Symbolical and Numerical Approaches for Solving Nonlinear Systems

Bernhard Bachmann
Kaja Balzereit, Willi Braun, Jan Hagemann, Lennart Ochel, Vitalij Ruge, Patrick-Marcel Täuber

02. February 2015

Contents

(1) Introduction
(2) Homotopy Method

- General Approach
- Calculating Homotopy Path
(3) New Features in Module: ExpressionSolve - Methods for Solving Non-Linear Single Equations
(4) Status and Plans with Respect to Tearing
- Introduction to Cellier Tearing
- Consideration of Solvability
(5) Effects of Common Subexpression Elimination
- Structural Changes of Strongly Connected Components
- Performance Improvements Due to Code Motion

Introduction

FH Bielefeld

Transformation steps for simulation

$$
\underline{0}=\underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t)
$$

Introduction

FH Bielefeld

Transformation steps for simulation

$$
\begin{gathered}
\underline{0}=\underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t) \\
\Downarrow \\
\underline{0}=\underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)}
\end{gathered}
$$

Introduction

FH Bielefeld University of

What are Algebraic Loops?

Transformation steps for simulation

$$
\begin{gathered}
\underline{0}=\underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t) \\
\Downarrow \\
\underline{0}=\underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)} \\
\Downarrow \\
\underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)}=\underline{g}(\underline{x}(t), \underline{u}(t), \underline{p}, t)
\end{gathered}
$$

Introduction

FH Bielefeld University of

What are Algebraic Loops?

Transformation steps for simulation

$$
\begin{gathered}
\underline{0}=\underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t) \\
\Downarrow \\
\underline{0}=\underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)} \\
\Downarrow \\
\underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)}=\underline{g}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \\
\Downarrow \\
\underline{\dot{x}}(t)=\underline{h}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \\
\underline{y}(t)=\underline{k}(\underline{x}(t), \underline{u}(t), \underline{p}, t)
\end{gathered}
$$

Transformation steps for simulation

$$
\begin{gathered}
\underline{0}=\underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t) \\
\Downarrow \\
\underline{0}=\underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)} \\
\Downarrow \\
\underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)}=\underline{g}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \\
\Downarrow \\
\underline{\dot{x}}(t)=\underline{h}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \\
\underline{y}(t)=\underline{k}(\underline{x}(t), \underline{u}(t), \underline{p}, t)
\end{gathered}
$$

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Transformation steps for simulation

$$
\begin{gathered}
\underline{0}=\underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t) \\
\Downarrow \\
\underline{0}=\underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)} \\
\Downarrow \\
\underline{z}(t)=\binom{\underline{\dot{x}}(t)}{\underline{y}(t)}=\underline{g}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \\
\Downarrow \\
\underline{\dot{x}}(t)=\underline{h}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \\
\underline{y}(t)=\underline{k}(\underline{x}(t), \underline{u}(t), \underline{p}, t)
\end{gathered}
$$

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Algebraic loop (SCC)

$$
\begin{aligned}
& f_{3}\left(z_{2}, z_{3}, z_{5}\right)=0 \\
& f_{5}\left(z_{1}, z_{3}, z_{5}\right)=0
\end{aligned}
$$

Introduction

FH Bielefeld

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Algebraic loop (SCC)

$$
\begin{aligned}
& f_{3}\left(z_{2}, z_{3}, z_{5}\right)=0 \\
& f_{5}\left(z_{1}, z_{3}, z_{5}\right)=0
\end{aligned}
$$

Introduction

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Algebraic loop (SCC)

$$
\begin{aligned}
& f_{3}\left(z_{2}, z_{3}, z_{5}\right)=0 \\
& f_{5}\left(z_{1}, z_{3}, z_{5}\right)=0
\end{aligned}
$$

Introduction

Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
- Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Algebraic loop (SCC)

$$
\begin{aligned}
& f_{3}\left(z_{2}, z_{3}, z_{5}\right)=0 \\
& f_{5}\left(z_{1}, z_{3}, z_{5}\right)=0
\end{aligned}
$$

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
- Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Algebraic loop (SCC)

$$
\begin{aligned}
& f_{3}\left(z_{2}, z_{3}, z_{5}\right)=0 \\
& f_{5}\left(z_{1}, z_{3}, z_{5}\right)=0
\end{aligned}
$$

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
- Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Algebraic loop (SCC)

$$
\begin{aligned}
& f_{3}\left(z_{2}, z_{3}, z_{5}\right)=0 \\
& f_{5}\left(z_{1}, z_{3}, z_{5}\right)=0
\end{aligned}
$$

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
- Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values
- Handling of non-convergence

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Algebraic loop (SCC)

$$
\begin{aligned}
& f_{3}\left(z_{2}, z_{3}, z_{5}\right)=0 \\
& f_{5}\left(z_{1}, z_{3}, z_{5}\right)=0
\end{aligned}
$$

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
- Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values
- Handling of non-convergence
- Different heuristics possible (varying starting values, nominal values, accuracy, etc.)

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Algebraic loop (SCC)

$$
\begin{aligned}
& f_{3}\left(z_{2}, z_{3}, z_{5}\right)=0 \\
& f_{5}\left(z_{1}, z_{3}, z_{5}\right)=0
\end{aligned}
$$

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
- Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values
- Handling of non-convergence
- Different heuristics possible (varying starting values, nominal values, accuracy, etc.)
- Dealing with non-valid values of iteration variables during solution process

Transformation example

$$
\begin{aligned}
f_{2}\left(z_{2}\right) & =0 \\
f_{4}\left(z_{1}, z_{2}\right) & =0 \\
f_{3}\left(z_{2}, z_{3}, z_{5}\right) & =0 \\
f_{5}\left(z_{1}, z_{3}, z_{5}\right) & =0 \\
f_{1}\left(z_{3}, z_{4}\right) & =0
\end{aligned}
$$

Algebraic loop (SCC)

$$
\begin{aligned}
& f_{3}\left(z_{2}, z_{3}, z_{5}\right)=0 \\
& f_{5}\left(z_{1}, z_{3}, z_{5}\right)=0
\end{aligned}
$$

Introduction

FH Bielefeld

Current Status in OpenModelica

Nonlinear problem

Default mixed-solver strategy:

- Determine proper starting values

$$
\underline{F}(\underline{x})=\underline{0}
$$

Nonlinear problem

$$
\underline{F}(\underline{x})=\underline{0}
$$

Start vector: $\underline{x}_{0} \in \mathbb{R}^{n}$.

Introduction

Nonlinear problem

Default mixed-solver strategy:

- Determine proper starting values
- Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm

$$
\underline{F}(\underline{x})=\underline{0}
$$

Start vector: $\underline{x}_{0} \in \mathbb{R}^{n}$.

Newton iteration step:

$$
\begin{aligned}
J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} & =-\underline{F}\left(\underline{x}^{(k)}\right) \\
\underline{x}^{(k+1)} & =\underline{x}^{(k)}+\tau^{(k)} \underline{s}^{(k)}
\end{aligned}
$$

Damping parameter:

$$
\tau^{(k)} \in[0,1] .
$$

Introduction

Nonlinear problem

Default mixed-solver strategy:

- Determine proper starting values
- Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
- Damping strategy based on expected function decrease and validity of iteration step

$$
\underline{F}(\underline{x})=\underline{0}
$$

Start vector: $\underline{x}_{0} \in \mathbb{R}^{n}$.

Newton iteration step:

$$
\begin{aligned}
J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} & =-\underline{F}\left(\underline{x}^{(k)}\right) \\
\underline{x}^{(k+1)} & =\underline{x}^{(k)}+\tau^{(k)} \underline{s}^{(k)}
\end{aligned}
$$

Damping parameter:

$$
\tau^{(k)} \in[0,1] .
$$

Introduction

Nonlinear problem

Default mixed-solver strategy:

- Determine proper starting values
- Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
- Damping strategy based on expected function decrease and validity of iteration step
- $1^{\text {st }}$ Fallback case: newly developed Homotopy solver

$$
\underline{F}(\underline{x})=\underline{0}
$$

Start vector: $\underline{x}_{0} \in \mathbb{R}^{n}$.

Newton iteration step:

$$
\begin{aligned}
J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} & =-\underline{F}\left(\underline{x}^{(k)}\right) \\
\underline{x}^{(k+1)} & =\underline{x}^{(k)}+\tau^{(k)} \underline{s}^{(k)}
\end{aligned}
$$

Damping parameter:

$$
\tau^{(k)} \in[0,1] .
$$

Introduction

Nonlinear problem

Default mixed-solver strategy:

- Determine proper starting values
- Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
- Damping strategy based on expected function decrease and validity of iteration step
- $1^{\text {st }}$ Fallback case: newly developed Homotopy solver
- Already robust prototype

$$
\underline{F}(\underline{x})=\underline{0}
$$

Start vector: $\underline{x}_{0} \in \mathbb{R}^{n}$.

Newton iteration step:

$$
\begin{aligned}
J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} & =-\underline{F}\left(\underline{x}^{(k)}\right) \\
\underline{x}^{(k+1)} & =\underline{x}^{(k)}+\tau^{(k)} \underline{s}^{(k)}
\end{aligned}
$$

Damping parameter:

$$
\tau^{(k)} \in[0,1] .
$$

Introduction

Nonlinear problem

Default mixed-solver strategy:

- Determine proper starting values
- Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
- Damping strategy based on expected function decrease and validity of iteration step
- $1^{\text {st }}$ Fallback case: newly developed Homotopy solver
- Already robust prototype
- $2^{\text {nd }}$ Fallback case: hybrid solver (-nls hybrid)

$$
\underline{F}(\underline{x})=\underline{0}
$$

Start vector: $\underline{x}_{0} \in \mathbb{R}^{n}$.

Newton iteration step:

Damping parameter:

$$
\begin{aligned}
J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} & =-\underline{F}\left(\underline{x}^{(k)}\right) \\
\underline{x}^{(k+1)} & =\underline{x}^{(k)}+\tau^{(k)} \underline{\underline{~}}^{(k)}
\end{aligned}
$$

$$
\tau^{(k)} \in[0,1] .
$$

Introduction

Nonlinear problem

Default mixed-solver strategy:

- Determine proper starting values
- Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
- Damping strategy based on expected function decrease and validity of iteration step
- $1^{\text {st }}$ Fallback case: newly developed Homotopy solver
- Already robust prototype
- $2^{\text {nd }}$ Fallback case: hybrid solver (-nls hybrid)
- Robust solver including several additional heuristics

$$
\underline{F}(\underline{x})=\underline{0}
$$

Start vector: $\underline{x}_{0} \in \mathbb{R}^{n}$.

Newton iteration step:

Damping parameter:

$$
\tau^{(k)} \in[0,1]
$$

$$
\begin{aligned}
J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} & =-\underline{F}\left(\underline{x}^{(k)}\right) \\
\underline{x}^{(k+1)} & =\underline{x}^{(k)}+\tau^{(k)} \underline{s}^{(k)}
\end{aligned}
$$

Homotopy Method

Nonlinear problem

Solve non-linear equation system

$$
\underline{F}\left(\underline{x}^{*}\right)=\underline{0}
$$

with given start vector $\underline{x}_{0} \in \mathbb{R}^{n}$.

Possible homotopy functions

- Fixpoint-Homotopy:

$$
\underline{H}(\underline{x}, \lambda)=\lambda \underline{F}(\underline{x})+(1-\lambda)\left(\underline{x}-\underline{x}_{0}\right)=\underline{0}
$$

FH Bielefeld

Simple example

$f(x)=2 x-4+\sin (2 \pi x)$,

$$
\begin{gathered}
f(x)=2 x-4+\sin (2 \pi x), \\
x_{0}=0.5, \quad x^{*}=2 .
\end{gathered}
$$

Homotopy Path (Fixpoint)

Homotopy Method

Nonlinear problem

Solve non-linear equation system

$$
\underline{F}\left(\underline{x}^{*}\right)=\underline{0}
$$

with given start vector $\underline{x}_{0} \in \mathbb{R}^{n}$.

Possible homotopy functions

- Fixpoint-Homotopy:

$$
\underline{H}(\underline{x}, \lambda)=\lambda \underline{F}(\underline{x})+(1-\lambda)\left(\underline{x}-\underline{x}_{0}\right)=\underline{0}
$$

- Newton-Homotopy:

$$
\underline{H}(\underline{x}, \lambda)=\underline{F}(\underline{x})-(1-\lambda) \underline{F}\left(\underline{x}_{0}\right)=\underline{0}
$$

FH Bielefeld

$$
\begin{aligned}
& \text { Simple example } \\
& \qquad \begin{array}{l}
f(x)=2 x-4+\sin (2 \pi x), \\
\quad x_{0}=0.5, \quad x^{*}=2 .
\end{array}
\end{aligned}
$$

Homotopy Path (Newton)

Homotopy Method

General Approach

Homotopy-iteration

Start with $(x_{0}, \underbrace{\lambda_{0}}_{=0})$ and $\underline{H}\left(\underline{x}_{0}, \lambda_{0}\right)=\underline{0}$.

Simple example
$f(x)=2 x-4+\sin (2 \pi x)$,

$$
x_{0}=0.5, \quad x^{*}=2 .
$$

Homotopy Path (Iteration)

Homotopy Method

Homotopy-iteration

Start with $(x_{0}, \underbrace{\lambda_{0}}_{=0})$ and $\underline{H}\left(\underline{x}_{0}, \lambda_{0}\right)=\underline{0}$.

Determine $\left(\underline{x}_{i+1}, \lambda_{i+1}\right)$ with $\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right)=\underline{0}$.

Simple example

$f(x)=2 x-4+\sin (2 \pi x)$,

$$
x_{0}=0.5, \quad x^{*}=2 .
$$

Homotopy Path (Iteration)

Homotopy Method

General Approach

Homotopy-iteration

Start with $(x_{0}, \underbrace{\lambda_{0}}_{=0})$ and $\underline{H}\left(\underline{x}_{0}, \lambda_{0}\right)=\underline{0}$.
Determine $\left(\underline{x}_{i+1}, \lambda_{i+1}\right)$ with $\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right)=\underline{0}$.
Stop, when $\lambda_{m}=1$ yields.

$$
\Rightarrow \underline{H}(\underline{x}_{m}, \underbrace{\lambda_{m}}_{=1})=\underline{F}\left(\underline{x}_{m}\right)=\underline{0} \Rightarrow \underline{x}^{*}=\underline{x}_{m} .
$$

Simple example

$f(x)=2 x-4+\sin (2 \pi x)$,

$$
x_{0}=0.5, \quad x^{*}=2 .
$$

Homotopy Path (Iteration)

Homotopy Method

General Approach

Homotopy-iteration

Start with $(x_{0}, \underbrace{\lambda_{0}}_{=0})$ and $\underline{H}\left(\underline{x}_{0}, \lambda_{0}\right)=\underline{0}$.
Determine $\left(\underline{x}_{i+1}, \lambda_{i+1}\right)$ with $\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right)=\underline{0}$.
Stop, when $\lambda_{m}=1$ yields.

$$
\Rightarrow \underline{H}(\underline{x}_{m}, \underbrace{\lambda_{m}}_{=1})=\underline{F}\left(\underline{x}_{m}\right)=\underline{0} \Rightarrow \underline{x}^{*}=\underline{x}_{m} .
$$

Procedure:
Perform predictor-corrector steps
\Rightarrow path $(\underline{x}(s), \lambda(s)), s$ arc length.

Simple example

$f(x)=2 x-4+\sin (2 \pi x)$,

$$
x_{0}=0.5, \quad x^{*}=2 .
$$

Homotopy Path (Iteration)

Homotopy Method

Calculating Homotopy Path $\quad(\underline{x}(s), \lambda(s))$

Predictor step

$$
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0}
$$

Homotopy Path Calculation

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$
FH Bielefeld

Predictor step

$$
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0}
$$

$$
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
$$

Homotopy Path Calculation

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0}
$$

$$
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Homotopy Path Calculation

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0}
$$

$$
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\begin{gathered}
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0} \\
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
\end{gathered}
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $\left(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#}\right)$ until

$$
\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right) \approx \underline{0} .
$$

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\begin{gathered}
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0} \\
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
\end{gathered}
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $\left(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#}\right)$ until

$$
\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right) \approx \underline{0} .
$$

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\begin{gathered}
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0} \\
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
\end{gathered}
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $\left(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#}\right)$ until

$$
\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right) \approx \underline{0} .
$$

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\begin{gathered}
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0} \\
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
\end{gathered}
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $\left(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#}\right)$ until

$$
\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right) \approx \underline{0} .
$$

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\begin{gathered}
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0} \\
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
\end{gathered}
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $\left(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#}\right)$ until

$$
\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right) \approx \underline{0} .
$$

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\begin{gathered}
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0} \\
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
\end{gathered}
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $\left(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#}\right)$ until

$$
\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right) \approx \underline{0} .
$$

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\begin{gathered}
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0} \\
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
\end{gathered}
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $\left(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#}\right)$ until

$$
\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right) \approx \underline{0} .
$$

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\begin{gathered}
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0} \\
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
\end{gathered}
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $\left(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#}\right)$ until

$$
\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right) \approx \underline{0} .
$$

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\begin{gathered}
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0} \\
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
\end{gathered}
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $\left(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#}\right)$ until

$$
\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right) \approx \underline{0} .
$$

Homotopy Method

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$
\begin{gathered}
\underline{H}(\underline{x}(s), \lambda(s))=\underline{0} \\
\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}^{\prime}(s)+\frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda^{\prime}(s)=\underline{0} .
\end{gathered}
$$

Solve linear system

$$
J_{\underline{H}}\left(\underline{x}_{i}, \lambda_{i}\right) \cdot \underline{v}_{i}=\underline{0},
$$

$J_{\underline{H}} \in \mathbb{R}^{(n, n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.
Perform predictor step

$$
\binom{\underline{x}_{i+1}^{\#}}{\lambda_{i+1}^{\#}}=\binom{\underline{x}_{i}}{\lambda_{i}}+\tau_{i} \cdot \underline{v}_{i}
$$

τ_{i} step size, \underline{v}_{i} normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run
Newton iteration steps with start values $\left(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#}\right)$ until

$$
\underline{H}\left(\underline{x}_{i+1}, \lambda_{i+1}\right) \approx \underline{0} .
$$

Homotopy Method

Status and Outlook

Problems in current implementation (To-Do-List):

- Determination of starting direction

Homotopy Method

Status and Outlook

Problems in current implementation (To-Do-List):

- Determination of starting direction
- For Newton-Homotopy try both directions

Homotopy Method

Status and Outlook

Problems in current implementation (To-Do-List):

- Determination of starting direction
- For Newton-Homotopy try both directions
- For Fixpoint-Homotopy only positive direction

Homotopy Method

Status and Outlook

Problems in current implementation (To-Do-List):

- Determination of starting direction
- For Newton-Homotopy try both directions
- For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations

Homotopy Method

Status and Outlook

Problems in current implementation (To-Do-List):

- Determination of starting direction
- For Newton-Homotopy try both directions
- For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
- Problems with differentiated variables

Homotopy Method

Status and Outlook

Problems in current implementation (To-Do-List):

- Determination of starting direction
- For Newton-Homotopy try both directions
- For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
- Problems with differentiated variables
- Utilize Homotopy method for initialization

Homotopy Method

Status and Outlook

Problems in current implementation (To-Do-List):

- Determination of starting direction
- For Newton-Homotopy try both directions
- For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
- Problems with differentiated variables
- Utilize Homotopy method for initialization
- Proper symbolic preparation of the operator homotopy $(f(x), g(x))=0$ necessary.

Homotopy Method

Status and Outlook

Problems in current implementation (To-Do-List):

- Determination of starting direction
- For Newton-Homotopy try both directions
- For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
- Problems with differentiated variables
- Utilize Homotopy method for initialization
- Proper symbolic preparation of the operator homotopy ($f(x), g(x))=0$ necessary.
- Provide better starting vector for iteration

Homotopy Method

Status and Outlook

Problems in current implementation (To-Do-List):

- Determination of starting direction
- For Newton-Homotopy try both directions
- For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
- Problems with differentiated variables
- Utilize Homotopy method for initialization
- Proper symbolic preparation of the operator homotopy ($f(x), g(x))=0$ necessary.
- Provide better starting vector for iteration
- Context-dependent extrapolation:

$$
J_{f O D E}=\left(\frac{f O D E\left(\underline{x}+h \underline{e_{i}}\right)-f O D E(\underline{x})}{h}\right)_{i=1 \ldots n}
$$

FH Bielefeld

Homotopy Method

Problems in current implementation (To-Do-List):

- Determination of starting direction
- For Newton-Homotopy try both directions
- For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
- Problems with differentiated variables
- Utilize Homotopy method for initialization
- Proper symbolic preparation of the operator homotopy ($f(x), g(x))=0$ necessary.
- Provide better starting vector for iteration
- Context-dependent extrapolation:

$$
J_{f O D E}=\left(\frac{f O D E\left(\underline{x}+h \underline{e}_{i}\right)-f O D E(\underline{x})}{h}\right)_{i=1 \ldots n}
$$

- OR: Generate symbolic Jacobians for all relevant cases

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:

FH Bielefeld

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,
- $\cos (x)$,

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,
- $\cos (x)$,
- $\tan (x)$,

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,
- $\cos (x)$,
- $\tan (x)$,
- $\log (x)$,

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,
- $\cos (x)$,
- $\tan (x)$,
- $\log (x)$,
- $\exp (x)$,

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,
- $\cos (x)$,
- $\tan (x)$,
- $\log (x)$,
- $\exp (x)$,
- $\tanh (x)$,

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,
- $\cos (x)$,
- $\tan (x)$,
- $\log (x)$,
- $\exp (x)$,
- $\tanh (x)$,
- $\cosh (x)$,

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,
- $\cos (x)$,
- $\tan (x)$,
- $\log (x)$,
- $\exp (x)$,
- $\tanh (x)$,
- $\cosh (x)$,
- ...

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,
- $\cos (x)$,
- $\tan (x)$,
- $\log (x)$,
- $\exp (x)$,
- $\tanh (x)$,
- $\cosh (x)$,
- ...
- Complex compositions are possible:

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,
- $\cos (x)$,
- $\tan (x)$,
- $\log (x)$,
- $\exp (x)$,
- $\tanh (x)$,
- $\cosh (x)$,
- ...
- Complex compositions are possible:

$$
a(t) \cdot f(x)^{y(t)}+b(t) \cdot f(x)^{\frac{y(t)}{2}}+c(t)=0
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
- quadratic functions: $a x^{2}+b x+c$,
- monomial functions: x^{n},
- $\sin (x)$,
- $\cos (x)$,
- $\tan (x)$,
- $\log (x)$,
- $\exp (x)$,
- $\tanh (x)$,
- $\cosh (x)$,
- ...
- Complex compositions are possible:

$$
a(t) \cdot f(x)^{y(t)}+b(t) \cdot f(x)^{\frac{y(t)}{2}}+c(t)=0
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Quadratic equation

$$
f(x)=a \cdot x^{2}+b \cdot x+c=0
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Quadratic equation

$$
f(x)=a \cdot x^{2}+b \cdot x+c=0
$$

Well-known solution formula

$$
x_{1,2}=\left\{\begin{aligned}
\frac{-b \pm \sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a} & \text { if } a \neq 0 \\
\frac{-c}{b} & \text { if } a=0
\end{aligned}\right.
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Quadratic equation

$$
f(x)=a \cdot x^{2}+b \cdot x+c=0
$$

Numerically stable solution formula (Vieta)

$$
\begin{aligned}
x_{1} & =-\left(\frac{b+\operatorname{sign}(b) \cdot \sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a}\right) \\
x_{2} & =\frac{c}{a \cdot x_{1}}
\end{aligned}
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Quadratic equation

$$
f(x)=a \cdot x^{2}+b \cdot x+c=0
$$

Numerically stable solution formula (Vieta)

$$
\begin{aligned}
x_{1} & =-\left(\frac{b+\operatorname{sign}(b) \cdot \sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a}\right) \\
x_{2} & =\frac{c}{a \cdot x_{1}}
\end{aligned}
$$

Solution

$$
x=\min _{x^{*}}\left\{\left|x^{*}-x_{\text {old }}\right| \mid x^{*} \in\left\{x_{1}, x_{2}\right\}\right\}
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Generalization using substitution

$$
a(t) \cdot f(x)^{y(t)}+b(t) \cdot f(x)^{\frac{y(t)}{2}}+c(t)=0
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Generalization using substitution

$$
a(t) \cdot f(x)^{y(t)}+b(t) \cdot f(x)^{\frac{y(t)}{2}}+c(t)=0
$$

Example

$$
\sin (t) \cdot \log (x)^{2 \cdot n}+\cos (t) \cdot \log (x)^{n}+\exp (t)=0
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Generalization using substitution

$$
a(t) \cdot f(x)^{y(t)}+b(t) \cdot f(x)^{\frac{y(t)}{2}}+c(t)=0
$$

Example

$$
\sin (t) \cdot \log (x)^{2 \cdot n}+\cos (t) \cdot \log (x)^{n}+\exp (t)=0
$$

substitution:

$$
\sin (t) \cdot z^{2}+\cos (t) \cdot z+\exp (t)=0
$$

where $z=\log (x)^{n}=\operatorname{solveQE}($.$) .$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Generalization using substitution

$$
a(t) \cdot f(x)^{y(t)}+b(t) \cdot f(x)^{\frac{y(t)}{2}}+c(t)=0
$$

Example

$$
\sin (t) \cdot \log (x)^{2 \cdot n}+\cos (t) \cdot \log (x)^{n}+\exp (t)=0
$$

substitution:

$$
\sin (t) \cdot z^{2}+\cos (t) \cdot z+\exp (t)=0
$$

where $z=\log (x)^{n}=\operatorname{solveQE}($.$) .$

$$
\rightarrow x=\exp \left(\operatorname{sign}\left(z_{o l d}\right) \cdot\left|\operatorname{solveQE}(.)^{\frac{1}{n}}\right|\right)
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Inversion of sine function

$$
\sin (x)=y
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Solution process

$$
\begin{aligned}
\sin (x) & =y & & \\
x & =\operatorname{asin}(y)+2 \cdot k \cdot \pi, & & k \in \mathbb{Z} \\
x & =-\operatorname{asin}(y)+(2 \cdot k+1) \cdot \pi, & & k \in \mathbb{Z}
\end{aligned}
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Solution process

$$
\begin{array}{rlr}
\sin (x) & =y & \\
x_{1} & =\operatorname{asin}(y)+2 \cdot k_{1} \cdot \pi, & k_{1} \in \mathbb{Z} \\
x_{2} & =-\operatorname{asin}(y)+\left(2 \cdot k_{2}+1\right) \cdot \pi, & k_{2} \in \mathbb{Z} \\
& k_{1}=\text { round }\left(\frac{x_{\text {old }}-\operatorname{asin}(y)}{2 \cdot \pi}\right) & \\
& k_{2}=\text { round }\left(\frac{x_{\text {old }}+\operatorname{asin}(y)}{2 \cdot \pi}-\frac{1}{2}\right)
\end{array}
$$

New Features in Module: ExpressionSolve

Methods for Solving Non-Linear Single Equations

Solution process

$$
\begin{array}{rlr}
\sin (x) & =y \\
& =\operatorname{asin}(y)+2 \cdot k_{1} \cdot \pi, & k_{1} \in \mathbb{Z} \\
x_{1} & =-\operatorname{asin}(y)+\left(2 \cdot k_{2}+1\right) \cdot \pi, & k_{2} \in \mathbb{Z} \\
x_{2} & =\text { round }\left(\frac{x_{\text {old }}-\operatorname{asin}(y)}{2 \cdot \pi}\right) & \\
& k_{1}=\text { round }\left(\frac{x_{\text {old }}+\operatorname{asin}(y)}{2 \cdot \pi}-\frac{1}{2}\right)
\end{array}
$$

Solution

$$
x=\min _{x^{*}}\left\{\left|x^{*}-x_{\text {old }}\right| \mid x^{*} \in\left\{x_{1}, x_{2}\right\}\right\}
$$

Status and Plans with Respect to Tearing

Introduction to Cellier Tearing

Strong component

$$
\begin{aligned}
f_{1}\left(x_{3}, x_{4}\right): & 5 x_{3}+x_{4}=0 \\
f_{2}\left(x_{1}, x_{2}\right): & x_{1}+x_{2}+\text { time }=0 \\
f_{3}\left(x_{1}, x_{4}\right): & \sin \left(x_{1}\right)-x_{4}=0 \\
f_{4}\left(x_{2}, x_{3}\right): & 2 x_{2}+x_{3}=0
\end{aligned}
$$

Status and Plans with Respect to Tearing

Introduction to Cellier Tearing

Strong component

$$
\begin{aligned}
f_{1}\left(x_{3}, x_{4}\right): & 5 x_{3}+x_{4}=0 \\
f_{2}\left(x_{1}, x_{2}\right): & x_{1}+x_{2}+\text { time }=0 \\
f_{3}\left(x_{1}, x_{4}\right): & \sin \left(x_{1}\right)-x_{4}=0 \\
f_{4}\left(x_{2}, x_{3}\right): & 2 x_{2}+x_{3}=0
\end{aligned}
$$

- Tearing idea:
- Select a set of tearing variables and treat them as known variables in the following
- Transform the system to a sequentially evaluable one

Status and Plans with Respect to Tearing

Introduction to Cellier Tearing

Teared component

$$
\begin{aligned}
& f_{1}\left(x_{3}, x_{4}\right): 5 x_{3}+x_{4}=0 \\
& f_{2}\left(x_{1}, x_{2}\right): \\
& f_{1}+x_{2}+\text { time }=0 \\
& f_{3}\left(x_{1}, x_{4}\right): \sin \left(x_{1}\right)-x_{4}=0 \\
& f_{4}\left(x_{2}, x_{3}\right): 2 x_{2}+x_{3}=0
\end{aligned}
$$

- Tearing idea:
- Select a set of tearing variables and treat them as known variables in the following
- Transform the system to a sequentially evaluable one

Status and Plans with Respect to Tearing

Introduction to Cellier Tearing

Causalised component

$$
\begin{aligned}
& f_{2}: x_{2}:=-x_{1}-\text { time } \\
& f_{4}: x_{3}:=-2 x_{2} \\
& f_{1}: x_{4}:=-5 x_{3} \\
& f_{3}: \sin \left(x_{1}\right)-x_{4} \stackrel{!}{=} 0 \quad(\text { res })
\end{aligned}
$$

- Tearing idea:
- Select a set of tearing variables and treat them as known variables in the following
- Transform the system to a sequentially evaluable one

Status and Plans with Respect to Tearing

Example

$$
\begin{array}{ll}
f_{1}: & x_{1}+x_{2} \cdot \text { time }=0 \\
f_{2}: & x_{1}-x_{3} \cdot \cos (\text { time })=0 \\
f_{3}: & x_{1}+x_{2}+x_{3}+2 x_{4}+4=0 \\
f_{4}: & x_{3}+x_{4}+2 x_{5}+2=0 \\
f_{5}: & x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time }=0
\end{array}
$$

Status and Plans with Respect to Tearing

Example

$$
\begin{array}{ll}
f_{1}: & x_{1}+x_{2} \cdot \text { time }=0 \\
f_{2}: & x_{1}-x_{3} \cdot \cos (\text { time })=0 \\
f_{3}: & x_{1}+x_{2}+x_{3}+2 x_{4}+4=0 \\
f_{4}: & x_{3}+x_{4}+2 x_{5}+2=0 \\
f_{5}: & x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time }=0
\end{array}
$$

Status and Plans with Respect to Tearing

Example

$$
\begin{array}{ll}
f_{1}: & x_{1}+x_{2} \cdot \text { time }=0 \\
f_{2}: & x_{1}-x_{3} \cdot \cos (\text { time })=0 \\
f_{3}: & x_{1}+x_{2}+x_{3}+2 x_{4}+4=0 \\
f_{4}: & x_{3}+x_{4}+2 x_{5}+2=0 \\
f_{5}: & x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time }=0
\end{array}
$$

Status and Plans with Respect to Tearing

 Introduction to Cellier Tearing
Example

$$
\begin{array}{ll}
f_{1}: & x_{1}+x_{2} \cdot \text { time }=0 \\
f_{2}: & x_{1}-x_{3} \cdot \cos (\text { time })=0 \\
f_{3}: & x_{1}+x_{2}+x_{3}+2 x_{4}+4=0 \\
f_{4}: & x_{3}+x_{4}+2 x_{5}+2=0 \\
f_{5}: & x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time }=0
\end{array}
$$

Status and Plans with Respect to Tearing

 Introduction to Cellier Tearing
Example

$$
\begin{array}{ll}
f_{1}: & x_{1}+x_{2} \cdot \text { time }=0 \\
f_{2}: & x_{1}-x_{3} \cdot \cos (\text { time })=0 \\
f_{3}: & x_{1}+x_{2}+x_{3}+2 x_{4}+4=0 \\
f_{4}: & x_{3}+x_{4}+2 x_{5}+2=0 \\
f_{5}: & x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time }=0
\end{array}
$$

Status and Plans with Respect to Tearing

 Introduction to Cellier Tearing
Example

$$
\begin{array}{ll}
f_{1}: & x_{1}+x_{2} \cdot \text { time }=0 \\
f_{2}: & x_{1}-x_{3} \cdot \cos (\text { time })=0 \\
f_{3}: & x_{1}+x_{2}+x_{3}+2 x_{4}+4=0 \\
f_{4}: & x_{3}+x_{4}+2 x_{5}+2=0 \\
f_{5}: & x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time }=0
\end{array}
$$

Status and Plans with Respect to Tearing

 Introduction to Cellier Tearing
Example

$$
\begin{array}{ll}
f_{1}: & x_{1}+x_{2} \cdot \text { time }=0 \\
f_{2}: & x_{1}-x_{3} \cdot \cos (\text { time })=0 \\
f_{3}: & x_{1}+x_{2}+x_{3}+2 x_{4}+4=0 \\
f_{4}: & x_{3}+x_{4}+2 x_{5}+2=0 \\
f_{5}: & x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time }=0
\end{array}
$$

Status and Plans with Respect to Tearing

 Introduction to Cellier Tearing
Example

$$
\begin{array}{ll}
f_{1}: & x_{1}+x_{2} \cdot \text { time }=0 \\
f_{2}: & x_{1}-x_{3} \cdot \cos (\text { time })=0 \\
f_{3}: & x_{1}+x_{2}+x_{3}+2 x_{4}+4=0 \\
f_{4}: & x_{3}+x_{4}+2 x_{5}+2=0 \\
f_{5}: & x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time }=0
\end{array}
$$

Status and Plans with Respect to Tearing

 Introduction to Cellier Tearing
Causalised system

$$
\begin{aligned}
& f_{1}: x_{2}:=\frac{-x_{1}}{\text { time }} \\
& f_{2}: x_{3}:=\frac{x_{1}}{\cos (\text { time })} \\
& f_{3}: x_{4}:=\frac{-x_{1}-x_{2}-x_{3}-4}{2} \\
& f_{4}: x_{5}:=\frac{-x_{3}-x_{4}-2}{2} \\
& f_{5}: x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time } \stackrel{!}{=} 0 \quad \text { (res) }
\end{aligned}
$$

Status and Plans with Respect to Tearing

 Introduction to Cellier TearingCausalised system

$$
\begin{aligned}
& f_{1}: x_{2}:=\frac{-x_{1}}{\text { time }} \\
& f_{2}: x_{3}:=\frac{x_{1}}{\cos (\text { time })} \\
& f_{3}: x_{4}:=\frac{-x_{1}-x_{2}-x_{3}-4}{2} \\
& f_{4}: x_{5}:=\frac{-x_{3}-x_{4}-2}{2} \\
& f_{5}: x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time } \stackrel{!}{=} 0 \quad \text { (res) }
\end{aligned}
$$

\rightarrow Division by zero $\quad \Rightarrow$ Simulation failure

Status and Plans with Respect to Tearing

Consideration of Solvability

With constraints for assignments:

Example

$f_{1}: \quad x_{1}+x_{2} \cdot$ time $=0$
$f_{2}: \quad x_{1}-x_{3} \cdot \cos ($ time $)=0$
$f_{3}: \quad x_{1}+x_{2}+x_{3}+2 x_{4}+4=0$
$f_{4}: \quad x_{3}+x_{4}+2 x_{5}+2=0$
$f_{5}: \quad x_{4}-x_{5} \cdot$ time $-2 \cdot$ time $=0$

Status and Plans with Respect to Tearing

Consideration of Solvability

With constraints for assignments:

Example

$f_{1}: \quad x_{1}+x_{2} \cdot$ time $=0$
$f_{2}: \quad x_{1}-x_{3} \cdot \cos ($ time $)=0$
$f_{3}: \quad x_{1}+x_{2}+x_{3}+2 x_{4}+4=0$
$f_{4}: \quad x_{3}+x_{4}+2 x_{5}+2=0$
$f_{5}: \quad x_{4}-x_{5} \cdot$ time $-2 \cdot$ time $=0$

Status and Plans with Respect to Tearing

Consideration of Solvability

With constraints for assignments:

Example

$f_{1}: \quad x_{1}+x_{2} \cdot$ time $=0$
$f_{2}: \quad x_{1}-x_{3} \cdot \cos ($ time $)=0$
$f_{3}: \quad x_{1}+x_{2}+x_{3}+2 x_{4}+4=0$
$f_{4}: \quad x_{3}+x_{4}+2 x_{5}+2=0$
$f_{5}: \quad x_{4}-x_{5} \cdot$ time $-2 \cdot$ time $=0$

Status and Plans with Respect to Tearing

Consideration of Solvability

With constraints for assignments:

Example

$$
\begin{array}{ll}
f_{1}: & x_{1}+x_{2} \cdot \text { time }=0 \\
f_{2}: & x_{1}-x_{3} \cdot \cos (\text { time })=0 \\
f_{3}: & x_{1}+x_{2}+x_{3}+2 x_{4}+4=0 \\
f_{4}: & x_{3}+x_{4}+2 x_{5}+2=0 \\
f_{5}: & x_{4}-x_{5} \cdot \text { time }-2 \cdot \text { time }=0
\end{array}
$$

Status and Plans with Respect to Tearing

Example

$f_{2}: \quad x_{1}=x_{3} \cdot \cos ($ time $)$
$f_{3}: \quad x_{2}=-x_{1}-x_{3}-2 x_{4}-4$
$f_{4}: \quad x_{5}=-\frac{x_{3}}{2}-\frac{x_{4}}{2}-1$
$f_{1}: \quad x_{1}+x_{2} \cdot$ time $\stackrel{!}{=} 0$
$f_{5}: \quad x_{4}-x_{5} \cdot$ time $-2 \cdot$ time $\stackrel{!}{=} 0$

- In general: Bigger number of tearing variables with due regard to the solvability
- In this case: x_{5} would have causalised the whole system

With constraints for assignments:

\rightarrow Heuristic does not find the smallest possible tearing set necessarily

Status and Plans with Respect to Tearing

Consideration of Solvability

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200

With constraints for assignments:

Status and Plans with Respect to Tearing

Consideration of Solvability

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
- More sophistical implementation (e.g. array hash-tables)

With constraints for assignments:

Status and Plans with Respect to Tearing

Consideration of Solvability

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
- More sophistical implementation (e.g. array hash-tables)
- Investigate parallelization of algorithm

With constraints for assignments:

Status and Plans with Respect to Tearing

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
- More sophistical implementation (e.g. array hash-tables)
- Investigate parallelization of algorithm
- Advanced solvability check

Status and Plans with Respect to Tearing

Consideration of Solvability

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
- More sophistical implementation (e.g. array hash-tables)
- Investigate parallelization of algorithm
- Advanced solvability check
- Make use of expressionSolve module

With constraints for assignments:

Status and Plans with Respect to Tearing

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
- More sophistical implementation (e.g. array hash-tables)
- Investigate parallelization of algorithm
- Advanced solvability check
- Make use of expressionSolve module
- Introduce dynamic tearing techniques

With constraints for assignments:

Status and Plans with Respect to Tearing

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
- More sophistical implementation (e.g. array hash-tables)
- Investigate parallelization of algorithm
- Advanced solvability check
- Make use of expressionSolve module
- Introduce dynamic tearing techniques
- E.g. change tearing set during simulation

With constraints for assignments:

Status and Plans with Respect to Tearing

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
- More sophistical implementation (e.g. array hash-tables)
- Investigate parallelization of algorithm
- Advanced solvability check
- Make use of expressionSolve module
- Introduce dynamic tearing techniques
- E.g. change tearing set during simulation
- Check on division by zero during simulation

With constraints for assignments:

Status and Plans with Respect to Tearing

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
- More sophistical implementation (e.g. array hash-tables)
- Investigate parallelization of algorithm
- Advanced solvability check
- Make use of expressionSolve module
- Introduce dynamic tearing techniques
- E.g. change tearing set during simulation
- Check on division by zero during simulation
- Investigate proper and robust switching criteria

With constraints for assignments:

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
- Already efficient implementation using hash-tables,

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
- Already efficient implementation using hash-tables,
- Option -cseBinary: collects all binary common subexpression,

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
- Already efficient implementation using hash-tables,
- Option -cseBinary: collects all binary common subexpression,
- Option -cseCall: collects all multiple function calls,

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
- Already efficient implementation using hash-tables,
- Option -cseBinary: collects all binary common subexpression,
- Option -cseCall: collects all multiple function calls,
- Option -cseEachCall: extracts all function calls,

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
- Already efficient implementation using hash-tables,
- Option -cseBinary: collects all binary common subexpression,
- Option -cseCall: collects all multiple function calls,
- Option -cseEachCall: extracts all function calls,
- Works only for models with real subexpressions,

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
- Already efficient implementation using hash-tables,
- Option -cseBinary: collects all binary common subexpression,
- Option -cseCall: collects all multiple function calls,
- Option -cseEachCall: extracts all function calls,
- Works only for models with real subexpressions,
- Handles complex function calls involving return types like tuples, arrays, etc.,

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
- Already efficient implementation using hash-tables,
- Option -cseBinary: collects all binary common subexpression,
- Option -cseCall: collects all multiple function calls,
- Option -cseEachCall: extracts all function calls,
- Works only for models with real subexpressions,
- Handles complex function calls involving return types like tuples, arrays, etc.,
- Enormous performance increase detected (e.g. Modelica.Fluid)

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
- Already efficient implementation using hash-tables,
- Option -cseBinary: collects all binary common subexpression,
- Option -cseCall: collects all multiple function calls,
- Option -cseEachCall: extracts all function calls,
- Works only for models with real subexpressions,
- Handles complex function calls involving return types like tuples, arrays, etc.,
- Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
- Already efficient implementation using hash-tables,
- Option -cseBinary: collects all binary common subexpression,
- Option -cseCall: collects all multiple function calls,
- Option -cseEachCall: extracts all function calls,
- Works only for models with real subexpressions,
- Handles complex function calls involving return types like tuples, arrays, etc.,
- Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems
- Structural change of algebraic loops

Effects of Common Subexpression Elimination

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
- Already efficient implementation using hash-tables,
- Option -cseBinary: collects all binary common subexpression,
- Option -cseCall: collects all multiple function calls,
- Option -cseEachCall: extracts all function calls,
- Works only for models with real subexpressions,
- Handles complex function calls involving return types like tuples, arrays, etc.,
- Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems
- Structural change of algebraic loops
- Less computing effort due to code motion

Effects of Common Subexpression Elimination

Original equations

$$
\begin{aligned}
& -4+v_{1} \cdot f\left(v_{1}\right)+v_{2}=\text { source } \\
& \quad 2 v_{1} \cdot f\left(v_{1}\right)+v_{2}+v_{4}-v 3=\text { source } \\
& 3 v_{1} \cdot f\left(v_{1}\right)-7 v_{2}-2 v_{3}+3 v_{4}=0 \\
& \quad v_{1} \cdot f\left(v_{1}\right)+v_{2}-v_{3}-v_{4}=0
\end{aligned}
$$

Effects of Common Subexpression Elimination

Structural Changes of Strongly Connected Components

Original equations

$$
\begin{aligned}
& -4+v_{1} \cdot f\left(v_{1}\right)+v_{2}=\text { source } \\
& 2 v_{1} \cdot f\left(v_{1}\right)+v_{2}+v_{4}-v 3=\text { source } \\
& 3 v_{1} \cdot f\left(v_{1}\right)-7 v_{2}-2 v_{3}+3 v_{4}=0 \\
& \quad v_{1} \cdot f\left(v_{1}\right)+v_{2}-v_{3}-v_{4}=0
\end{aligned}
$$

Equations after tearing

SCC1 Non-linear tearing variables v1, v4

$$
\begin{aligned}
\mathrm{v} 2 & :=\text { source }+4-\mathrm{v} 1 * \mathrm{f}(\mathrm{v} 1) \\
\mathrm{v} 3 & :=\mathrm{v} 2-\mathrm{v} 4+\mathrm{v} 1 * \mathrm{f}(\mathrm{v} 1) \\
\mathrm{res} 1 & :=2.0^{*} \mathrm{v} 1 * \mathrm{f}(\mathrm{v} 1)+\mathrm{v} 2+\mathrm{v} 4-\mathrm{v} 3-\text { source } \\
\mathrm{res} 2 & :=3.0^{*} \mathrm{v} 1 * \mathrm{f}(\mathrm{v} 1)+-7.0 * \mathrm{v} 2+-2.0^{*} \mathrm{v} 3+3.0^{*} \mathrm{v} 4
\end{aligned}
$$

Effects of Common Subexpression Elimination

Original equations

$$
\begin{aligned}
& -4+v_{1} \cdot f\left(v_{1}\right)+v_{2}=\text { source } \\
& 2 v_{1} \cdot f\left(v_{1}\right)+v_{2}+v_{4}-v 3=\text { source } \\
& 3 v_{1} \cdot f\left(v_{1}\right)-7 v_{2}-2 v_{3}+3 v_{4}=0 \\
& \quad v_{1} \cdot f\left(v_{1}\right)+v_{2}-v_{3}-v_{4}=0
\end{aligned}
$$

Equations after tearing

SCC1 Non-linear tearing variables v1, v4

$$
\begin{aligned}
v 2 & :=\text { source }+4-v 1 * f(v 1) \\
v 3 & :=v 2-v 4+v 1 * f(v 1) \\
\text { res1 } & :=2.0^{*} v 1 * f(v 1)+v 2+v 4-v 3-\text { source } \\
\text { res2 } & :=3.0^{*} v 1 * f(v 1)+-7.0^{*} v 2+-2.0^{*} v 3+3.0^{*} v 4
\end{aligned}
$$

Equations after common subexpression elimination and tearing

```
cse1 = f(v1)
cse2 = v1 * cse1
```

SCC1 Linear tearing variables v2, v4

$$
\begin{aligned}
\operatorname{cse} 2 & =\text { source }+4-\mathrm{v} 2 \\
\mathrm{v} 3 & =\operatorname{cse} 2+\mathrm{v} 2-\mathrm{v} 4 \\
\text { res1 }: & :=2.0^{*} \operatorname{cse} 2+\mathrm{v} 2+\mathrm{v} 4-\mathrm{v} 3-\text { source } \\
\text { res2 } & :=3.0 * \operatorname{cse} 2+-7.0^{*} \mathrm{v} 2+-2.0^{*} \mathrm{v} 3+3.0 * v 4
\end{aligned}
$$

SCC2 Non-linear tearing variable v1

$$
\begin{gathered}
\operatorname{cse} 1:=\mathrm{f}(\mathrm{v} 1) \\
\mathrm{res} 1:=\mathrm{cse} 2-\mathrm{v} 1 \text { * cse1 }
\end{gathered}
$$

Effects of Common Subexpression Elimination

```
Original equations
\(w=f_{3}(x, n)\)
\(f_{1}(x, n) \cdot y+1.1 \cdot f_{2}(x, n) \cdot \sinh (z)=2\)
\(f_{4}(x, n) \cdot \sinh (y)+1.1 \cdot f_{4}(x, n) \cdot z=\sinh (z)\)
\(\operatorname{der}(x)=y \cdot z\)
```


Effects of Common Subexpression Elimination

Original equations

$$
\begin{aligned}
& w=f_{3}(x, n) \\
& f_{1}(x, n) \cdot y+1.1 \cdot f_{2}(x, n) \cdot \sinh (z)=2 \\
& f_{4}(x, n) \cdot \sinh (y)+1.1 \cdot f_{4}(x, n) \cdot z=\sinh (z) \\
& \operatorname{der}(x)=y \cdot z
\end{aligned}
$$

Equations after tearing

```
SCC1 \(^{*}\) Non-linear iteration variables \(y, z\)
        res1 := \(\mathrm{f} 1(\mathrm{x}, \mathrm{n}) * \mathrm{y}+1.1 * \mathrm{f} 2(\mathrm{x}, \mathrm{n}) * \sinh (\mathrm{z})-2.0\)
        res2 := \(\mathrm{f} 4(\mathrm{x}, \mathrm{n}) * \sinh (\mathrm{y})+1.1 * \mathrm{f} 4(\mathrm{x}, \mathrm{n}) * \mathrm{z}-\sinh (\mathrm{z})\)
\(\operatorname{SCC}^{*} \quad \operatorname{der}(\mathrm{x}):=\mathrm{y} * \mathrm{z}\)
SCC3 \({ }^{*}\) w:= f3(x, n)
```


Effects of Common Subexpression Elimination

Original equations

$$
\begin{aligned}
& w=f_{3}(x, n) \\
& f_{1}(x, n) \cdot y+1.1 \cdot f_{2}(x, n) \cdot \sinh (z)=2 \\
& f_{4}(x, n) \cdot \sinh (y)+1.1 \cdot f_{4}(x, n) \cdot z=\sinh (z) \\
& \operatorname{der}(x)=y \cdot z
\end{aligned}
$$

Equations after tearing

SCC1 *	Non-linear iteration variables y, z
	$\operatorname{res1}:=f 1(x, n) * y+1.1^{*} \mathrm{f} 2(\mathrm{x}, \mathrm{n}) * \sinh (\mathrm{z})-2.0$
	$\operatorname{res2}:=\mathrm{f} 4(\mathrm{x}, \mathrm{n}) * \sinh (\mathrm{y})+1.1^{*} \mathrm{f} 4(\mathrm{x}, \mathrm{n}) * \mathrm{z}-\sinh (\mathrm{z})$
SCC2 *	$\operatorname{der}(\mathrm{x}):=\mathrm{y}^{*} \mathrm{z}$
SCC3 *	$\mathrm{w}:=\mathrm{f} 3(\mathrm{x}, \mathrm{n})$

Equations after code motion and tearing

SCC1 $^{\#}$	cse1 $=f 1(x, n)$
	cse2 $=f 2(x, n)$
SCC3 $^{\#}$	cse4 $=f 4(x, n)$

SCC4 ${ }^{\#}$ Non-linear iteration variables y, z

$$
\begin{aligned}
\operatorname{cse} 5 & :=\sinh (y) \\
\operatorname{cse} 6 & :=\sinh (z) \\
\text { res } 1 & :=\operatorname{cse} 1 * y+1.1 * \operatorname{cse} 2 * \operatorname{cse} 6-2.0 \\
\text { res } 2 & :=\operatorname{cse} 4 * \operatorname{cse} 5+1.1 * \operatorname{cse} 4 * z-\operatorname{cse} 6
\end{aligned}
$$

$$
\text { SCC5 }^{\#} \quad \operatorname{der}(x)=y^{*} z
$$

$$
\text { SCC6 }^{\#} \quad \operatorname{cse} 3=f 3(x, n)
$$

$$
\text { SCC7 }^{\#} \quad w=\operatorname{cse} 3
$$

Outlook

Success consists of going from failure to failure without loss of enthusiasm.

Winston Churchill ${ }^{*} 1874 \dagger 1965$

