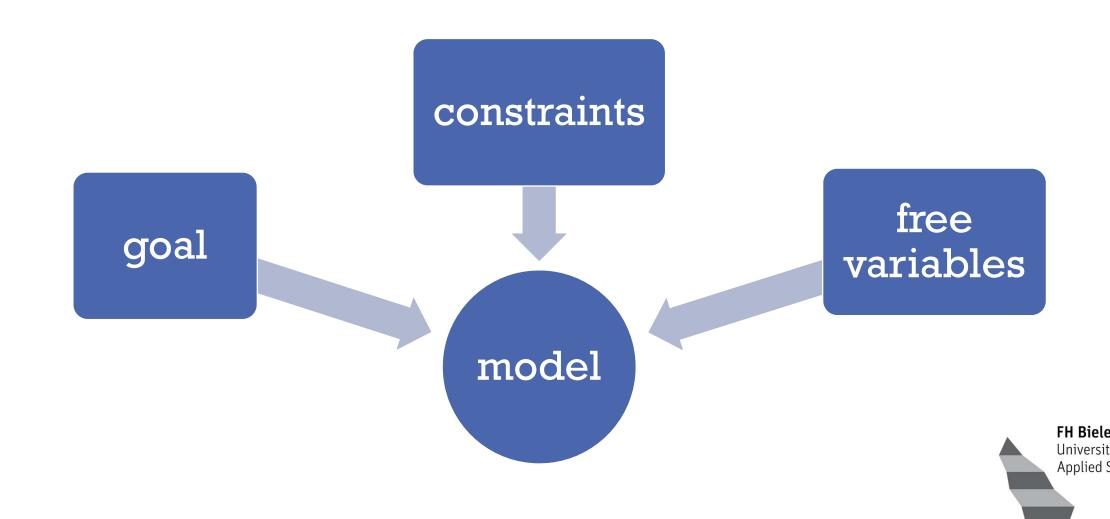
OPENMODELICA FOR OPTIMIZATION

Vitalij Ruge, Bernhard Bachmann, Lennart Ochel, Willi Braun Mathematics and Engineering University of Applied Sciences Bielefeld

OUTLINE

- Modelica and Optimization
- Theoretical Background
 - multiple shooting method
 - total collocation
 - handling
- Current status & Outlook

MODELICA AND OPTIMIZATION



EXAMPLE CHEMICAL BATCH REACTOR

model

$$\dot{x}_1(t) = -\left(u(t) + \frac{u^2(t)}{2}\right) \cdot x_1(t)$$

$$\dot{x}_2(t) = u(t) \cdot x_1(t)$$

• goal \rightarrow Maximize the yield of x_2 after one hour of operation $\min_{u(t)} - x_2(1)$

constraints

$$0 \le x_1(t), x_2(t) \le 1$$

 $0 \le u(t) \le 5$

• free input \rightarrow the reaction temperature $\rightarrow u(t)$

OPTIMICA LANGUAGE EXTENSION

- Objective function
 - Mayer term
 - Lagrange term
- Path constrains
- New attribute free

• . . .

A part of the MODRIO-Project

OPTIMICA LANGUAGE EXTENSION

```
optimization modelName(
objective=....,
objectiveIntegrand=....)
  -> Modelica model;
constraints
...
end modelName
```


THEORETICAL BACKGROUND

objective function

$$\min_{u(t)} \underbrace{M(x(t_f))}_{\text{Mayer term}} + \underbrace{\int_{t_0}^{t_f} L(x(t), u(t), t) dt}_{\text{Lagrange term}}$$

- subject to
 - model equations
 - path constraints

Mayer term

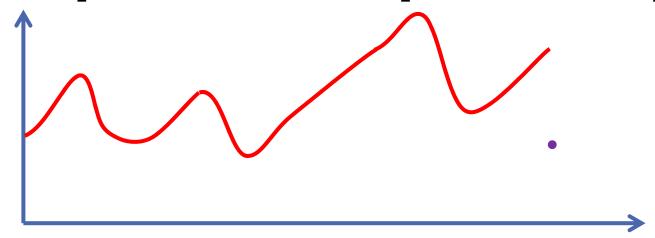
$$M\left(x(t_f)\right)$$

requirements for the endpoint → boundary value problem

Mayer term

$$M\left(x(t_f)\right)$$

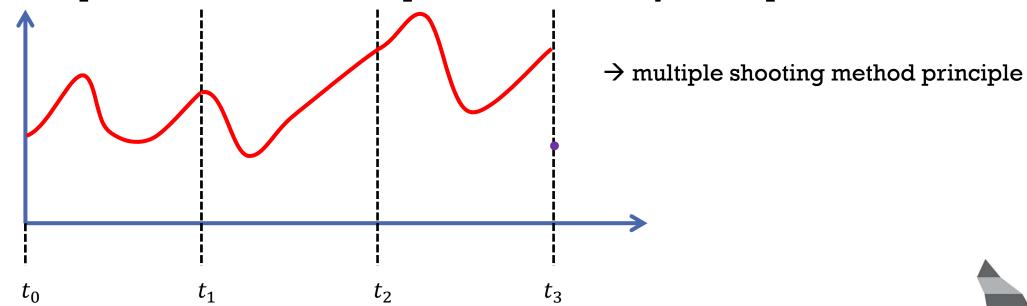
requirements for the endpoint → boundary value problem



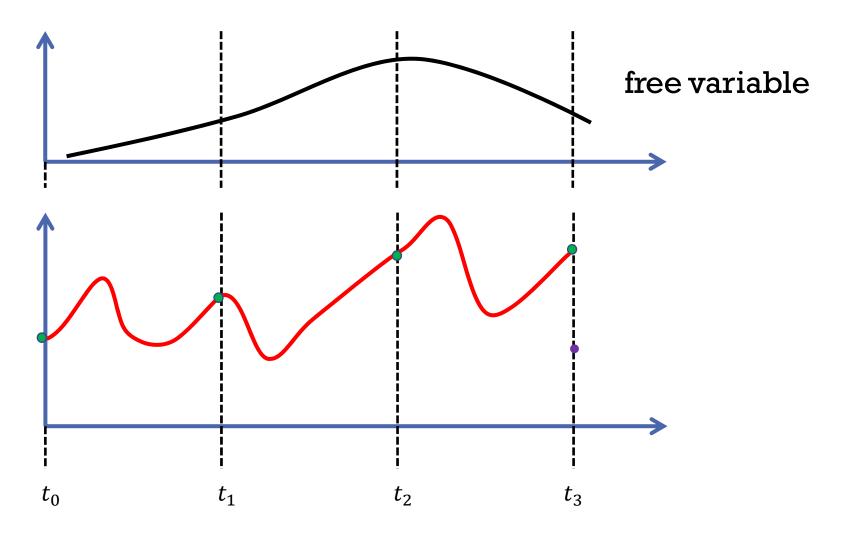
Mayer term

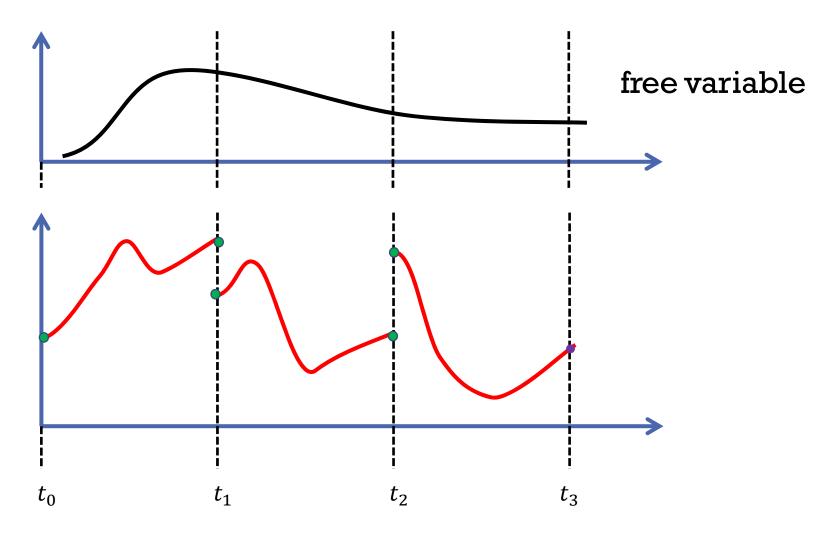
$$M\left(x(t_f)\right)$$

• requirements for the endpoint \rightarrow boundary value problem



FH Biele Universit Applied S

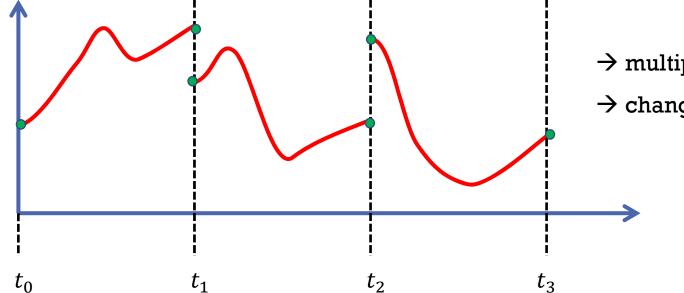




Mayer term

$$M\left(x(t_f)\right)$$

• requirements for the endpoint \rightarrow boundary value problem



→ multiple shooting method principle

FH Biele

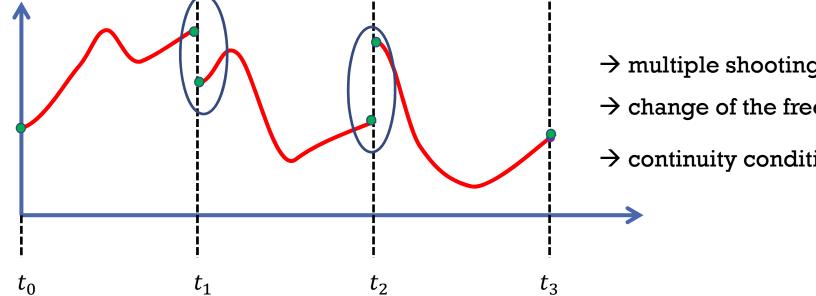
Applied S

→ change of the free variable

Mayer term

$$M\left(x(t_f)\right)$$

requirements for the endpoint \rightarrow boundary value problem



- → multiple shooting method principle
- → change of the free variable
- → continuity conditions

Mayer term

$$M\left(x(t_f)\right)$$

- requirements for the endpoint → boundary value problem
 - → multiple shooting method principle
 - → change of the free variable
 - → continuity conditions

DAE system

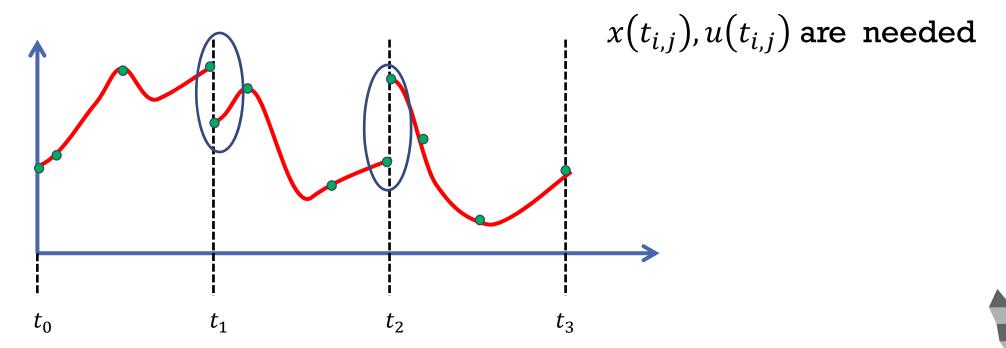
inline solver algebraic system

Lagrange term

$$\int_{t_0}^{t_f} L(x(t), u(t), t) dt \approx \Delta t \cdot \sum_{j=1}^{m} w_j \sum_{i=0}^{n-1} L(x(t_{i,j}), u(t_{i,j}), t_{i,j})$$

- ullet quadrature formula with m abscissas
 - Legendre
 - Radau
 - Lobatto
- w_i , $t_{i,j}$ is given by the quadrature formula

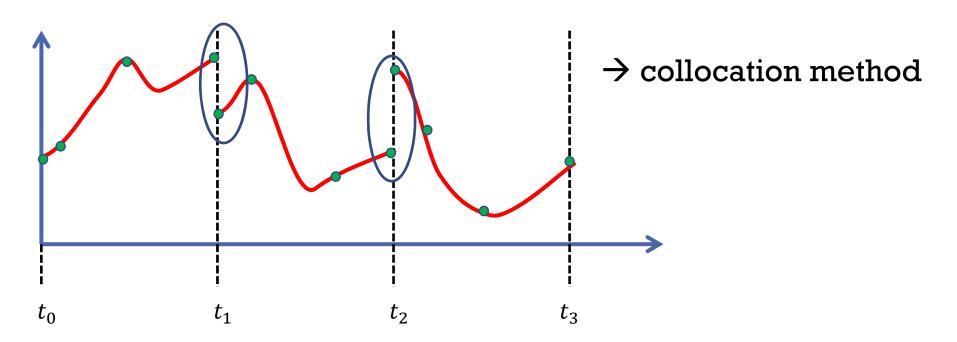
$$\Delta t \cdot \sum_{j=1}^{m} w_j \sum_{i=0}^{n-1} L(x(t_{i,j}), u(t_{i,j}), t_{i,j})$$



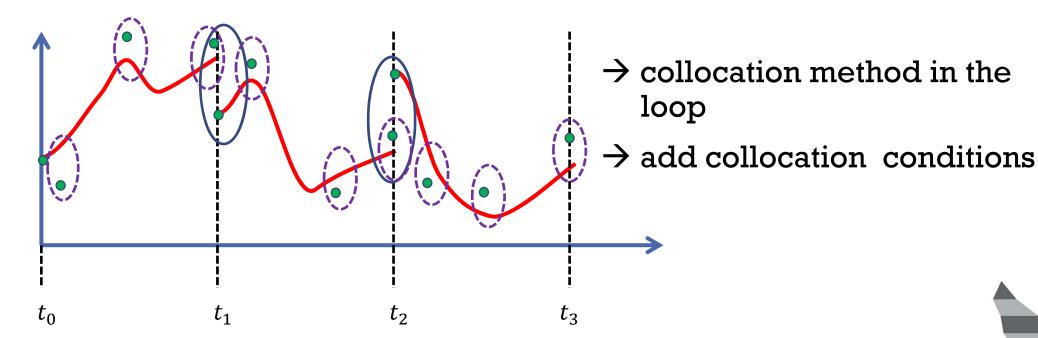
FH Biele

Applied S

$$\Delta t \cdot \sum_{j=1}^{m} w_j \sum_{i=0}^{n-1} L(x(t_{i,j}), u(t_{i,j}), t_{i,j})$$



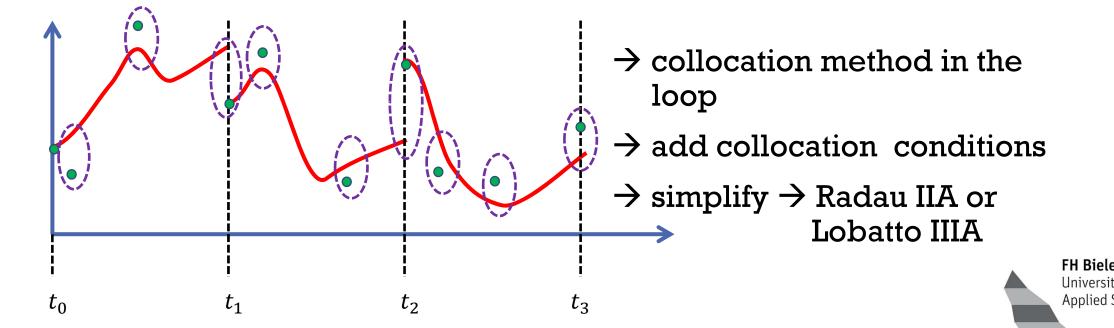
$$\Delta t \cdot \sum_{j=1}^{m} w_j \sum_{i=0}^{n-1} L(x(t_{i,j}), u(t_{i,j}), t_{i,j})$$



FH Biele

Applied S

$$\Delta t \cdot \sum_{j=1}^{m} w_j \sum_{i=0}^{n-1} L(x(t_{i,j}), u(t_{i,j}), t_{i,j})$$



Collocation method and Jacobian structure

$$x_0 + \Delta t \cdot A \cdot f = x$$

Example

$$res \coloneqq \begin{pmatrix} x_0 \\ x_0 \\ x_0 \end{pmatrix} + \Delta t \cdot \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} f(x_1, u_1) \\ f(x_2, u_2) \\ f(x_3, u_3) \end{pmatrix} - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \stackrel{!}{=} 0$$

$$\frac{\partial res}{\partial \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}} = \Delta t \cdot \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix} = \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}$$

Collocation method and Jacobian structure

$$x_0 + \Delta t \cdot A \cdot f = x \rightarrow \Delta t \cdot f = A^{-1} \cdot (x - x_0)$$

Example

$$res \coloneqq \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}^{-1} \cdot \begin{pmatrix} x_0 \\ x_0 \\ x_0 \end{pmatrix} - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \Delta t \cdot \begin{pmatrix} f(x_1, u_1) \\ f(x_2, u_2) \\ f(x_3, u_3) \end{pmatrix} \stackrel{!}{=} 0$$

$$\frac{\partial res}{\partial \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}} = \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix}$$

Lagrange-term

Example Radau quadrature

$$\frac{3}{4} \cdot L\left(x\left(t_i + \frac{1}{3}\Delta t\right), u\left(t_i + \frac{1}{3}\Delta t\right), t_i + \frac{1}{3}\Delta t\right) + \frac{1}{4} \cdot L(x(t_i + 1 \cdot \Delta t), u(t_i + 1 \cdot \Delta t), t_i + 1 \cdot \Delta t)$$

- $u(t_0)$ not included in the objective function!
- Lobatto IIIA for the first subinterval

- Differences between Radau IIA and Lobatto IIIA
 - Radau IIA
 - more sparse structure
 - a high stability
 - Lobatto IIIA
 - continuously differentiable continuation

- Differences between multiple shooting and total collocation
 - multiple shooting
 - more sparse structure
 - reduced search space
 - total collocation
 - no need to solve nonlinear system in optimization step
 - easier to generate Jacobian, gradient,... for optimizer

THEORETICAL BACKGROUND

- path constraints
 - evaluate on the collocation points
 - evaluate on the multiple shooting points

CURRENT STATE & OUTLOOK

- Current Status
 - Optimica+Modelica parser and AST building already works
 - C-Code generation for Lagrange-, Mayer term and path constraints exist
 - numerical differentiation partially automated for the problem
- Outlook
 - generate the equations in Compilier
 - symbolic preprocessing
 - symbolic differentiation

THANK YOU QUESTIONS?

