Model-Based Dynamic Optimization with OpenModelica and CasADi

Alachew Shitahun

PELAB – Programming Environment Lab, Dept. Computer Science Linköping University, SE-581 83 Linköping, Sweden

Vitalij Ruge

Mathematics and Engineering, University of Applied Sciences Bielefeld

Moritz Diehl

Dept. of Electrical Engineering and Optimization in Engineering Center (OPTEC), K.U. Leuven, Belgium

5th OpenModelica Workshop February 4, 2013 Linköping

Outline of Presentation

- 1. Motivation
- 2. Optimization with Modelica
- 3. OpenModelica and CasADi
- 4. XML Code Generation in OpenModelica
- 5. Optimization Tool Chain for OpenModelica and CasADi
- 6. Test Cases and Results
- 7. Conclusions
- 8. Questions

Motivation

- Modelica enable users to conveniently model large-scale physical systems
 - Traditionally used for simulation
- Nonlinear optimal control problems (NOCP) based on differential-algebraic equations (DAE)
 - State-of-the-art methods are using numerical algorithms
- Many other possible usages of the model
 - ▶ For example dynamic optimization for NOCP
- Current Modelica tools mainly focused on simulation, but recently also optimization
 - Dymola supports parameter and design optimization of models written in Modelica whereas
 - JModelica.org and OpenModelica have native support for optimal control.

Optimization with Modelica

- Modelica has strong support for modeling of dynamic systems
- Additional elements for optimization:
 - Cost function
 - What to optimize (Variables and Parameters) and
 - Constraints
- Optimica language extension:
 - Extension of Modelica.
 - Enables formulation of optimization problems in Modelica models.
- ▶ How ?
 - Export Models in XML from OpenModelica and Import to CasADi

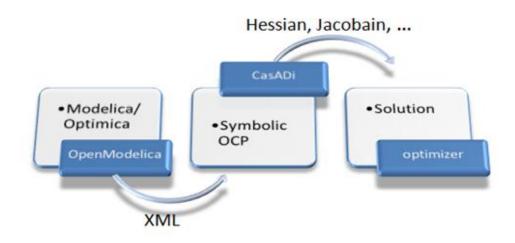
OpenModelica and CasADi

OpenModelica

- Modelica-based modeling and simulation platform
- Support optimica extension
- Extended with XML export of models based on standardized XML schema for models
- ▶ The XML export also includes the Optimica extension

CasADi

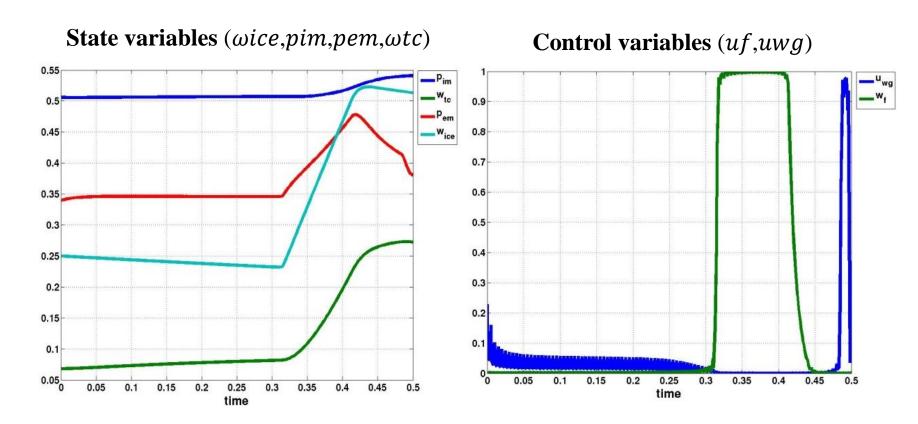
- An open-source framework for numerical optimization developed by *KU Leuven*
- > Enable users to implement optimal control algorithms with a wide range of methods, including
 - Multiple shooting and
 - > Collocation
- > Imports XML for dynamic optimization


XML Code Generation in OpenModelica

- > Modelica models are first flattened.
- > XML schema structure mapped to the abstract syntax tree of OpenModelica compiler
- > Text template based implementation of the code generation to XML

```
optimization VDP Opt (objective = cost(finalTime
                                                                                                                        OptExp
                         startTime = 0 finalTime = 20
                                                                                              opt:ObjectiveFunction
                                                                                                                                   any ##targetNamespace
  parameter Real p1 = 1;
  parameter Real p2 = 1;
                                                                                                                       TimeVariable
  parameter Real p3 = 2;
                                                                                                                                     opt:Value
  Real x1(start = 0);
  Real x2(start = 1);
                                                                                             opt:IntervalStartTime
                                                                                                                                     opt:InitialGuess
  input Real u;
                                                              Optimization E
  Real cost(start=0):
                                                              Optimization prob
                                                                                             opt:IntervalFinalTime
                                                             representation
equation
                                                                                                                              opt:Index
  der(x1) = (1 - x2 ^ 2) * x1 - x2 + u;
                                                                                              opt:TimePoints
  der(x2) = p1 * x1;
                                                                                                                              opt:Value
  der(cost) = exp(p3*1/*time*/) * (x1^2 + x2^2 + u^2);
                                                                                                                              opt:ConstraintEq [
   constraint
                 u<=0.75:
                                                                                             opt:Constraints 🖨 Ұ 🔁 🖃
                                                                                                                              opt:ConstraintGeg
end VDP Opt;
                                                                                                                              opt:ConstraintLeg [+]
```

Optimization Tool Chain for OpenModelica and CasADi


- > **Export** of model from OpenModelica platform
- > **Import** the model in CasADi
- > **Solve** optimization problem in CasADi

Test Cases - Diesel Electric Powertrain

- > Presented by
 - Martin Sivertsson and Lars Eriksson. (2012)
 - > **Bernhard Bachmann and et al.** (2012).
- ➤ Nonlinear mean value engine model (MVEM)
- Find fuel optimal control and state trajectories from idling condition to a certain power level
- Mathematical problem formulation:
 - \triangleright 2 inputs (uf,uwg)
 - \rightarrow 4 states (ω ice,pim,pem, ω tc)
 - > 32 algebraic equations
- The problem solved here is a minimum fuel problem for a transient from idle to 170 kW, in a certain time interval [0,0.5].

Results- Diesel Electric Powertrain

> Engine is accelerated only near the end of the time interval to meet the end constraints while minimizing the fuel consumption

Conclusions

- Model-based dynamic optimization with OpenModelica and CasADi has been demonstrated on three industrial use cases.
- The OpenModelica platform coupling with CasADi demonstrates the use of an XML-based model exchange format for model-based optimization with OpenModelica

References

- Alachew Shitahun, Vitalij Ruge, Mahder Gebremedhin, Bernhard Bachmann, Lars Eriksson, Joel Andersson, Moritz Diehl, Peter Fritzson. Model-Based Optimization with OpenModelica and CasADi. Subm: 7th IFAC Symp. on Advances in Automotive Control.
- Alachew Shitahun. Template Based XML and Modelica Unparsers in OpenModelica. Master thesis. Linkoping University, August 30, 2012
- Roberto Parrotto, Johan Åkesson, and Francesco Casella. An XML representation of DAE systems obtained from continuous-time Modelica models. In 3rd Int. Workshop on Equation-based Object-Oriented Modeling Languages and Tools EOOLT 2010, Sept. 2010.
- > Johan Åkesson. Languages and Tools for Optimization of Large-Scale Systems. Ph.D. Thesis, Lund University, Nov 2007.

References

- ➤ Joel Andersson, Johan Åkesson and Moritz Diehl. CasADi --A symbolic package for automatic differentiation and optimal control, Recent Advances in Algorithmic Differentiation, Lecture Notes in Computational Science and Engineering Volume 87: 297-307, 2012.
- ➤ Martin Sivertsson and Lars Eriksson. (2012). Time and Fuel Optimal Power Response of a Diesel-Electric Powertrain. E-CoSM'12 IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, 2012.
- ➤ Bernhard Bachmann and et al. (2012). Parallel Multiple-Shooting and Collocation Optimization with OpenModelica. In Pro. Of 9th International Modelica Conference. Munich, Germany pp. 659, Sept 3-5, 2012.

Questions

Thank you!!

