speed up
- higher robustness

the concept of tearing

pre-work/preparation

- equation system
- algebraic representation
- partitioning/ precedence ordering (BLTF)

tearing

tearing heuristic and output assignment

numerical computation

the concept of tearing

pre-work/preparation

structure-incidence matrix

block lower triangular form

equation system
- implicit equations

algebraic representation

 incidence matrix or adjacency matrix

partitioning

tearing of each block (algebraic loops)

basic principle of tearing

- tearing of algebraic loops
- assuming variables to be known (tearing variables)
- solve remaining equations
- iterate tearing variables with
- residual equations (Newton iteration)
- \rightarrow the aim is to choose the tearing set with the least number of variables
- \rightarrow only heuristic methods exist to choose variables in polynomial time (proven to be NP-hard)
- \rightarrow solvability has to be considered

the concept of tearing

basic principle of tearing

- 2. algebraic loop

- 3. tear the loop
- 4. solving with $x1 \rightarrow f3$ for $x3 \rightarrow f2$ for x2 (output assignment)

5. Newton iteration
$$x_{1new} = x_{1old} - \frac{f_1(x_{1old})}{f'_1(x_{1old})}$$

tearing = output assignment + variable selection

previously matched

- output assignment is done
 before selection (Steward)
- works on digraph

simultaneously matched

- output assignment is done
 during selection (Tarjan/Cellier)
 - works on bipartite graph
- e.g. Steward, Ollero-Amselem
 e.g. Cellier, Carpanzano

tearing methods

Celliers algorithm

Carpanzanos algorithm

- simultaneously matched
- similar to Cellier
- considers solvability of equations during

tearing selection

→ see omcTearing (omc default) selection weights considering rearranging effort

tearing methods

Stewards algorithm

Ollero-Amselems algorithm

- previously matched
- works with contraction of nodes in the digraph
- if: contraction causes self-loops

then: tearing variable found and removed from graph

comparison

previously matched

works on matched-system-

graph

- higher computational effort
- re-transformation from

matched system

simultaneously matched

- works on incidence matrix
- output-assignment, precedence-

ordering and tearing at once

 \rightarrow this concept will be pursued

evaluation

conclusion

- simultaneously matched tearing method
- is more effective (smaller tearing set)
- less administrative overhead for the
- simultaneously matched method
- previous matching is not unique and may effect tearing selection
- solvability has to be considered during selection

finish implementation

manual selection via annotation

choice of residual equation

improve tearing algorithm

»Wissen schafft Brücken.«

thank you for your attention

Comparison of Tearing Algorithms