Symbolical and Numerical Approaches for Solving Nonlinear Systems

Bernhard Bachmann Kaja Balzereit, Willi Braun, Jan Hagemann, Lennart Ochel, Vitalij Ruge, Patrick-Marcel Täuber

02. February 2015

Contents

Introduction

2 Homotopy Method

- General Approach
- Calculating Homotopy Path
- 3 New Features in Module: ExpressionSolve
 - Methods for Solving Non-Linear Single Equations
- 4 Status and Plans with Respect to Tearing
 - Introduction to Cellier Tearing
 - Consideration of Solvability
- 5 Effects of Common Subexpression Elimination
 - Structural Changes of Strongly Connected Components
 - Performance Improvements Due to Code Motion

What are Algebraic Loops?

Transformation steps for simulation

 $\underline{0} = \underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t)$

$$\begin{split} \underbrace{f(x(t), \underline{x}(t), \underline{u}(t), \underline{p}, t), \, \underline{x}(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right)}_{\mathbb{Q}} \\ \downarrow \\ \underbrace{z(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right) = \underline{g}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \\ \downarrow \\ \underline{\dot{x}}(t) = \underline{h}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \\ \underline{y}(t) = \underline{k}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \end{split} }$$

Transformation example

$$\begin{array}{rcl} f_2(z_2) &= 0 \\ f_4(z_1,z_2) &= 0 \\ f_3(z_2,z_3,z_5) &= 0 \\ f_5(z_1,z_3,z_5) &= 0 \\ f_1(z_3,z_4) &= 0 \end{array}$$

Algebraic loop (SCC)

What are Algebraic Loops?

Transformation steps for simulation

$$\underline{0} = \underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t)$$

$$\begin{split} & \downarrow \\ \underline{0} = \underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \ \underline{z}(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right) \end{split}$$

 $\underline{z}(t) = \begin{pmatrix} \underline{x}(t) \\ \underline{y}(t) \end{pmatrix} = \underline{g}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$ \downarrow $\underline{x}(t) = \underline{h}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$ $\underline{y}(t) = \underline{h}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$

Transformation example $f_2(z_2) = 0$ $f_4(z_1, z_2) = 0$ $f_3(z_2, z_3, z_5) = 0$ $f_5(z_1, z_3, z_5) = 0$ $f_1(z_4, z_4) = 0$

Algebraic loop (SCC)

 $egin{array}{rl} f_3(z_2,z_3,z_5)&=0\ f_5(z_1,z_3,z_5)&=0 \end{array}$

What are Algebraic Loops?

Transformation steps for simulation

$$\underline{0} = \underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t)$$

$$\Downarrow \\
\underline{0} = \underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \, \underline{z}(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right)$$

$$\underline{z}(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right) = \underline{g}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$$

1

$$\begin{split} \dot{\underline{x}}(t) &= \underline{h}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \\ \underline{y}(t) &= \underline{k}(\underline{x}(t), \underline{u}(t), \underline{p}, t) \end{split}$$

Transformation example $f_2(z_2) = 0$ $f_4(z_1, z_2) = 0$

 $\begin{array}{ll} f_3(z_2,\,z_3,\,z_5) &= 0 \\ f_5(z_1,\,z_3,\,z_5) &= 0 \\ f_1(z_3,\,z_4) &= 0 \end{array}$

 $f_3(z_1, z_3, z_3) = 0$ $f_5(z_1, z_3, z_3) = 0$

What are Algebraic Loops?

Transformation steps for simulation

$$\underline{0} = \underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t)$$

ш

$$\begin{split} & \psi \\ \underline{0} = \underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \ \underline{z}(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right) \end{split}$$

∜

$$\underline{z}(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right) = \underline{g}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$$

$$\downarrow$$

$$\dot{x}(t) = h(\underline{x}(t), \underline{v}(t), \underline{r}, t)$$

$$\underline{x}(t) = \underline{h}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$$
$$\underline{y}(t) = \underline{k}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$$

Transformation example $f_2(z_2) = 0$ $f_4(z_1, z_2) = 0$

$f_3(z_2, z_3, z_5) = 0$ $f_5(z_1, z_3, z_5) = 0$

What are Algebraic Loops?

Transformation steps for simulation

$$\underline{0} = \underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t)$$

$$\begin{split} & \downarrow \\ \underline{0} = \underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \ \underline{z}(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right) \end{split}$$

∜

$$\underline{y}(t) = \underline{k}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$$

Transformation example $f_2(z_2) = 0$ $f_4(z_1, z_2) = 0$ $f_3(z_2, z_3, z_5) = 0$ $f_5(z_1, z_3, z_5) = 0$ $f_1(z_3, z_4) = 0$

Algebraic loop (SCC)

What are Algebraic Loops?

Transformation steps for simulation

$$\underline{0} = \underline{f}(\underline{x}(t), \underline{\dot{x}}(t), \underline{y}(t), \underline{u}(t), \underline{p}, t)$$

$$\begin{array}{l} & \downarrow \\ \underline{0} = \underline{f}(\underline{x}(t), \underline{z}(t), \underline{u}(t), \underline{p}, t), \ \underline{z}(t) = \left(\begin{array}{c} \underline{\dot{x}}(t) \\ \underline{y}(t) \end{array}\right) \end{array}$$

∜

$$\underline{y}(t) = \underline{k}(\underline{x}(t), \underline{u}(t), \underline{p}, t)$$

Transformation example $f_2(z_2) = 0$ $f_4(z_1, z_2) = 0$ $f_3(z_2, z_3, z_5) = 0$ $f_5(z_1, z_3, z_5) = 0$ $f_1(z_3, z_4) = 0$

Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)

- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values
- Handling of non-convergence

 Dealing with non-valid values of iteration variables during solution process

Transformation example

$$f_2(z_2) = 0$$

$$f_4(z_1, z_2) = 0$$

$$f_3(z_2, z_3, z_5) = 0$$

$$f_5(z_1, z_3, z_5) = 0$$

$$f_1(z_3, z_4) = 0$$

Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)

Proper scaling of iteration variables and equations

- Iteration schemes need good starting values
- Handling of non-convergence

 Dealing with non-valid values of iteration variables during solution process

Transformation example

$$f_2(z_2) = 0$$

$$f_4(z_1, z_2) = 0$$

$$f_3(z_2, z_3, z_5) = 0$$

$$f_5(z_1, z_3, z_5) = 0$$

$$f_1(z_3, z_4) = 0$$

Important Aspects with Algebraic Loops!

Algebraic loops in OpenModelica:

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
 - Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values
- Handling of non-convergence

 Dealing with non-valid values of iteration variables during solution process

Transformation example

$$f_2(z_2) = 0$$

$$f_4(z_1, z_2) = 0$$

$$f_3(z_2, z_3, z_5) = 0$$

$$f_5(z_1, z_3, z_5) = 0$$

$$f_1(z_3, z_4) = 0$$

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
 - Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values
- Handling of non-convergence

 Dealing with non-valid values of iteration variables during solution process

Transformation example

 $f_2(z_2) = 0$ $f_4(z_1, z_2) = 0$ $f_3(z_2, z_3, z_5) = 0$ $f_5(z_1, z_3, z_5) = 0$ $f_1(z_3, z_4) = 0$

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
 - Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values
- Handling of non-convergence

 Dealing with non-valid values of iteration variables during solution process

Transformation example

$$f_2(z_2) = 0$$

$$f_4(z_1, z_2) = 0$$

$$f_3(z_2, z_3, z_5) = 0$$

$$f_5(z_1, z_3, z_5) = 0$$

$$f_1(z_3, z_4) = 0$$

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
 - Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values
- Handling of non-convergence

 Dealing with non-valid values of iteration variables during solution process

Transformation example

 $f_2(z_2) = 0$ $f_4(z_1, z_2) = 0$ $f_3(z_2, z_3, z_5) = 0$ $f_5(z_1, z_3, z_5) = 0$ $f_1(z_3, z_4) = 0$

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
 - Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values
- Handling of non-convergence
 - Different heuristics possible (varying starting values, nominal values, accuracy, etc.)

 Dealing with non-valid values of iteration variables during solution process

Transformation example

 $\begin{aligned} f_2(z_2) &= 0\\ f_4(z_1, z_2) &= 0\\ f_3(z_2, z_3, z_5) &= 0\\ f_5(z_1, z_3, z_5) &= 0\\ f_1(z_3, z_4) &= 0 \end{aligned}$

- Generated code (functionODE, functionAlgebraics, initialization, etc.)
- Efficient handling of (non-)linear equation(s)
 - Solution of single equations, Tearing of equation systems, Good solver implementation, Generation of symbolic Jacobians, etc.
- Proper scaling of iteration variables and equations
- Iteration schemes need good starting values
- Handling of non-convergence
 - Different heuristics possible (varying starting values, nominal values, accuracy, etc.)
- Dealing with non-valid values of iteration variables during solution process

Transformation example

 $\begin{array}{rl} f_2(z_2) &= 0\\ f_4(z_1,z_2) &= 0\\ f_3(z_2,z_3,z_5) &= 0\\ f_5(z_1,z_3,z_5) &= 0\\ f_1(z_3,z_4) &= 0 \end{array}$

- Determine proper starting values
 - Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
- 1^{st} Fallback case: newly developed Homotopy solver
- 2^{nd} Fallback case: hybrid solver (-nls hybrid)

FH Bielefeld University of

Applied Sciences

- Determine proper starting values
 - Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm

 $\bullet 1^{st}$ Fallback case: newly developed Homotopy solver

 2^{nd} Fallback case: hybrid solver (-nls hybrid)

Nonlinear problem $\underline{F}(\underline{x}) = \underline{0}$ Start vector: $\underline{x}_0 \in \mathbb{R}^n$.

- Determine proper starting values
 - Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm

1st Fallback case: newly developed Homotopy solve

2nd Fallback case: hybrid solver (-nls hybrid)

Nonlinear problem $\underline{F}(\underline{x}) = \underline{0}$ Start vector: $\underline{x}_0 \in \mathbb{R}^n$.

Newton iteration step:

$$J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} = -\underline{F}\left(\underline{x}^{(k)}\right)$$
$$\underline{x}^{(k+1)} = \underline{x}^{(k)} + \tau^{(k)}\underline{s}^{(k)}$$

Damping parameter:

- Determine proper starting values
 - Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
 - Damping strategy based on expected function decrease and validity of iteration step

1st Fallback case: newly developed Homotopy solve

2nd Fallback case: hybrid solver (-nls hybrid)

Nonlinear problem

$$\underline{F}(\underline{x}) = \underline{0}$$

Start vector: $\underline{x}_0 \in \mathbb{R}^n$.

Newton iteration step:

$$J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} = -\underline{F}\left(\underline{x}^{(k)}\right)$$
$$\underline{x}^{(k+1)} = \underline{x}^{(k)} + \tau^{(k)}\underline{s}^{(k)}$$

Damping parameter:

- Determine proper starting values
 - Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
 - Damping strategy based on expected function decrease and validity of iteration step
- $\bullet \ 1^{st}$ Fallback case: newly developed Homotopy solver

2nd Fallback case: hybrid solver (-nls hybrid)

Nonlinear problem

$$\underline{F}(\underline{x}) = \underline{0}$$

Start vector: $\underline{x}_0 \in \mathbb{R}^n$.

Newton iteration step:

$$J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} = -\underline{F}\left(\underline{x}^{(k)}\right)$$
$$\underline{x}^{(k+1)} = \underline{x}^{(k)} + \tau^{(k)}\underline{s}^{(k)}$$

Damping parameter:

- Determine proper starting values
 - Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
 - Damping strategy based on expected function decrease and validity of iteration step
- $\bullet \ 1^{st}$ Fallback case: newly developed Homotopy solver
 - Already robust prototype

2nd Fallback case: hybrid solver (-nls hybrid)

Nonlinear problem

$$\underline{F}(\underline{x}) = \underline{0}$$

Start vector: $\underline{x}_0 \in \mathbb{R}^n$.

Newton iteration step:

$$J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} = -\underline{F}\left(\underline{x}^{(k)}\right)$$
$$\underline{x}^{(k+1)} = \underline{x}^{(k)} + \tau^{(k)}\underline{s}^{(k)}$$

Damping parameter:

- Determine proper starting values
 - Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
 - Damping strategy based on expected function decrease and validity of iteration step
- 1^{st} Fallback case: newly developed Homotopy solver
 - Already robust prototype
- 2nd Fallback case: hybrid solver (-nls hybrid)

Nonlinear problem

$$\underline{F}(\underline{x}) = \underline{0}$$

Start vector: $\underline{x}_0 \in \mathbb{R}^n$.

Newton iteration step:

$$J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} = -\underline{F}\left(\underline{x}^{(k)}\right)$$
$$\underline{x}^{(k+1)} = \underline{x}^{(k)} + \tau^{(k)}\underline{s}^{(k)}$$

Damping parameter:

$$\tau^{(k)} \in [0,1].$$

- Determine proper starting values
 - Check validity of starting values with respect to regular Jacobian and asserts of function calls
- Start damped Newton algorithm
 - Damping strategy based on expected function decrease and validity of iteration step
- 1^{st} Fallback case: newly developed Homotopy solver
 - Already robust prototype
- 2^{nd} Fallback case: hybrid solver (-nls hybrid)
 - Robust solver including several additional heuristics

Equation $\underline{F}(\underline{x}) = \underline{0}$ Start vector: $\underline{x}_0 \in \mathbb{R}^n$.Newton iteration step: $J_{\underline{F}}\left(\underline{x}^{(k)}\right) \cdot \underline{s}^{(k)} = -\underline{F}\left(\underline{x}^{(k)}\right)$ $\underline{x}^{(k+1)} = \underline{x}^{(k)} + \tau^{(k)} \underline{s}^{(k)}$

Damping parameter:

Nonlinear problem

Solve non-linear equation system

 $\underline{F}(\underline{x}^*) = \underline{0}$

with given start vector $\underline{x}_0 \in \mathbb{R}^n$.

Possible homotopy functions

• Fixpoint-Homotopy:

$$\underline{H}(\underline{x},\lambda) = \lambda \underline{F}(\underline{x}) + (1-\lambda)(\underline{x}-\underline{x}_0) = \underline{0}$$

Newton-Homotopy:

 $\underline{H}(\underline{x}, \lambda) = \underline{F}(\underline{x}) - (1 - \lambda)\underline{F}(\underline{x}_0) = 0$

Simple example $f(x) = 2x - 4 + sin(2\pi x),$ $x_0 = 0.5, \quad x^* = 2.$

Homotopy Path (Fixpoint)

Nonlinear problem

Solve non-linear equation system

 $\underline{F}(\underline{x}^*) = \underline{0}$

with given start vector $\underline{x}_0 \in \mathbb{R}^n$.

Possible homotopy functions

• Fixpoint-Homotopy:

$$\underline{H}(\underline{x},\lambda) = \lambda \underline{F}(\underline{x}) + (1-\lambda)(\underline{x}-\underline{x}_0) = \underline{0}$$

• Newton-Homotopy:

$$\underline{H}(\underline{x},\lambda) = \underline{F}(\underline{x}) - (1-\lambda)\underline{F}(\underline{x}_0) = \underline{0}$$

Simple example $f(x) = 2x - 4 + sin(2\pi x),$ $x_0 = 0.5, \quad x^* = 2.$

Homotopy Path (Newton)

FH Bielefeld University of

Homotopy-iteration

Start with
$$(x_0, \underbrace{\lambda_0}_{=0})$$
 and $\underline{H}(\underline{x}_0, \lambda_0) = \underline{0}$.

Determine $(\underline{x}_{i+1}, \lambda_{i+1})$ with $\underline{H}(\underline{x}_{i+1}, \lambda_{i+1}) = \underline{0}$.

Stop, when $\lambda_m = 1$ yields.

$$\Rightarrow \underline{H}(\underline{x}_m, \underbrace{\lambda_m}) = \underline{F}(\underline{x}_m) = \underline{0} \Rightarrow \underline{x}^* = \underline{x}_m.$$

Procedure: Perform predictor-corrector steps

 \Rightarrow path $(\underline{x}(s), \lambda(s)), s$ arc length.

Simple example $f(x) = 2x - 4 + sin(2\pi x),$ $x_0 = 0.5, \quad x^* = 2.$

Homotopy-iteration

Start with
$$(x_0, \underbrace{\lambda_0}_{=0})$$
 and $\underline{H}(\underline{x}_0, \lambda_0) = \underline{0}$.

Determine
$$(\underline{x}_{i+1}, \lambda_{i+1})$$
 with $\underline{H}(\underline{x}_{i+1}, \lambda_{i+1}) = \underline{0}$.

Stop, when $\lambda_m=1$ yields.

$$\Rightarrow \underbrace{H(\underline{x}_m, \underbrace{\lambda_m}_{=1}) = \underline{F}(\underline{x}_m) = \underline{0} \Rightarrow \underline{x}^* = \underline{x}_m \cdot \\ \text{ocedure:} \\ \text{rform predictor-corrector steps} \end{cases}$$

 \Rightarrow path $(\underline{x}(s), \lambda(s)), s$ arc length.

Simple example $f(x) = 2x - 4 + sin(2\pi x),$ $x_0 = 0.5, \quad x^* = 2.$

Homotopy-iteration

Start with
$$(x_0, \underbrace{\lambda_0}_{=0})$$
 and $\underline{H}(\underline{x}_0, \lambda_0) = \underline{0}$.

Determine
$$(\underline{x}_{i+1}, \lambda_{i+1})$$
 with $\underline{H}(\underline{x}_{i+1}, \lambda_{i+1}) = \underline{0}$.

Stop, when $\lambda_m = 1$ yields.

$$\Rightarrow \underline{H}(\underline{x}_m, \underbrace{\lambda_m}_{=1}) = \underline{F}(\underline{x}_m) = \underline{0} \Rightarrow \underline{x}^* = \underline{x}_m.$$

Procedure:

Perform predictor-corrector steps

 \Rightarrow path $(x(s), \lambda(s)), s$ arc length.

Simple example $f(x) = 2x - 4 + sin(2\pi x),$ $x_0 = 0.5, \quad x^* = 2.$

Homotopy-iteration

Start with
$$(x_0, \underbrace{\lambda_0}_{=0})$$
 and $\underline{H}(\underline{x}_0, \lambda_0) = \underline{0}$.

Determine
$$(\underline{x}_{i+1}, \lambda_{i+1})$$
 with $\underline{H}(\underline{x}_{i+1}, \lambda_{i+1}) = \underline{0}$.

Stop, when $\lambda_m = 1$ yields.

$$\Rightarrow \underline{H}(\underline{x}_m, \underbrace{\lambda_m}_{=1}) = \underline{F}(\underline{x}_m) = \underline{0} \Rightarrow \underline{x}^* = \underline{x}_m.$$

Procedure:

Perform predictor-corrector steps

 \Rightarrow path $(\underline{x}(s), \lambda(s)), s$ arc length.

Simple example $f(x) = 2x - 4 + sin(2\pi x),$ $x_0 = 0.5, \quad x^* = 2.$

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

 $\underline{H}(\underline{x}(s),\lambda(s))=\underline{0}$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

 $J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$. Perform predictor step

$$\begin{pmatrix} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{pmatrix} = \begin{pmatrix} \underline{x}_{i} \\ \lambda_{i} \end{pmatrix} + \tau_{i} \cdot \underline{x}_{i},$$

 au_i step size, \underline{v}_i normalized direction.

FH Bielefeld University of Applied Sciences

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(x_{i+1}^{\#}, \lambda_{i+1}^{\#})$ until

 $\underline{H}(\underline{x}_{i+1}, \lambda_{i+1}) \approx \underline{0}$

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

 $J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$

 $J_{\underline{B}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$. Perform predictor step

$$\begin{pmatrix} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{pmatrix} = \begin{pmatrix} \underline{x}_{i} \\ \lambda_{i} \end{pmatrix} + \tau_{i} \cdot \underline{x}_{i},$$

 au_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(x_{i+1}^{\#}, \lambda_{i+1}^{\#})$ until

 $\underline{H}(\underline{x}_{i+1}, \lambda_{i+1}) \approx \underline{0}$

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}, \text{ Jacobian matrix of } \underline{H}(\underline{x},\lambda).$

Perform predictor step

 $\begin{pmatrix} x_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{pmatrix} = \begin{pmatrix} x_i \\ \lambda_i \end{pmatrix} + \tau_i \cdot y_i,$ tep size, v_i normalized direction.

lorrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#})$ until

 $\underline{H}(\underline{x}_{i+1}, \lambda_{i+1}) \approx \underline{0}.$

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

orrector step

Newton iteration steps with start values $(\underline{x}_{i+1}^{\#}, \lambda_{i+1}^{\#})$ until

 $\underline{H}(\underline{x}_{i+1}, \lambda_{i+1}) \approx \underline{0}$

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#},\lambda_{i+1}^{\#})$ until

 $\underline{H}(\underline{x}_{i+1},\lambda_{i+1}) \approx \underline{0}.$

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#},\lambda_{i+1}^{\#})$ until

 $\underline{H}(\underline{x}_{i+1},\lambda_{i+1}) \approx \underline{0}.$
Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#},\lambda_{i+1}^{\#})$ until

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#},\lambda_{i+1}^{\#})$ until

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#},\lambda_{i+1}^{\#})$ until

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#},\lambda_{i+1}^{\#})$ until

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#},\lambda_{i+1}^{\#})$ until

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#},\lambda_{i+1}^{\#})$ until

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#},\lambda_{i+1}^{\#})$ until

Calculating Homotopy Path $(\underline{x}(s), \lambda(s))$

Predictor step

$$\underline{H}(\underline{x}(s),\lambda(s)) = \underline{0}$$

$$\Rightarrow \frac{\partial \underline{H}}{\partial \underline{x}} \cdot \underline{x}'(s) + \frac{\partial \underline{H}}{\partial \lambda} \cdot \lambda'(s) = \underline{0}.$$

Solve linear system

$$J_{\underline{H}}(\underline{x}_i, \lambda_i) \cdot \underline{v}_i = \underline{0},$$

 $J_{\underline{H}} \in \mathbb{R}^{(n,n+1)}$, Jacobian matrix of $\underline{H}(\underline{x}, \lambda)$.

Perform predictor step

$$\left(\begin{array}{c} \underline{x}_{i+1}^{\#} \\ \lambda_{i+1}^{\#} \end{array}\right) = \left(\begin{array}{c} \underline{x}_{i} \\ \lambda_{i} \end{array}\right) + \tau_{i} \cdot \underline{v}_{i},$$

 τ_i step size, \underline{v}_i normalized direction.

Homotopy Path Calculation

Corrector step

Fix one coordinate, run Newton iteration steps with start values $(\underline{x}_{i+1}^{\#},\lambda_{i+1}^{\#})$ until

Problems in current implementation (To-Do-List):

- Determination of starting direction
 - For Newton-Homotopy try both directions
 For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
- Utilize Homotopy method for initialization

Provide better starting vector for iteration

FH Bielefeld University of Applied Sciences

Problems in current implementation (To-Do-List):

- Determination of starting direction
 - For Newton-Homotopy try both directions
 - For Fixpoint-Flomotopy only positive direction
- Improve scaling of iteration variables and equations
- Utilize Homotopy method for initialization
- Provide better starting vector for iteration

Problems in current implementation (To-Do-List):

- Determination of starting direction
 - For Newton-Homotopy try both directions
 - For Fixpoint-Homotopy only positive direction

Improve scaling of iteration variables and equations

Utilize Homotopy method for initialization

Provide better starting vector for iteration

FH Bielefeld

Problems in current implementation (To-Do-List):

- Determination of starting direction
 - For Newton-Homotopy try both directions
 - For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations

Utilize Homotopy method for initialization

Provide better starting vector for iteration

Problems in current implementation (To-Do-List):

- Determination of starting direction
 - For Newton-Homotopy try both directions
 - For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
 - Problems with differentiated variables

Utilize Homotopy method for initialization

Provide better starting vector for iteration

Problems in current implementation (To-Do-List):

- Determination of starting direction
 - For Newton-Homotopy try both directions
 - For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
 - Problems with differentiated variables
- Utilize Homotopy method for initialization

homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration

FH Bielefeld

Problems in current implementation (To-Do-List):

- Determination of starting direction
 - For Newton-Homotopy try both directions
 - For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
 - Problems with differentiated variables
- Utilize Homotopy method for initialization
 - Proper symbolic preparation of the operator homotopy(f(x),g(x))=0 necessary.

Provide better starting vector for iteration

FH Bielefeld University of

Problems in current implementation (To-Do-List):

- Determination of starting direction
 - For Newton-Homotopy try both directions
 - For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
 - Problems with differentiated variables
- Utilize Homotopy method for initialization
 - Proper symbolic preparation of the operator homotopy(f(x),g(x))=0 necessary.
- Provide better starting vector for iteration

FH Bielefeld

Applied Sciences

Problems in current implementation (To-Do-List):

- Determination of starting direction
 - For Newton-Homotopy try both directions
 - For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
 - Problems with differentiated variables
- Utilize Homotopy method for initialization
 - Proper symbolic preparation of the operator homotopy(f(x),g(x))=0 necessary.
- Provide better starting vector for iteration
 - Context-dependent extrapolation:

$$J_{fODE} = \left(\frac{fODE(\underline{x} + h\underline{e}_i) - fODE(\underline{x})}{h}\right)_{i=1\dots n}$$

OR: Generate symbolic Jacobians for all relevant cases

FH Bielefeld

Problems in current implementation (To-Do-List):

- Determination of starting direction
 - For Newton-Homotopy try both directions
 - For Fixpoint-Homotopy only positive direction
- Improve scaling of iteration variables and equations
 - Problems with differentiated variables
- Utilize Homotopy method for initialization
 - Proper symbolic preparation of the operator homotopy(f(x),g(x))=0 necessary.
- Provide better starting vector for iteration
 - Context-dependent extrapolation:

$$J_{fODE} = \left(\frac{fODE(\underline{x} + h\underline{e}_i) - fODE(\underline{x})}{h}\right)_{i=1...,i}$$

OR: Generate symbolic Jacobians for all relevant cases

FH Bielefeld University of

Methods for Solving Non-Linear Single Equations

Complex compositions are possible:

Methods for Solving Non-Linear Single Equations

Complex compositions are possible:

Methods for Solving Non-Linear Single Equations

- Already available for most of known functions:
 - quadratic functions: $ax^2 + bx + c$,
 - monomial functions: x^n ,
 - $\sin(x)$,
 - ► cos(x),
 - ▶ tan(x),
 - ► $\log(x)$,
 - $\triangleright \exp(x)$
 - $\triangleright \tanh(x),$
 - $\blacktriangleright \cosh(x),$
 - ▶
- Complex compositions are possible

Methods for Solving Non-Linear Single Equations

- Already available for most of known functions:
 - quadratic functions: $ax^2 + bx + c$,
 - monomial functions: x^n ,
 - ► sin(x),
 - ► cos(x),
 - ▶ tan(*x*),
 - ► log(x),
 - ► exp(x),
 - $\blacktriangleright \tanh(x)$
 - $\triangleright \cosh(x),$
 - ▶
- Complex compositions are possible

Methods for Solving Non-Linear Single Equations

- Already available for most of known functions:
 - quadratic functions: $ax^2 + bx + c$,
 - monomial functions: x^n ,
 - $\sin(x)$,
 - ► cos(x),
 - ▶ tan(*x*),
 - ► log(x),
 - ► exp(*x*),
 - ► tanh(*x*),
 - $\triangleright \cosh(x)$
 - ▶
- Complex compositions are possible

Methods for Solving Non-Linear Single Equations

- Already available for most of known functions:
 - quadratic functions: $ax^2 + bx + c$,
 - monomial functions: x^n ,
 - $\sin(x)$,
 - ► cos(x),
 - ▶ tan(*x*),
 - ► log(x),
 - ► exp(*x*),
 - ► tanh(*x*),
 - $\cosh(x)$,
- Complex compositions are possible

Methods for Solving Non-Linear Single Equations

- Already available for most of known functions:
 - quadratic functions: $ax^2 + bx + c$,
 - monomial functions: x^n ,
 - ► sin(x),
 - ► cos(x),
 - ▶ tan(*x*),
 - ► log(x),
 - ► exp(*x*),
 - ► tanh(x),
 - ► cosh(*x*),
 - ► ...
- Complex compositions are possible

Methods for Solving Non-Linear Single Equations

Symbolic inversion of non-linear functions in OpenModelica

- Already available for most of known functions:
 - quadratic functions: $ax^2 + bx + c$,
 - monomial functions: xⁿ,
 - $\sin(x)$,
 - ► cos(x),
 - ▶ tan(*x*),
 - ► log(x),
 - ► exp(*x*),
 - ► tanh(*x*),
 - $\cosh(x)$,
 - **۲**
- Complex compositions are possible:

 $a(t) \cdot f(x)^{p(t)} + b(t) \cdot f(x)^{\frac{p(t)}{2}} + c(t) = 0$

Methods for Solving Non-Linear Single Equations

 $a(t) \cdot f(x)^{y(t)} + b(t) \cdot f(x)^{\frac{y(t)}{2}} + c(t) = 0$

Methods for Solving Non-Linear Single Equations

▶ ...

Methods for Solving Non-Linear Single Equations

Quadratic equation

$$f(x) = a \cdot x^2 + b \cdot x + c = 0$$

Methods for Solving Non-Linear Single Equations

Quadratic equation

$$f(x) = a \cdot x^2 + b \cdot x + c = 0$$

Well-known solution formula

$$x_{1,2} = \begin{cases} \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a} & \text{if } a \neq 0\\ \frac{-c}{b} & \text{if } a = 0 \end{cases}$$

Solution
$$x = \min_{x^*} \left\{ |x^* - x_{old}| \mid x^* \in \{x_1, x_2\} \right\}$$

Methods for Solving Non-Linear Single Equations

Quadratic equation

$$f(x) = a \cdot x^2 + b \cdot x + c = 0$$

Numerically stable solution formula (Vieta)

$$x_1 = -\left(\frac{b + \operatorname{sign}(b) \cdot \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}\right)$$
$$x_2 = \frac{c}{a \cdot x_1}$$

$$x = \min_{x^*} \left\{ \left| x^* - x_{\mathsf{old}}
ight| \left| x^* \in \{x_1, x_2\}
ight\}$$

Methods for Solving Non-Linear Single Equations

Quadratic equation

$$f(x) = a \cdot x^2 + b \cdot x + c = 0$$

Numerically stable solution formula (Vieta)

$$x_{1} = -\left(\frac{b + \operatorname{sign}(b) \cdot \sqrt{b^{2} - 4 \cdot a \cdot c}}{2 \cdot a}\right)$$
$$x_{2} = \frac{c}{a \cdot x_{1}}$$

Solution

$$x = \min_{x^*} \left\{ \left| x^* - x_{\mathsf{old}} \right| \, \left| \, x^* \in \{x_1, x_2\} \right\} \right\}$$

Methods for Solving Non-Linear Single Equations

Generalization using substitution

$$a(t) \cdot f(x)^{y(t)} + b(t) \cdot f(x)^{\frac{y(t)}{2}} + c(t) = 0$$

Example

$$\sin\left(t\right) \cdot \log\left(x\right)^{2 \cdot n} + \cos\left(t\right) \cdot \log\left(x\right)^{n} + \exp\left(t\right) = 0$$

substitution:

$$\sin(t) \cdot z^{2} + \cos(t) \cdot z + \exp(t) = 0$$

where $z = \log(x)^n = \text{solveQE}(.)$.

$$\rightarrow x = \exp\left(\operatorname{sign}(z_{old}) \cdot \left|\operatorname{solveQE}(.)^{\frac{1}{n}}\right|\right)$$

Methods for Solving Non-Linear Single Equations

Generalization using substitution

$$a(t) \cdot f(x)^{y(t)} + b(t) \cdot f(x)^{\frac{y(t)}{2}} + c(t) = 0$$

Example

 $\sin(t) \cdot \log(x)^{2 \cdot n} + \cos(t) \cdot \log(x)^{n} + \exp(t) = 0$

substitution:

12 / 21

FH Bielefeld University of

Applied Sciences

Methods for Solving Non-Linear Single Equations

Generalization using substitution

$$a(t) \cdot f(x)^{y(t)} + b(t) \cdot f(x)^{\frac{y(t)}{2}} + c(t) = 0$$

Example

$$\sin(t) \cdot \log(x)^{2 \cdot n} + \cos(t) \cdot \log(x)^{n} + \exp(t) = 0$$

substitution:

$$\sin\left(t\right) \cdot z^{2} + \cos\left(t\right) \cdot z + \exp\left(t\right) = 0$$

where $z = \log(x)^n = \text{solveQE}(.)$.

Methods for Solving Non-Linear Single Equations

Generalization using substitution

$$a(t) \cdot f(x)^{y(t)} + b(t) \cdot f(x)^{\frac{y(t)}{2}} + c(t) = 0$$

Example

$$\sin(t) \cdot \log(x)^{2 \cdot n} + \cos(t) \cdot \log(x)^{n} + \exp(t) = 0$$

substitution:

$$\sin(t) \cdot z^{2} + \cos(t) \cdot z + \exp(t) = 0$$

where $z = \log(x)^n = \text{solveQE}(.)$.

$$\rightarrow x = \exp\left(\operatorname{sign}(z_{old}) \cdot \left|\operatorname{solveQE}(.)^{\frac{1}{n}}\right|\right)$$

Methods for Solving Non-Linear Single Equations

Methods for Solving Non-Linear Single Equations

Solution process

$$\sin(x) = y$$

$$x = \operatorname{asin}(y) + 2 \cdot k \cdot \pi, \qquad k \in \mathbb{Z}$$

$$x = -\operatorname{asin}(y) + (2 \cdot k + 1) \cdot \pi, \qquad k \in \mathbb{Z}$$

$$x = \min_{x^*} \left\{ \left| x^* - x_{\mathsf{old}} \right| \, \left| \, x^* \in \{x_1, x_2\} \right\} \right\}$$

Methods for Solving Non-Linear Single Equations

Solution process

$$\sin(x) = y$$

$$x_1 = \operatorname{asin}(y) + 2 \cdot k_1 \cdot \pi, \qquad k_1 \in \mathbb{Z}$$

$$x_2 = -\operatorname{asin}(y) + (2 \cdot k_2 + 1) \cdot \pi, \qquad k_2 \in \mathbb{Z}$$

$$k_{1} = \operatorname{round}\left(\frac{x_{\mathsf{old}} - \operatorname{asin}(y)}{2 \cdot \pi}\right)$$
$$k_{2} = \operatorname{round}\left(\frac{x_{\mathsf{old}} + \operatorname{asin}(y)}{2 \cdot \pi} - \frac{1}{2}\right)$$

Methods for Solving Non-Linear Single Equations

Solution process

$$\sin(x) = y$$

$$x_1 = \operatorname{asin}(y) + 2 \cdot k_1 \cdot \pi, \qquad k_1 \in \mathbb{Z}$$

$$x_2 = -\operatorname{asin}(y) + (2 \cdot k_2 + 1) \cdot \pi, \qquad k_2 \in \mathbb{Z}$$

$$k_{1} = \operatorname{round}\left(\frac{x_{\mathsf{old}} - \operatorname{asin}(y)}{2 \cdot \pi}\right)$$
$$k_{2} = \operatorname{round}\left(\frac{x_{\mathsf{old}} + \operatorname{asin}(y)}{2 \cdot \pi} - \frac{1}{2}\right)$$

Solution

$$x = \min_{x^*} \left\{ \left| x^* - x_{\mathsf{old}} \right| \, \middle| \, x^* \in \{x_1, x_2\} \right\}$$

Introduction to Cellier Tearing

Strong component

$f_1(x_3, x_4):$	$5x_3 + x_4 = 0$
$f_2(x_1, x_2):$	$x_1 + x_2 + time = 0$
$f_3(x_1, x_4):$	$\sin(x_1) - x_4 = 0$
$f_4(x_2, x_3):$	$2x_2 + x_3 = 0$

Introduction to Cellier Tearing

Strong component

$f_1(x_3, x_4):$	$5x_3 + x_4 = 0$
$f_2(x_1, x_2):$	$x_1 + x_2 + time = 0$
$f_3(x_1, x_4):$	$\sin(x_1) - x_4 = 0$
$f_4(x_2, x_3):$	$2x_2 + x_3 = 0$

- Tearing idea:
 - Select a set of tearing variables and treat them as known variables in the following
 - Transform the system to a sequentially evaluable one

Introduction to Cellier Tearing

Teared component

$f_1(x_3, x_4)$:	$5x_3 + x_4 = 0$
$f_2(x_1, x_2)$:	$\mathbf{x_1} + x_2 + time = 0$
$f_3(x_1, x_4)$:	$\sin(\mathbf{x_1}) - x_4 = 0$
$f_4(x_2, x_3)$:	$2x_2 + x_3 = 0$

- Tearing idea:
 - Select a set of tearing variables and treat them as known variables in the following
 - Transform the system to a sequentially evaluable one

Introduction to Cellier Tearing

Causalised component

 $f_{2}: x_{2} := -x_{1} - time$ $f_{4}: x_{3} := -2x_{2}$ $f_{1}: x_{4} := -5x_{3}$ $f_{3}: \sin(x_{1}) - x_{4} \stackrel{!}{=} 0 \quad (res)$

- Tearing idea:
 - Select a set of tearing variables and treat them as known variables in the following
 - Transform the system to a sequentially evaluable one

Introduction to Cellier Tearing

$$f_1: \quad x_1 + x_2 \cdot time = 0$$

$$f_2: \quad x_1 - x_3 \cdot \cos(time) = 0$$

$$f_3: \quad x_1 + x_2 + x_3 + 2x_4 + 4 = 0$$

$$f_4: \quad x_3 + x_4 + 2x_5 + 2 = 0$$

$$f_5: \quad x_4 - x_5 \cdot time - 2 \cdot time = 0$$

Introduction to Cellier Tearing

$$f_1: \quad x_1 + x_2 \cdot time = 0$$

$$f_2: \quad x_1 - x_3 \cdot \cos(time) = 0$$

$$f_3: \quad x_1 + x_2 + x_3 + 2x_4 + 4 = 0$$

$$f_4: \quad x_3 + x_4 + 2x_5 + 2 = 0$$

$$f_5: \quad x_4 - x_5 \cdot time - 2 \cdot time = 0$$

Introduction to Cellier Tearing

$$f_1: \quad x_1 + x_2 \cdot time = 0$$

$$f_2: \quad x_1 - x_3 \cdot \cos(time) = 0$$

$$f_3: \quad x_1 + x_2 + x_3 + 2x_4 + 4 = 0$$

$$f_4: \quad x_3 + x_4 + 2x_5 + 2 = 0$$

$$f_5: \quad x_4 - x_5 \cdot time - 2 \cdot time = 0$$

Introduction to Cellier Tearing

$$f_1: \quad x_1 + x_2 \cdot time = 0$$

$$f_2: \quad x_1 - x_3 \cdot \cos(time) = 0$$

$$f_3: \quad x_1 + x_2 + x_3 + 2x_4 + 4 = 0$$

$$f_4: \quad x_3 + x_4 + 2x_5 + 2 = 0$$

$$f_5: \quad x_4 - x_5 \cdot time - 2 \cdot time = 0$$

Introduction to Cellier Tearing

$$f_1: \quad x_1 + x_2 \cdot time = 0$$

$$f_2: \quad x_1 - x_3 \cdot \cos(time) = 0$$

$$f_3: \quad x_1 + x_2 + x_3 + 2x_4 + 4 = 0$$

$$f_4: \quad x_3 + x_4 + 2x_5 + 2 = 0$$

$$f_5: \quad x_4 - x_5 \cdot time - 2 \cdot time = 0$$

Introduction to Cellier Tearing

$$f_1: \quad x_1 + x_2 \cdot time = 0$$

$$f_2: \quad x_1 - x_3 \cdot \cos(time) = 0$$

$$f_3: \quad x_1 + x_2 + x_3 + 2x_4 + 4 = 0$$

$$f_4: \quad x_3 + x_4 + 2x_5 + 2 = 0$$

$$f_5: \quad x_4 - x_5 \cdot time - 2 \cdot time = 0$$

Introduction to Cellier Tearing

$$f_1: \quad x_1 + x_2 \cdot time = 0$$

$$f_2: \quad x_1 - x_3 \cdot \cos(time) = 0$$

$$f_3: \quad x_1 + x_2 + x_3 + 2x_4 + 4 = 0$$

$$f_4: \quad x_3 + x_4 + 2x_5 + 2 = 0$$

$$f_5: \quad x_4 - x_5 \cdot time - 2 \cdot time = 0$$

Introduction to Cellier Tearing

$$f_{1}: \quad \mathbf{x_{1}} + x_{2} \cdot time = 0$$

$$f_{2}: \quad \mathbf{x_{1}} - x_{3} \cdot \cos(time) = 0$$

$$f_{3}: \quad \mathbf{x_{1}} + x_{2} + x_{3} + 2x_{4} + 4 = 0$$

$$f_{4}: \quad x_{3} + x_{4} + 2x_{5} + 2 = 0$$

$$f_{5}: \quad x_{4} - x_{5} \cdot time - 2 \cdot time = 0$$

Introduction to Cellier Tearing

Introduction to Cellier Tearing

 $\rightarrow\,$ Division by zero $\qquad\Rightarrow\,$ Simulation failure

Consideration of Solvability

Example

$$f_{1}: \quad x_{1} + x_{2} \cdot time = 0$$

$$f_{2}: \quad x_{1} - x_{3} \cdot \cos(time) = 0$$

$$f_{3}: \quad x_{1} + x_{2} + x_{3} + 2x_{4} + 4 = 0$$

$$f_{4}: \quad x_{3} + x_{4} + 2x_{5} + 2 = 0$$

$$f_{5}: \quad x_{4} - x_{5} \cdot time - 2 \cdot time = 0$$

Consideration of Solvability

Example

$$f_{1}: \quad x_{1} + x_{2} \cdot time = 0$$

$$f_{2}: \quad x_{1} - x_{3} \cdot \cos(time) = 0$$

$$f_{3}: \quad x_{1} + x_{2} + x_{3} + 2x_{4} + 4 = 0$$

$$f_{4}: \quad x_{3} + x_{4} + 2x_{5} + 2 = 0$$

$$f_{5}: \quad x_{4} - x_{5} \cdot time - 2 \cdot time = 0$$

Consideration of Solvability

Example

$$f_{1}: \quad x_{1} + x_{2} \cdot time = 0$$

$$f_{2}: \quad x_{1} - x_{3} \cdot \cos(time) = 0$$

$$f_{3}: \quad x_{1} + x_{2} + x_{3} + 2x_{4} + 4 = 0$$

$$f_{4}: \quad x_{3} + x_{4} + 2x_{5} + 2 = 0$$

$$f_{5}: \quad x_{4} - x_{5} \cdot time - 2 \cdot time = 0$$

Consideration of Solvability

Example **f**₁: $x_1 + x_2 \cdot time = 0$ $f_2: x_1 - x_3 \cdot \cos(time) = 0$ $f_3: x_1 + x_2 + x_3 + 2x_4 + 4 = 0$ $f_4: x_3 + x_4 + 2x_5 + 2 = 0$

 $f_5: \quad x_4 - x_5 \cdot time - 2 \cdot time = 0$

Consideration of Solvability

Example

f_2 :	$x_1 = \mathbf{x_3} \cdot \cos(time)$	
f_3 :	$x_2 = -x_1 - x_3 - 2x_4 - 4$	
f_4 :	$x_5 = -\frac{x_3}{2} - \frac{x_4}{2} - 1$	
f 1 :	$x_1 + x_2 \cdot time \stackrel{!}{=} 0$	(res1)
f 5:	$\mathbf{x_4} - x_5 \cdot time - 2 \cdot time \stackrel{!}{=} 0$	(res2)

- In general: Bigger number of tearing variables with due regard to the solvability
- In this case: x_5 would have causalised the whole system
 - $\rightarrow\,$ Heuristic does not find the smallest possible tearing set necessarily

Consideration of Solvability

FH Bielefeld University of Applied Sciences

Problems in current implementation (To-Do-List):

• Improve performance for systems with dimensions greater than 200

 Inore sophistical hiliptementation (e. hash-tables)

Advanced solvability check

Introduce dynamic tearing techniques

Consideration of Solvability

FH Bielefeld University of Applied Sciences

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
 - More sophistical implementation (e.g. array hash-tables)
 - Investigate parallelization of algorithm
- Advanced solvability check

Introduce dynamic tearing techniques

Consideration of Solvability

FH Bielefeld University of Applied Sciences

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
 - More sophistical implementation (e.g. array hash-tables)
 - Investigate parallelization of algorithm

Advanced solvability check

Introduce dynamic tearing techniques

Consideration of Solvability

FH Bielefeld University of Applied Sciences

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
 - More sophistical implementation (e.g. array hash-tables)
 - Investigate parallelization of algorithm
- Advanced solvability check

Introduce dynamic tearing techniques

Consideration of Solvability

FH Bielefeld University of Applied Sciences

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
 - More sophistical implementation (e.g. array hash-tables)
 - Investigate parallelization of algorithm
- Advanced solvability check
 - Make use of expressionSolve module

Introduce dynamic tearing techniques.

Consideration of Solvability

FH Bielefeld University of Applied Sciences

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
 - More sophistical implementation (e.g. array hash-tables)
 - Investigate parallelization of algorithm
- Advanced solvability check
 - Make use of expressionSolve module
- Introduce dynamic tearing techniques

Consideration of Solvability

FH Bielefeld University of Applied Sciences

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
 - More sophistical implementation (e.g. array hash-tables)
 - Investigate parallelization of algorithm
- Advanced solvability check
 - Make use of expressionSolve module
- Introduce dynamic tearing techniques
 - E.g. change tearing set during simulation
 - Check on division by zero during simulation investigate proper and reduct outching
 - criteria

Consideration of Solvability

FH Bielefeld University of Applied Sciences

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
 - More sophistical implementation (e.g. array hash-tables)
 - Investigate parallelization of algorithm
- Advanced solvability check
 - Make use of expressionSolve module
- Introduce dynamic tearing techniques
 - E.g. change tearing set during simulation
 - Check on division by zero during simulation
 - Investigate proper and robust switching criteria

Consideration of Solvability

Problems in current implementation (To-Do-List):

- Improve performance for systems with dimensions greater than 200
 - More sophistical implementation (e.g. array hash-tables)
 - Investigate parallelization of algorithm
- Advanced solvability check
 - Make use of expressionSolve module
- Introduce dynamic tearing techniques
 - E.g. change tearing set during simulation
 - Check on division by zero during simulation
 - Investigate proper and robust switching criteria

With constraints for assignments:

FH Bielefeld University of

Applied Sciences
Current Status and Plans

FH Bielefeld University of Applied Sciences

- Preliminary functionality in OpenModelica 1.9.2beta
 - Option ~cseBinary: collects all binary common subexpression.
 - Option -cseCall: collects all multiple function calls.
 - Option -cseEachCall: extracts all function calls.
 - Works only for models with real subexpressions
 - Handles complex function calls involving return types like tuples, accays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems

Current Status and Plans

- Preliminary functionality in OpenModelica 1.9.2beta
 - Already efficient implementation using hash-tables,
 - Option –cseBinary: collects all binary common subexpress
 - Option -cseCal1: collects all multiple function calls
 - Option -cseEachCall: extracts all function calls,
 - Works only for models with real subexpressions
 - Handles complex function calls involving return types like tuples, arrays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems

Current Status and Plans

- Preliminary functionality in OpenModelica 1.9.2beta
 - Already efficient implementation using hash-tables,
 - ► Option -cseBinary: collects all binary common subexpression,
 - Option -cseEachCall: extracts all function calls,
 - Works only for models with real subexpressions
 - Handles complex function calls involving return types like tuples, arrays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems

Current Status and Plans

- Preliminary functionality in OpenModelica 1.9.2beta
 - Already efficient implementation using hash-tables,
 - ▶ Option -cseBinary: collects all binary common subexpression,
 - Option -cseCall: collects all multiple function calls,
 - Works only for models with real subexpressions,
 - Handles complex function calls involving return types like tuples, arrays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems

Current Status and Plans

- Preliminary functionality in OpenModelica 1.9.2beta
 - Already efficient implementation using hash-tables,
 - ▶ Option -cseBinary: collects all binary common subexpression,
 - Option -cseCall: collects all multiple function calls,
 - Option -cseEachCall: extracts all function calls,
 - Works only for models with real subexpressions,
 - Handles complex function calls involving return types like tuples, arrays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems

Current Status and Plans

- Preliminary functionality in OpenModelica 1.9.2beta
 - Already efficient implementation using hash-tables,
 - ▶ Option -cseBinary: collects all binary common subexpression,
 - Option -cseCall: collects all multiple function calls,
 - Option -cseEachCall: extracts all function calls,
 - Works only for models with real subexpressions,
 - Handles complex function calls involving return types like tuples, arrays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems

Current Status and Plans

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
 - Already efficient implementation using hash-tables,
 - ▶ Option -cseBinary: collects all binary common subexpression,
 - Option -cseCall: collects all multiple function calls,
 - Option -cseEachCall: extracts all function calls,
 - Works only for models with real subexpressions,
 - Handles complex function calls involving return types like tuples, arrays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems

Current Status and Plans

First investigations with a prototype CSE module

- Preliminary functionality in OpenModelica 1.9.2beta
 - Already efficient implementation using hash-tables,
 - ▶ Option -cseBinary: collects all binary common subexpression,
 - Option -cseCall: collects all multiple function calls,
 - Option -cseEachCall: extracts all function calls,
 - Works only for models with real subexpressions,
 - Handles complex function calls involving return types like tuples, arrays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)

Expected effects on non-linear equation systems

Current Status and Plans

- Preliminary functionality in OpenModelica 1.9.2beta
 - Already efficient implementation using hash-tables,
 - ▶ Option -cseBinary: collects all binary common subexpression,
 - Option -cseCall: collects all multiple function calls,
 - Option -cseEachCall: extracts all function calls,
 - Works only for models with real subexpressions,
 - Handles complex function calls involving return types like tuples, arrays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems

Current Status and Plans

- Preliminary functionality in OpenModelica 1.9.2beta
 - Already efficient implementation using hash-tables,
 - ▶ Option -cseBinary: collects all binary common subexpression,
 - Option -cseCall: collects all multiple function calls,
 - Option -cseEachCall: extracts all function calls,
 - Works only for models with real subexpressions,
 - Handles complex function calls involving return types like tuples, arrays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems
 - Structural change of algebraic loops

Current Status and Plans

- Preliminary functionality in OpenModelica 1.9.2beta
 - Already efficient implementation using hash-tables,
 - ▶ Option -cseBinary: collects all binary common subexpression,
 - Option -cseCall: collects all multiple function calls,
 - Option -cseEachCall: extracts all function calls,
 - Works only for models with real subexpressions,
 - Handles complex function calls involving return types like tuples, arrays, etc.,
 - Enormous performance increase detected (e.g. Modelica.Fluid)
- Expected effects on non-linear equation systems
 - Structural change of algebraic loops
 - Less computing effort due to code motion

Structural Changes of Strongly Connected Components

Original equations

$$-4 + v_1 \cdot f(v_1) + v_2 = source$$

$$2v_1 \cdot f(v_1) + v_2 + v_4 - v_3 = source$$

$$3v_1 \cdot f(v_1) - 7v_2 - 2v_3 + 3v_4 = 0$$

$$v_1 \cdot f(v_1) + v_2 - v_3 - v_4 = 0$$

Structural Changes of Strongly Connected Components

Original equations

$$-4 + v_1 \cdot f(v_1) + v_2 = source$$

$$2v_1 \cdot f(v_1) + v_2 + v_4 - v_3 = source$$

$$3v_1 \cdot f(v_1) - 7v_2 - 2v_3 + 3v_4 = 0$$

$$v_1 \cdot f(v_1) + v_2 - v_3 - v_4 = 0$$

Equations after tearing

SCC1	Non-linear tearing variables v1, v4
	v2 := source + 4 - v1 * f(v1)
	v3 := v2 - v4 + v1 * f(v1)
	res1 := 2.0 * v1 * f(v1) + v2 + v4 - v3 - source
	res2 := 3.0 * v1 * f(v1) + -7.0 * v2 + -2.0 * v3 + 3.0 * v4

Structural Changes of Strongly Connected Components

Original equations

$$\begin{aligned} -4 + v_1 \cdot f(v_1) + v_2 &= source \\ 2v_1 \cdot f(v_1) + v_2 + v_4 - v_3 &= source \\ 3v_1 \cdot f(v_1) - 7v_2 - 2v_3 + 3v_4 &= 0 \\ v_1 \cdot f(v_1) + v_2 - v_3 - v_4 &= 0 \end{aligned}$$

Equations after tearing

SCC1	Non-linear tearing variables v1, v4
	v2 := source + 4 - v1 * f(v1)
	v3 := v2 - v4 + v1 * f(v1)
	res1 := 2.0 * v1 * f(v1) + v2 + v4 - v3 - source
	res2 := 3.0 * v1 * f(v1) + -7.0 * v2 + -2.0 * v3 + 3.0 * v4

Equations after common subexpression elimination and tearing cse1 = f(v1)cse2 = v1 * cse1SCC1 Linear tearing variables v2, v4 cse2 = source + 4 - v2 $v_3 = c_{se2} + v_2 - v_4$ res1 := 2.0 * cse2 + v2 + v4 - v3 - sourceres2 := 3.0 * cse2 + -7.0 * v2 + -2.0 * v3 + 3.0 * v4SCC2 Non-linear tearing variable v1 cse1 := f(v1)res1 := cse2 - v1 * cse1

Performance Improvements Due to Code Motion

Original equations

$$\begin{split} & w = f_3(x, n) \\ & f_1(x, n) \cdot y + 1.1 \cdot f_2(x, n) \cdot \sinh(z) = 2 \\ & f_4(x, n) \cdot \sinh(y) + 1.1 \cdot f_4(x, n) \cdot z = \sinh(z) \\ & \det(x) = y \cdot z \end{split}$$

Performance Improvements Due to Code Motion

Original equations

$$\begin{split} & w = f_3(x, n) \\ & f_1(x, n) \cdot y + 1.1 \cdot f_2(x, n) \cdot \sinh(z) = 2 \\ & f_4(x, n) \cdot \sinh(y) + 1.1 \cdot f_4(x, n) \cdot z = \sinh(z) \\ & \det(x) = y \cdot z \end{split}$$

Equations after tearing

 SCC1*
 Non-linear iteration variables y, z

 res1 := f1(x, n) * y + 1.1 * f2(x, n) * sinh(z) - 2.0

 res2 := f4(x, n) * sinh(y) + 1.1 * f4(x, n) * z - sinh(z)

 SCC2*
 der(x) := y * z

 SCC3*
 w := f3(x, n)

Performance Improvements Due to Code Motion

Original equations

$$\begin{split} & w = f_3(x, n) \\ & f_1(x, n) \cdot y + 1.1 \cdot f_2(x, n) \cdot \sinh(z) = 2 \\ & f_4(x, n) \cdot \sinh(y) + 1.1 \cdot f_4(x, n) \cdot z = \sinh(z) \\ & \det(x) = y \cdot z \end{split}$$

Equations after tearing

SCC1 [*]	Non-linear iteration variables y, z
	res1 := f1(x, n) * y + 1.1 * f2(x, n) * sinh(z) - 2.0
	res2 := f4(x, n) * sinh(y) + 1.1 * f4(x, n) * z - sinh(z)
SCC2 [*]	der(x) := y * z
SCC3 [*]	w := f3(x, n)

Equations after code motion and tearing

SCC1 [#]	csel = fl(x, n)
SCC2 [#]	cse2 = f2(x, n)
SCC3 [#]	cse4 = f4(x, n)
SCC4 [#]	Non-linear iteration variables y, z
	cse5 :=sinh(y)
	cse6 :=sinh(z)
	res1 := cse1 * y + 1.1 * cse2 * cse6 - 2.0
	res2 := cse4 * cse5 + 1.1 * cse4 * z - cse6
SCC5 [#]	der(x) = y * z
SCC6 [#]	cse3 = f3(x, n)
SCC7 [#]	w = cse3

Outlook

Success consists of going from failure to failure without loss of enthusiasm.

Winston Churchill *1874 †1965