
Exercise 6 - Models of
Population Dynamics and
Model Design using Tank
Systems
Models from the biology and population dynamics lecture, as well as tank models for Model
design lecture.

1Population Growth Model

* P - population size = number of individuals in a population
* der(P) - population change rate, change per time unit
* g - growth factor of population (e.g. % births per year)
* d - death factor of population (e.g. % deaths per year)

class PopulationGrowth
 parameter Real g = 0.04 "Growth factor of population";
 parameter Real d = 0.0005 "Death factor of population";
 Real P(start=10) "Population size, initially 10";
equation
 der(P) = (g-d)*P;
end PopulationGrowth;

Change the initial population size and growth and death factors to get an exponentially
decreasing population

simulate(PopulationGrowth, stopTime=100)

plot(P)

2Lotka-Volterra Fox and Rabbit Model
* R = rabbits = size of rabbit population
* F = foxes = size of fox population
* der(R) = der(rabbits) = change rate of rabbit population
* der(F) = der(foxes) = change rate of fox population
* gr = g_r = growth factor of rabbits
* df = d_f = death factor of foxes
* drf = d_rf = death factor of rabbits due to foxes
* gfr = g_rf = growth factor of foxes due to rabbits and foxes

1

class LotkaVolterra
 parameter Real g_r =0.04 "Natural growth rate for rabbits";
 parameter Real d_rf=0.0005 "Death rate of rabbits due to foxes";
 parameter Real d_f =0.09 "Natural deathrate for foxes";
 parameter Real g_fr=0.1 "Efficency in growing foxes from
rabbits";
 Real rabbits(start=700) "Rabbits,(R) with start population 700";
 Real foxes(start=10) "Foxes,(F) with start population 10";
equation
 der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes;
 der(foxes) = g_fr*d_rf*rabbits*foxes - d_f*foxes;
end LotkaVolterra;

Change the death and growth rates for foxes and rabbits, simulate, and observe the effects:

simulate(LotkaVolterra, stopTime=3000)

plot({rabbits, foxes}, xrange={0,1000})

3Tank Systems for Object-Oriented Modeling
Tank system including source and PI controller:

Exercises:
* Replace the PIcontinuous controller by the PIdiscrete controller and simulate. (see also the
book, page 461)
* Create a tank system of 3 connected tanks and simulate.

model TankPI
 LiquidSource source(flowLevel=0.02);
 PIcontinuousController piContinuous(ref=0.25);
 Tank tank(area=1);
equation
 connect(source.qOut, tank.qIn);
 connect(tank.tActuator, piContinuous.cOut);
 connect(tank.tSensor, piContinuous.cIn);
end TankPI;

The basic tank:

model Tank
 ReadSignal tSensor "Connector, sensor reading tank level (m)";
 ActSignal tActuator "Connector, actuator controlling input flow";
 LiquidFlow qIn "Connector, flow (m3/s) through input valve";
 LiquidFlow qOut "Connector, flow (m3/s) through output valve";
 parameter Real area(unit="m2") = 0.5;
 parameter Real flowGain(unit="m2/s") = 0.05;
 parameter Real minV=0, maxV=10; // Limits for output valve flow
 Real h(start=0.0, unit="m") "Tank level";
equation
 assert(minV>=0,"minV - minimum Valve level must be >= 0 ");//
 der(h) = (qIn.lflow-qOut.lflow)/area; // Mass balance
equation
 qOut.lflow = LimitValue(minV,maxV,-flowGain*tActuator.act);
 tSensor.val = h;
end Tank;

2

Connectors and Sources:

connector ReadSignal "Reading fluid level"
 Real val(unit="m");
end ReadSignal;

connector ActSignal "Signal to actuator
 for setting valve position"
 Real act;
end ActSignal;

connector LiquidFlow "Liquid flow at inlets or outlets"
 Real lflow(unit="m3/s");
end LiquidFlow;

model LiquidSource
 LiquidFlow qOut;
 parameter flowLevel = 0.02;
equation
 qOut.lflow = if time>150 then 3*flowLevel else flowLevel;
end LiquidSource;

Controllers:

partial model BaseController
 parameter Real Ts(unit = "s") = 0.1"Time period between discrete
samples";
 parameter Real K = 2"Gain";
 parameter Real T(unit = "s") = 10"Time constant";
 ReadSignal cIn"Input sensor level, connector";
 ActSignal cOut"Control to actuator, connector";
 parameter Real ref"Reference level";
 Real error"Deviation from reference level";
 Real outCtr"Output control signal";
equation
 error = ref - cIn.val;
 cOut.act = outCtr;
end BaseController;

PIcontinuous

model PIcontinuousController
 extends BaseController(K=2,T=10);
 Real x "State variable of continuous PI controller";
equation
 der(x) = error/T;
 outCtr = K*(error+x);
end PIcontinuousController;

PIDcontinuous

3

model PIDcontinuousController
 extends BaseController(K = 2, T = 10);
 Real x;
 Real y;
equation
 der(x) = error/T;
 y = T*der(error);
 outCtr = K*(error + x + y);
end PIDcontinuousController;

PIdiscrete

model PIdiscreteController
 extends BaseController(K = 2, T = 10);
 discrete Real x;
equation
 when sample(0, Ts) then
 x = pre(x) + error * Ts / T;
 outCtr = K * (x+error);
 end when;
end PIdiscreteController;

Tank System with continuous PID Controller

model TankPID
 LiquidSource source(flowLevel=0.02);
 PIDcontinuousController pidContinuous(ref=0.25);
 Tank tank(area=1);
equation
 connect(source.qOut, tank.qIn);
 connect(tank.tActuator, pidContinuous.cOut);
 connect(tank.tSensor, pidContinuous.cIn);
end TankPID;

simulate(TankPID, startTime=0, stopTime=1)

Two connected tanks:

model TanksConnectedPI
 LiquidSource source(flowLevel=0.02);
 Tank tank1(area=1), tank2(area=1.3);;
 PIcontinuousController piContinuous1(ref=0.25), piContinuous2
(ref=0.4);
equation
 connect(source.qOut,tank1.qIn);
 connect(tank1.tActuator,piContinuous1.cOut);
 connect(tank1.tSensor,piContinuous1.cIn);
 connect(tank1.qOut,tank2.qIn);
 connect(tank2.tActuator,piContinuous2.cOut);
 connect(tank2.tSensor,piContinuous2.cIn);
end TanksConnectedPI;

simulate(TankPID, startTime=0, stopTime=1)

4

