
Introduction Intuitive Semantics Implementation Outlook

State Machines in OpenModelica
Current Status and Further Development

Bernhard Thiele

PELAB
Linköping University

02. February 2015 - Open Modelica Annual Workshop

1 / 16

Introduction Intuitive Semantics Implementation Outlook

Goals of this presentation

Introduce Modelica state machines.

Describe the implementation approach.

Pros and cons of the current approach and further development
plans.

2 / 16

Introduction Intuitive Semantics Implementation Outlook

Motivation

Control application often consists of:
1 Data-flow parts 7→ block diagrams
2 System logic 7→ state machines

Previous state machine attempts were library based (e.g.,
StateGraph and StateGraph2 library)

However, Library based attempts not considered to be enough
powerful and convenient/safe to use

Now, Statechart like support is available as built-in language
feature

Hilding Elmqvist, Fabien Gaucher, Sven Erik Mattsson, Francois Dupont State Machines in Modelica . In 9th Int.

Modelica Conference, Munich, Germany, September 2012.

3 / 16

Introduction Intuitive Semantics Implementation Outlook

Motivation

Control application often consists of:
1 Data-flow parts 7→ block diagrams
2 System logic 7→ state machines

Previous state machine attempts were library based (e.g.,
StateGraph and StateGraph2 library)

However, Library based attempts not considered to be enough
powerful and convenient/safe to use

Now, Statechart like support is available as built-in language
feature

Hilding Elmqvist, Fabien Gaucher, Sven Erik Mattsson, Francois Dupont State Machines in Modelica . In 9th Int.

Modelica Conference, Munich, Germany, September 2012.

3 / 16

Introduction Intuitive Semantics Implementation Outlook

Motivation

Control application often consists of:
1 Data-flow parts 7→ block diagrams
2 System logic 7→ state machines

Previous state machine attempts were library based (e.g.,
StateGraph and StateGraph2 library)

However, Library based attempts not considered to be enough
powerful and convenient/safe to use

Now, Statechart like support is available as built-in language
feature

Hilding Elmqvist, Fabien Gaucher, Sven Erik Mattsson, Francois Dupont State Machines in Modelica . In 9th Int.

Modelica Conference, Munich, Germany, September 2012.

3 / 16

Introduction Intuitive Semantics Implementation Outlook

Motivation

Control application often consists of:
1 Data-flow parts 7→ block diagrams
2 System logic 7→ state machines

Previous state machine attempts were library based (e.g.,
StateGraph and StateGraph2 library)

However, Library based attempts not considered to be enough
powerful and convenient/safe to use

Now, Statechart like support is available as built-in language
feature

Hilding Elmqvist, Fabien Gaucher, Sven Erik Mattsson, Francois Dupont State Machines in Modelica . In 9th Int.

Modelica Conference, Munich, Germany, September 2012.

3 / 16

Introduction Intuitive Semantics Implementation Outlook

Simple Example

inner Integer i(start=0);

state1
outer output Integer i;
output Integer j(start=10);
i = previous(i) + 2;
j = previous(j) - 1;

state2
outer output Integer i;
i = previous(i) - 1;

i > 10

i < 1

0 10 20 30
0

5

10

time

va
lu

e

i state1.j

Equations are active if corresponding clock ticks. Defaults to a
periodic clock with 1.0s sampling period.

“i” is a shared variable, “j” is a local variable. Transitions are
“delayed” and enter states by “reset”.

4 / 16

Introduction Intuitive Semantics Implementation Outlook

Simple Example: Modelica Code
model Simple_NoAnnotations "Simple state machine"
inner Integer i(start=0);
block State1
outer output Integer i;
output Integer j(start=10);

equation
i = previous(i) + 2;
j = previous(j) - 1;

end State1;
State1 state1;
block State2
outer output Integer i;

equation
i = previous(i) - 1;

end State2;
State2 state2;

equation
transition(state1,state2,i > 10,immediate=false,
reset=true,synchronize=false,priority=1);

transition(state2,state1,i < 1,immediate=false,
reset=true,synchronize=false, priority=1);

initialState(state1);
end Simple_NoAnnotations;

5 / 16

Introduction Intuitive Semantics Implementation Outlook

M&R-Example: Hierarchical and Parallel Composition
inner Integer x(start=0);
inner Integer z(start=0);
inner Integer y(start=0);i

j

a

outer output Integer x;
inner outer output Integer y;
inner outer output Integer z;
x = previous(x) + 1;

c
outer output Integer y;
y = previous(y) + 1;

d
outer output Integer y;
y = previous(y) - 1;

e
outer output Integer z;
outer input Integer y;
z = previous(z) + y;

f
outer output Integer z;
outer input Integer y;
z = previous(z) - y;

y == 10

y == 0

z > 100

z < 50

b

outer output Integer x;
x = previous(x) - 1;

(z > 100 and i) or j

x == 0

Semantics of Modelica state machines (and example above) inspired by

Florence Maraninchi & Yann Rémond. Mode-Automata: a new domain-specific
construct for the development of safe critical systems . Science of Computer
Programming, 46:219–254, 2003.

and by Marc Pouzet’s language Lucid Synchrone 3.0.

6 / 16

Introduction Intuitive Semantics Implementation Outlook

Summary of intuitive semantics

Modelica state machines:

Extend on the synchronous language extension.

Support hierarchic and parallel composition of states, immediate
(strong) and delayed (weak) transitions, entering a state with
reset or resume of internal state memory (enter by history).

States are instances of ordinary blocks with data-flow equations.

Block instances become states if they appear as argument in
transition(..) or initialState(..) operators.

7 / 16

Introduction Intuitive Semantics Implementation Outlook

Summary of intuitive semantics

Modelica state machines:

Extend on the synchronous language extension.

Support hierarchic and parallel composition of states, immediate
(strong) and delayed (weak) transitions, entering a state with
reset or resume of internal state memory (enter by history).

States are instances of ordinary blocks with data-flow equations.

Block instances become states if they appear as argument in
transition(..) or initialState(..) operators.

7 / 16

Introduction Intuitive Semantics Implementation Outlook

Summary of intuitive semantics

Modelica state machines:

Extend on the synchronous language extension.

Support hierarchic and parallel composition of states, immediate
(strong) and delayed (weak) transitions, entering a state with
reset or resume of internal state memory (enter by history).

States are instances of ordinary blocks with data-flow equations.

Block instances become states if they appear as argument in
transition(..) or initialState(..) operators.

7 / 16

Introduction Intuitive Semantics Implementation Outlook

Summary of intuitive semantics

Modelica state machines:

Extend on the synchronous language extension.

Support hierarchic and parallel composition of states, immediate
(strong) and delayed (weak) transitions, entering a state with
reset or resume of internal state memory (enter by history).

States are instances of ordinary blocks with data-flow equations.

Block instances become states if they appear as argument in
transition(..) or initialState(..) operators.

7 / 16

Introduction Intuitive Semantics Implementation Outlook

Approach used for the OpenModelica Prototype

Front-end
 parsing &
 instantiation

Modelica state-
machine model

Flat model
equations AST

Back-end

State machine
elaboration

Data-flow AST

Reuse existing
equation
transformation &
code generation

Simulation
executable

State machine elaboration
State machine control structures are translated to
basic data-flow equations (AST transformation).

Inspired by (but simultaneously quite different to)

Jean-Louis Colaço, Bruno Pagano & Marc Pouzet. A
Conservative Extension of Synchronous Data-flow
with State Machines . In Proceedings of the 5th ACM
International Conference on Embedded Software,
2005.

8 / 16

Introduction Intuitive Semantics Implementation Outlook

State-Machine Elaboration

State machine structure identification

Flat model
equations AST
(from front-end)

Identify flat
state machines

Infer state
machine
composition

Annotate flat
state machines

Annotate Flat Automata
with semantic state
activation equations

Synthesize state
machine equations

Translate equations in
states to conditional
data-flow equations

Equation transformation

Search for initial states
and their associated states

Infer hierarchical and
parallel composition

Data-flow equations
AST(handled by exis-
ting back-end)

9 / 16

Introduction Intuitive Semantics Implementation Outlook

M&R-Example: Information Available in Flat Model AST
class MRExample "Flattened example from slide 6"
input Boolean i = true, j = false; // assume constant SM inputs
inner Integer x(start = 0), z(start = 0), y(start = 0);
inner outer output Integer a.y = y, a.z = z;
outer output Integer a.x = x, a.c.y = a.y, a.d.y = a.y;
outer output Integer a.e.z = a.z, a.f.z = a.z, b.x = x;

equation
initialState(a);
initialState(a.e);
initialState(a.c);
transition(a.e, a.f, a.z > 100, false, true, false, 1);
transition(a.f, a.e, a.z < 50, false, true, false, 1);
transition(a.c, a.d, a.y == 10, false, true, false, 1);
transition(a.d, a.c, a.y == 0, false, true, false, 1);
transition(a, b, z > 100 and i or j, false, true, false, 1);
transition(b, a, x == 0, false, false, false, 1);
a.c.y = 1 + previous(a.c.y);
a.d.y = -1 + previous(a.d.y);
a.e.z = previous(a.e.z) + a.y;
a.f.z = previous(a.f.z) - a.y;
a.x = 1 + previous(a.x);
b.x = -1 + previous(b.x);

end MRExample;

10 / 16

Introduction Intuitive Semantics Implementation Outlook

M&R-Example: State machine structure identification

1 Identify flat state machines by computing transitive closure over
transition relations:

Flat SM States
smOf.a a, b
smOf.a.c a.c, a.d
smOf.a.e a.e, a.f

2 Infer state machine composition (state refinements) from the list
of flat state machines:
RsmOf.a(a 7→ {RsmOf.a.c(a.c,a.d)||RsmOf.a.e(a.e,a.f)},b)

11 / 16

Introduction Intuitive Semantics Implementation Outlook

M&R-Example: Annotate flat state machines
Abridged and simplified activation equations for smOf.a:

constant Integer smOf.a.tTo[2] = {2,1}; // transition "to"
constant Integer smOf.a.tFrom[2] = {1,2}; // transition "from"
Boolean smOf.a.init(start=true) = false; // false except start value
// Ensure SM reset at first clock tick
Boolean smOf.a.reset := previous(smOf.a.init);
// delayed transitions
Boolean smOf.a.c[2] :=
{previous(z > 100 and i or j), previous(x == 0)};

// State update starts from previous active state
Integer smOf.a.selectedState :=
if smOf.a.reset then 1 else previous(activeState);

// If several can fire, the highest priority is chosen:
Integer smOf.a.fired := max({
if (smOf.a.tFrom[2] == smOf.a.selectedState
then smOf.a.c[2] else false) then 2 else 0,

if (if smOf.a.tFrom[1] == smOf.a.selectedState
then smOf.a.c[1] else false) then 1 else 0)}

// A reset forces the activeState to be the initial state
Integer smOf.a.activeState = if smOf.a.reset then 1
else (if smOf.a.fired > 0 then smOf.a.tTo[smOf.a.fired]
else smOf.a.selectedState);

12 / 16

Introduction Intuitive Semantics Implementation Outlook

M&R-Example: Synthesize state machine equations

1 Merge activation equation annotations of flat state machines and
add them to the flat equation AST.

2 Translate equations in states to conditional data-flow equations,
e.g.,:

x := if smOf.a.activeState == 1
then previous(x) + 1 else previous(x) - 1;

Note: Current prototype uses a workaround due to clocked
synchronous features not being implemented yet and wraps all SM
related equations in:

when sample(0, 1.0) then
x := if smOf.a.activeState == 1
then pre(x) + 1 else pre(x) - 1;

end when;

13 / 16

Introduction Intuitive Semantics Implementation Outlook

Current implementation pros and cons

Pros:

Implementation can be added to OMC in a modular manner (as
pre-optimization module in the back-end).

Remaining modules for equation sorting, optimization, and code
generation can be used without modification.

Cons:

State machine structure identification from the flat model AST
requires costly elaboration.

Activation equations lead to many new equations and variables
(costly in terms of performance and memory efficiency).

Extensive symbolic transformation complicates traceability and
leads to error messages that are not helpful.

14 / 16

Introduction Intuitive Semantics Implementation Outlook

Outlook

First state machine prototype (partial implementation of complete
semantics, about 3000 LoC) will be merged into the main
development branch in the coming weeks.

In parallel, ongoing implementation of clocked synchronous
constructs in OpenModelica ongoing at FH Bielefeld. Currently,
equation partitioning achieved.

Future challenges: Complete implementation, efficiency of
translation process and generated code, adequacy of translation
approach, traceability, error messages, debugging, hybrid state
machines . . .

15 / 16

Backup Slides

Specialities of the state machine semantics
Modelica state machine:

All variables in the state machine are on the same clock — this is in contrast to
to the Mode-Automata design paradigms where modes (≡ states) should
behave like clocks.

Consequently, variables of inactive states are accessible/readable whenever the
clock of the state machine ticks.

“Shared” variables are realized by instance hierarchy name lookup of “inner”
declarations with merging of variable definitions that correspond to
“outer output” declarations of (mutual exclusive) states. They are kept
constant if no defining state is active.

Non-normative specification text suggests the use of “inner outer output” for
intermediate instance levels of “shared” variables.

“Immediate” and “delayed” transitions are significant different to Lucid
Synchrone: All transitions are “immediate”, “delayed” transitions are
“immediate” transitions wrapped in a previous(..).

A “reset” will enforce the initial state to be active even if a transition from the
initial state could fire immediately.

16 / 16

	Introduction
	Intuitive Semantics
	Implementation
	Outlook
	Backup Slides

