OpenModelica User’s Guide
Release v1.21.0-dev-386-g47499e64ec

Open Source Modelica Consortium

2023

1 Introduction

1.1
1.2
1.3
1.4

2.1
2.2
2.3

3.1

32

33

34

35

3.6

3.7

3.8

39

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32

System Overview
Interactive Session with Examples
Summary of Commands for the Interactive Session Handler
Running the compiler from command line

Package Management
Overview of Basic Modelica Package Management Concepts
The Package Manager
How the package index works

OMEdit — OpenModelica Connection Editor

Starting OMEdit
MainWindow & Browsers
Perspectives oL o
FileMenu.
EditMenu
ViewMenu
SSPMenu,
SimulationMenu,

Data Reconciliation

Sensitivity Optimization Menu
DebugMenu
ToolsMenu
HelpMenu

Modeling a Model
Simulating a Model

2DPlotting
Re-simulating a Model
3D Visualization
Animation of Realtime FMUs
Interactive Simulation
How to Create User Defined Shapes — Icons
Global head section in documentation
Options v v vt
__OpenModelica_commandLineOptions Annotation
__OpenModelica_simulationFlags Annotation
Global and Local Flags
Debugger
Editing Modelica Standard Library
Install Library
Convert Libraries using Conversion Scripts
State Machines
Using OMEdit as Text Editor

CONTENTS

......................... 59

10

11

12

13

3.33 Temporary Directory, Log Files and Working Directory
3.34 High DPISettings v i v v i e e e e e e e e e e e e e e e e e e e

2D Plotting
4.1 Exampleo e e e e
4.2 Plot Command Interface e e

Solving Modelica Models

5.1 Imtegration Methods e e e e e e e
522 DAEMode Simulation e e e e e e
5.3 Initialization L. e e e e e e e e e e e e e e
5.4 Algebraic SOIVErs o e e e e e e

Debugging
6.1 The Equation-based Debugger L
6.2 The Algorithmic Debugger L e

Porting Modelica libraries to OpenModelica

7.1 Mapping of the library on the filesystem
7.2 Modifiers forarrays L e e e e
7.3 Access to conditional components L. oLl
7.4 Access to classes defined in partial packages L L e
7.5 Equality operator in algorithms e e e e
7.6 Public non-input non-output variables in functions oL Lo
7.7 Subscripting of eXpressionso e e
7.8 Incomplete specification of initial conditions oL Lo
7.9 Modelica_LinearSystems2 Library o e e e e e e

Generating Graph Representations for Models

FMI and TLM-Based Simulation and Co-simulation of External Models

9.1 Functional Mock-up Interface -FMI 0 L o
9.2 Transmission Line Modeling (TLM) Based Co-Simulation
9.3 Composite Model Editing of External Models

OMSimulator

10.1 Introduction o i e e e e e e e e e e e e e e e e
10.2 OMSImulator o 0o e e e e
10.3 OMSimulatorLib o o e
10.4 OMSimulatorLua 0 e
10.5 OMSimulatorPython e
10.6 OpenModelicaScripting o o e e e e e
10.7 Graphical Modelling e e
10.8 SSP Support o e e e e e e e e e e

System Identification
I1.1 Examples oo o o e e e e
11.2 Pythonand C APL e e e e e e

OpenModelica Encryption

12.1 Encryptingthe Library e
12.2 Loading an Encrypted Library 0 . e e e
123 NOES . . o oo e e e e e e e e e e e e

OMNotebook with DrModelica and DrControl

13.1 Interactive Notebooks with Literate Programming
13.2 DrModelica Tutoring System — an Application of OMNotebook
13.3 DrControl Tutorial for Teaching Control Theory
13.4 OpenModelica Notebook Commands
13.5 References L

81
81
82

85
85
87
88
93

95
95
98

103
103
103
104
105
106
106
107
107
108

109

111
111
115
115

131
131
131
133
151
169
188
202
207

215
215
217

225
225
225
225

14

15

16

17

18

19

20

21

22

23

24

Optimization with OpenModelica

14.1 Built-in Dynamic Optimization using Annotationso
14.2 Built-in Dynamic Optimization using Optimica language extensions
14.3 Dynamic Optimization with OpenModelica and CasADi
14.4 Parameter Sweep Optimization using OMOptim

Parameter Sensitivities with OpenModelica
15.1 Single Parameter sensitivities with IDA/Sundials 00,
15.2 Single and Multi-parameter sensitivities with OMSens

PDEModelical

16.1 PDEModelical language elements i i e
16.2 LImitations o ot e e e e e e e e e e e e e
163 Viewingresults o L e e e e e

MDT - The OpenModelica Development Tooling Eclipse Plugin

17.1 Introduction 0 0 i e e e e e e e e e e e e e e e e
17.2 Installation e e e e e e e e e
17.3 Getting Started L L e e e e e e e e e e e e

MDT Debugger for Algorithmic Modelica
18.1 The Eclipse-based Debugger for Algorithmic Modelica.

Modelica Performance Analyzer

19.1 Profiling information for ProfilingTest
19.2 Genenerated JSON for the Example e
19.3 Using the Profiler from OMEdit

Simulation in Web Browser

Interoperability — C and Python

21.1 Calling External Cfunctions o o 0 i e e
21.2 Calling external Python Code from a Modelicamodel
21.3 Calling OpenModelica from PythonCode,

OpenModelica Python Interface and PySimulator

22.1 OMPython — OpenModelica Python Interface
22.2 Enhanced OMPython Features e e
223 PySimulator e e e e e e e

OMMatlab - OpenModelica Matlab Interface

23.1 Featuresof OMMatlab e
23.2 TestCommands i i i e e e e e e e e e e e
23.3 WorkDirectory e e e e e e e e
234 BuildModel L e e e
23.5 Standard get methods L L e e e e e e e
23.6 Usageof getMethods L L i e e e e e e
237 Standard setmethods L L e e e e e
23.8 UsageofsetMethods e
23.9 Advanced Simulation L e e e e e e e e e
23.10 Linearization o i e e e e e e e e e e e e e e e e
23.11 Usage of Linearization methods it i

OMJulia — OpenModelica Julia Scripting

24.1 Featuresof OMJulia e
242 TestCommands e e e e e e e
243 WOrkDIrectory o v i e e e e e e e e e e e e
244 BuildModel e
24.5 Standard get methods Ll
24.6 UsageofgetMethods e

251
251
261
263
268

275
275
277

291
291
292
292

293
293
293
294

309
309

317
318
320
321

323

325
325
327
328

331
331
334
338

339
339
339
341
341
341
341
343
344
344
345
345

347
347
347
349
349
349
349

25

26

27

28

29

30

31

32

247 Standard setmethods e e 351

24.8 Usageof setMethods o e e e e e e e 351
24,9 Advanced Simulation L e e e e 351
2410 Linearization v i i e e e e e e e e e e e e e e e e e e e 352
24.11 Usage of Linearizationmethods e 352
24.12 Sensitivity Analysiso e e e e e 352
2413 USAZE « « v v v o e 353
Jupyter-OpenModelica 355
Scripting API 357
26.1 OpenModelica Scripting Commands Lo 357
26.2 Simulation Parameter Sweep oL 428
2603 Exampleso e e e e e 428
OpenModelica Compiler Flags 433
27.1 OPHONS . . v v ot e e e e e e e e e e 433
27.2 Debugflags e e e e 451
27.3 Flags for Optimization Modules o e e 456
Small Overview of Simulation Flags 457
28.1 OpenModelica (C-runtime) Simulation Flags, 457
Technical Details 469
29.1 The MATv4 Result File Format e i e e e e e 469
Data Reconciliation 471
30.1 Objective of Data Reconciliation L 471
30.2 Defining the Data Reconciliation Problem in OpenModelica 471
30.3 Data Reconciliation Support in OMEdit e 475
30.4 Computing the Boundary Conditions from the Reconciled Values 481
30.5 Contacts . . . v i e e e e e e e e e e e e e e e 482
30.6 References e 482
Frequently Asked Questions (FAQ) 483
31.1 OpenModelicaGeneral L e 483
31.2 OMNotebook e 483
31.3 OMDeyv - OpenModelica Development Environment 484
Major OpenModelica Releases 485
32.1 Release Notes for OpenModelica 1.20.0 o o 485
32.2 Release Notes for OpenModelica 1.19.2 487
32.3 Release Notes for OpenModelica 1.19.0 i i 487
32.4 Release Notes for OpenModelica 1.18.0 488
32.5 Release Notes for OpenModelica 1.17.0 o o il 489
32.6 Release Notes for OpenModelica 1.16.5 491
32.7 Release Notes for OpenModelica 1.16.4 s 491
32.8 Release Notes for OpenModelica 1.16.2 ittt i et 491
32.9 Release Notes for OpenModelica 1.16.1 o i 491
32.10 Release Notes for OpenModelica 1.16.0 o ... 492
32.11 Release Notes for OpenModelica 1.14.2 i 493
32.12 Release Notes for OpenModelica 1.14.0 o o o i 493
32.13 Release Notes for OpenModelica 1.13.0 it e et 494
32.14 Release Notes for OpenModelica 1.12.0 0 o v it e e 495
32.15 Release Notes for OpenModelica 1.11.0 o oo 497
32.16 Release Notes for OpenModelica 1.10.0 e 499
32.17 Release Notes for OpenModelica 1.9.4 499
32.18 Release Notes for OpenModelica 1.9.3 500
32.19 Release Notes for OpenModelica 1.9.2 e 501

32.20 Release Notes for OpenModelica 1.9.1
32.21 Release Notes for OpenModelica 1.9.0 e
32.22 Release Notes for OpenModelica 1.8.1
32.23 OpenModelica 1.8.0, November 2011
32.24 OpenModelica 1.7.0, April 2011 o . o e e
32.25 OpenModelica 1.6.0, November 2010 o e
32.26 OpenModelica 1.5.0, July 2010 o o e e e e
32.27 OpenModelica 1.4.5, January 2009 e e e e
32.28 OpenModelica 1.4.4, Feb 2008 e
32.29 OpenModelica 1.4.3,June 2007 o 0 i e e e e e
32.30 OpenModelica 1.4.2, October 2006 vttt
32.31 OpenModelica 1.4.1,June 2006 o e
32.32 OpenModelica 1.4.0, May 2006 i i i e e e e e e e e
32.33 OpenModelica 1.3.1, November 2005 e

33 Contributors to OpenModelica
33.1 OpenModelica Contributors 2015 e e e e
33.2 OpenModelica Contributors 2014 e
33.3 OpenModelica Contributors 2013 e
33.4 OpenModelica Contributors 2012 L e
33.5 OpenModelica Contributors 2011 e
33.6 OpenModelica Contributors 2010 o i e e e
33.7 OpenModelica Contributors 2009 e e e e
33.8 OpenModelica Contributors 2008
33.9 OpenModelica Contributors 2007 e e e e e
33.10 OpenModelica Contributors 2006 L e
33.11 OpenModelica Contributors 2005 0 it e e e e e e e
33.12 OpenModelica Contributors 2004 0 i e e e e
33.13 OpenModelica Contributors 2003 e
33.14 OpenModelica Contributors 2002 oo e e e e e
33.15 OpenModelica Contributors 2001 e
33.16 OpenModelica Contributors 2000 0 i i e e e e e e
33.17 OpenModelica Contributors 1999 e
33.18 OpenModelica Contributors 1998 L o

Bibliography

Index

Vi

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

Generated on 2023-03-25 at 08:34

Copyright © 1998-2023 Open Source Modelica Consortium (OSMC)
c/o Link&pings universitet, Department of Computer and Information Science
SE-58183 Linkoping, Sweden

(o). @

This work is licensed under a Creative Commons Attribution 4.0 International License.

This document is part of OpenModelica: https://www.openmodelica.org Contact: OpenModelica@ida.liu.se
Modelica® is a registered trademark of the Modelica Association, https://www.Modelica.org
Mathematica® is a registered trademark of Wolfram Research Inc, http://www.wolfram.com

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

CONTENTS 1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.openmodelica.org
mailto:OpenModelica@ida.liu.se
https://www.Modelica.org
http://www.wolfram.com

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The 0penM°de"cq system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica lan-
guage, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for development
and execution of both low level and high level numerical algorithms, e.g. for control system design, solving
nonlinear equation systems, or to develop optimization algorithms that are applied to complex applications.

The long-term goal is to have a complete reference implementation of the Modelica language, including
simulation of equation based models and additional facilities in the programming environment, as well
as convenient facilities for research and experimentation in language design or other research activities.
However, our goal is not to reach the level of performance and quality provided by current commercial
Modelica environments that can handle large models requiring advanced analysis and optimization by the
Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a Modelica
environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic semantics.
Such a specification can be used to assist current and future Modelica implementers by providing a semantic
reference, as a kind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by gen-
erating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier to
use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.

Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be submit-
ted to the Modelica Association for consideration regarding possible inclusion in the official Modelica standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and function
parts of Modelica to be executed interactively, as well as equation models and Modelica functions to be compiled
into efficient C code. The generated C code is combined with a library of utility functions, a run-time library, and
a numerical DAE solver.

https://openmodelica.org

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1.1.

MDT Eclipse Plugir

Editor/Browser

GraphicalModel
Editor/Browser

3
OMODfi Interactive t
ptim sessionhandler
Optimization —— Mo-gee)l(téglitor
Subsystem
OMNotebook _
DrModelica Execution Model_lca
Model Editor Compiler
Modelica
Debugger

Figure 1.1: The architecture of the OpenModelica environment. Arrows denote data and control flow. The inter-
active session handler receives commands and shows results from evaluating commands and expressions that are
translated and executed. Several subsystems provide different forms of browsing and textual editing of Modelica
code. The debugger currently provides debugging of an extended algorithmic subset of Modelica.

The following subsystems are currently integrated in the OpenModelica environment:

* An interactive session handler, that parses and interprets commands and Modelica expressions for evalua-
tion, simulation, plotting, etc. The session handler also contains simple history facilities, and completion of
file names and certain identifiers in commands.

A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing definitions
of classes, functions, and variables. Such definitions can be predefined, user-defined, or obtained from
libraries. The compiler also includes a Modelica interpreter for interactive usage and constant expression
evaluation. The subsystem also includes facilities for building simulation executables linked with selected
numerical ODE or DAE solvers.

An execution and run-time module. This module currently executes compiled binary code from translated
expressions and functions, as well as simulation code from equation based models, linked with numerical
solvers. In the near future event handling facilities will be included for the discrete and hybrid parts of the
Modelica language.

Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling) provides
file and class hierarchy browsing and text editing capabilities, rather analogous to previously described
Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse framework has
the advantage of making it easier to add future extensions such as refactoring and cross referencing support.

OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor, compared
to the more advanced Mathematica notebooks available in MathModelica. This basic functionality still
allows essentially the whole DrModelica tutorial to be handled. Hierarchical text documents with chapters
and sections can be represented and edited, including basic formatting. Cells can contain ordinary text
or Modelica models and expressions, which can be evaluated and simulated. However, no mathematical
typesetting facilities are yet available in the cells of this notebook editor.

Graphical model editor/browser OMEdit. This is a graphical connection editor, for component based model
design by connecting instances of Modelica classes, and browsing Modelica model libraries for reading and
picking component models. The graphical model editor also includes a textual editor for editing model class
definitions, and a window for interactive Modelica command evaluation.

Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

* Optimization subsystem OMOptim. This is an optimization subsystem for OpenModelica, currently for
design optimization choosing an optimal set of design parameters for a model. The current version has a
graphical user interface, provides genetic optimization algorithms and Pareto front optimization, works in-
tegrated with the simulators and automatically accesses variables and design parameters from the Modelica
model.

* Dynamic Optimization subsystem. This is dynamic optimization using collocation methods, for Model-
ica models extended with optimization specifications with goal functions and additional constraints. This
subsystem is integrated with in the OpenModelica compiler.

* Modelica equation model debugger. The equation model debugger shows the location of an error in the
model equation source code. It keeps track of the symbolic transformations done by the compiler on the
way from equations to low-level generated C code, and also explains which transformations have been done.

* Modelica algorithmic code debugger. The algorithmic code Modelica debugger provides debugging for an
extended algorithmic subset of Modelica, excluding equation-based models and some other features, but in-
cluding some meta-programming and model transformation extensions to Modelica. This is a conventional
full-feature debugger, using Eclipse for displaying the source code during stepping, setting breakpoints, etc.
Various back-trace and inspection commands are available. The debugger also includes a data-view browser
for browsing hierarchical data such as tree- or list structures in extended Modelica.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell. Most of these examples are also available in the OMNotebook with
DrModelica and DrControl UsersGuideExamples.onb as well as the testmodels in:

>>> getInstallationDirectoryPath() + "/share/doc/omc/testmodels/"
"«OPENMODELICAHOME»/share/doc/omc/testmodels/"

The following commands were run using OpenModelica version:

>>> getVersion ()
"OMCompiler v1.21.0-dev.386+g47499e64ec"

1.2.1 Starting the Interactive Session

Under Windows, go to the Start Menu and run OpenModelica->OpenModelica Shell which responds with an
interaction window.

Under Linux, run OMShell-terminal to start the interactive session at the prompt.

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored in
the variable x. The value of the expression is returned.

>>> x 1= 1:12
{1,2,3,4,5,6,7,8,9,10,11,12}

1.2.2 Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make load classes and execute
commands. Here we give a few example sessions.

1.2. Interactive Session with Examples 5

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

Example Session 1

>>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}

>>> instantiateModel (&)

nmn

"[<interactive>:1:9-1:23:writable] Error: Type mismatch in binding t = 1.5
—expected subtype of Integer, got type Real.

n

[

Example Session 2

If you do not see the error-message when running the example, use the command getErrorString ().

model C
Integer a;
Real b;
equation
der(a) = b; // der(a) is illegal since a 1is not a Real number
der (b) 12.0;
end C;

>>> instantiateModel (C)
nn

Error:

[<interactive>:5:3-5:13:writable] Error: Argument ‘a‘ of der is not differentiable.

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly giving the
command:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—bubblesort.mo")
true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned to-
gether with its type. Note that the result vector is of type Real[:], instantiated as Real[12], since this is the declared
type of the function result. The input Integer vector was automatically converted to a Real vector according to
the Modelica type coercion rules. The function is automatically compiled when called if this has not been done
before.

>>> bubblesort (x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>>> bubblesort ({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

6 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

1.2.4 Trying the system and cd Commands

It is also possible to give operating system commands via the system utility function. A command is provided as
a string argument. The example below shows the system utility applied to the UNIX command cat, which here
outputs the contents of the file bubblesort.mo to the output stream when running omc from the command-line.

>>> gystem("cat '"+getInstallationDirectoryPath()+"/share/doc/omc/testmodels/
—bubblesort.mo' > bubblesort.mo")
0

function bubblesort

input Real[:] x;

output Real[size(x,1)] y;
protected

Real t;
algorithm

Yy T X

for i in l:size(x,1l) loop

for j in 1l:size(x,1) loop
if y[i] > yI[J] then

t o= ylil;
y[i] = y[31;
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

Note: The output emitted into stdout by system commands is put into log-files when running the CORBA-based
clients, not into the visible GUI windows. Thus the text emitted by the above cat command would not be returned,
which is why it is redirected to another file.

A better way to read the content of files would be the readFile command:

>>> readFile ("bubblesort.mo")
function bubblesort

input Real[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

y 1= X

for i in 1l:size(x,1) loop

for j in 1l:size(x,1) loop
if y[i] > y[Jj] then

t o= ylil;
yl[il = y[3];
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

The system command only returns a success code (0 = success).

>>> sgystem("dir")

0

>>> system("Non-existing command")
127

Another built-in command is cd, the change current directory command. The resulting current directory is returned
as a string.

1.2. Interactive Session with Examples 7

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

>>> dir:=cd ()

"«DOCHOME»"

>>> cd("source")

"«DOCHOME»/source"

>>> cd(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/")
"/var/lib/jenkinsl/ws/CMake_builds/z-experiment/build/share/doc/omc/testmodels"
>>> cd(dir)

"«DOCHOME»"

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

>>> loadModel (Modelica, {"3.2.3"})
true

We also load a file containing the decmotor model:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/dcmotor.mo
<y ")

true

Note:

Notification: demotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

It is simulated:

>>> gimulate (dcmotor, startTime=0.0, stopTime=10.0)
record SimulationResult

resultFile = "«DOCHOME»/dcmotor_ res.mat",

simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'dcmotor', options = '', |
—outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.125927553,

timeBackend = 0.015697583,
timeSimCode = 0.00408556,
timeTemplates = 0.04907636200000001,

timeCompile = 0.646065729,

timeSimulation = 0.02291718,

timeTotal = 0.8639451149999999
end SimulationResult;

Note:

Notification: demotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

‘We list the source code of the model:

>>> list (dcmotor)
model dcmotor

(continues on next page)

8 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

import Modelica.Electrical.Analog.Basic;

Basic.Resistor resistorl (R = 10);

Basic.Inductor inductorl(L = 0.2, i.fixed = true);

Basic.Ground groundl;

Modelica.Mechanics.Rotational.Components.Inertia load(J = 1, phi.fixed = true, w.
—~fixed = true);

Basic.EMF emfl(k = 1.0);

Modelica.Blocks.Sources.Step stepl;

Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltagel;

equation

connect (stepl.y, signalVoltagel.v);
connect (signalVoltagel.p, resistorl.p);
connect (resistorl.n, inductorl.p);
connect (inductorl.n, emfl.p);
connect (emfl.flange, load.flange_a);
connect (signalVoltagel.n, groundl.p);
connect (groundl.p, emfl.n);
annotation (

uses (Modelica (version = "3.2.2")));

end dcmotor;

‘We test code instantiation of the model to flat code:

>>> instantiateModel (dcmotor)
class dcmotor

parameter Real resistorl.R(quantity = "Resistance", unit = "Ohm", start = 1.0) =
—10.0 "Resistance at temperature T_ref";

parameter Real resistorl.T_ref (quantity = "ThermodynamicTemperature", unit = "K",
— displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = 300.15
—"Reference temperature";

parameter Real resistorl.alpha(quantity = "LinearTemperatureCoefficient", unit =
—"1/K") = 0.0 "Temperature coefficient of resistance (R_actual = Rx (1 + alphax (T_
—heatPort - T_ref))";

Real resistorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of |
—the two pins (= p.v - n.v)";

Real resistorl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from_
—pin p to pin n";

Real resistorl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real resistorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing
—into the pin";

Real resistorl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real resistorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing,
—into the pin";

final parameter Boolean resistorl.useHeatPort = false "=true, if heatPort is_
—~enabled";

parameter Real resistorl.T(quantity = "ThermodynamicTemperature", unit = "K",
—~displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = resistorl.T_
—ref "Fixed device temperature if useHeatPort = false";

Real resistorl.LossPower (quantity = "Power", unit = "W") "Loss power leaving,
—component via heatPort";

Real resistorl.T_heatPort (quantity = "ThermodynamicTemperature", unit = "K", |
—displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) "Temperature
—~of heatPort";

Real resistorl.R_actual (quantity = "Resistance", unit = "Ohm") "Actual_
—resistance = Rx (1l + alphax (T_heatPort - T_ref))";

Real inductorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of_
—the two pins (= p.v - n.v)";

Real inductorl.i(quantity = "ElectricCurrent", unit = "A", start = 0.0, fixed =

—true) "Current flowing from pin p to pin n";

(continues on next page)

1.2. Interactive Session with Examples 9

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

Real inductorl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real inductorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_
—into the pin";

Real inductorl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real inductorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing
—into the pin";

parameter Real inductorl.L(quantity = "Inductance", unit = "H", start = 1.0) = 0.
—2 "Inductance";

Real groundl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real groundl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into,
—the pin";

Real load.flange_a.phi (quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_a.tau(gquantity = "Torque", unit = "N.m") "Cut torque in the_
—flange";

Real load.flange_b.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_b.tau(quantity = "Torque", unit = "N.m") "Cut torque in the_
—flange";

parameter Real load.J(quantity = "MomentOfInertia", unit = "kg.m2", min = 0.0,
—start = 1.0) = 1.0 "Moment of inertia";

final parameter enumeration (never, avoid, default, prefer, always) load.
—stateSelect = StateSelect.default "Priority to use phi and w as states";

Real load.phi(quantity = "Angle", unit = "rad", displayUnit = "deg", fixed =
—true, stateSelect = StateSelect.default) "Absolute rotation angle of component";

Real load.w(quantity = "AngularVelocity", unit = "rad/s", fixed = true,
—stateSelect = StateSelect.default) "Absolute angular velocity of component (=
—der (phi))";

Real load.a(quantity = "AngularAcceleration", unit = "rad/s2") "Absolute angular,
—acceleration of component (= der(w))";

final parameter Boolean emfl.useSupport = false "= true, if support flange_
—enabled, otherwise implicitly grounded";

parameter Real emfl.k(quantity = "ElectricalTorqueConstant", unit = "N.m/A",
—~start = 1.0) = 1.0 "Transformation coefficient";

Real emfl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop between_
—the two pins";

Real emfl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from,
—positive to negative pin";

Real emfl.phi (quantity = "Angle", unit = "rad", displayUnit = "deg") "Angle of |
—shaft flange with respect to support (= flange.phi - support.phi)";

Real emfl.w(quantity = "AngularVelocity", unit = "rad/s") "Angular velocity of
—flange relative to support";

Real emfl.tau(quantity = "Torque", unit = "N.m") "Torque of flange";

Real emfl.tauElectrical (quantity = "Torque", unit = "N.m") "Electrical torque";

Real emfl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into
—the pin";

Real emfl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into
—the pin";

Real emfl.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real emfl.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange
=";

protected parameter Real emfl.fixed.phiO (quantity = "Angle", unit = "rad",_
—displayUnit = "deg") = 0.0 "Fixed offset angle of housing";

protected Real emfl.fixed.flange.phi (quantity = "Angle", unit = "rad",
—displayUnit = "deg") "Absolute rotation angle of flange";

(continues on next page)

10 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

protected Real emfl.fixed.flange.tau(quantity = "Torque", unit = "N.m") "Cut_
—torque in the flange";

protected Real emfl.internalSupport.tau(quantity = "Torque", unit = "N.m") = -
—emfl.tau "External support torque (must be computed via torque balance in model_
—where InternalSupport is used; = flange.tau)";

protected Real emfl.internalSupport.phi(quantity = "Angle", unit = "rad",
—displayUnit = "deg") "External support angle (= flange.phi)";

protected Real emfl.internalSupport.flange.phi (quantity = "Angle", unit = "rad",
—displayUnit = "deg") "Absolute rotation angle of flange";

protected Real emfl.internalSupport.flange.tau(quantity = "Torque", unit = "N.m
—") "Cut torque in the flange";

parameter Real stepl.height = 1.0 "Height of step";
Real stepl.y "Connector of Real output signal";
parameter Real stepl.offset = 0.0 "Offset of output signal y";

parameter Real stepl.startTime (quantity = "Time", unit = "s") = 0.0 "Output y =,
—~offset for time < startTime";

Real signalVoltagel.p.v(quantity = "ElectricPotential", unit = "V") "Potential,
—at the pin";

Real signalVoltagel.p.i(quantity = "ElectricCurrent"”, unit = "A") "Current,_

—flowing into the pin";

Real signalVoltagel.n.v(quantity = "ElectricPotential", unit = "V") "Potential
—at the pin";

Real signalVoltagel.n.i(quantity = "ElectricCurrent"”, unit = "A") "Current
—~flowing into the pin";

Real signalVoltagel.v(unit = "V") "Voltage between pin p and n (= p.v — n.v) as,
—input signal";

Real signalVoltagel.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_

—from pin p to pin n";
equation
emfl.internalSupport.flange.phi = emfl.fixed.flange.phi;
stepl.y = signalVoltagel.v;
signalVoltagel.p.v = resistorl.p.v;
resistorl.n.v = inductorl.p.v;
inductorl.n.v = emfl.p.v;
emfl.flange.phi = load.flange_a.phi;
groundl.p.v = emfl.n.v;
groundl.p.v = signalVoltagel.n.v;
inductorl.p.i + resistorl.n.i = 0.0;
emfl.p.i + inductorl.n.i = 0.0;
load.flange_b.tau = 0.0;
emfl.flange.tau + load.flange_a.tau = 0.0;
emfl.internalSupport.flange.tau + emfl.fixed.flange.tau = 0.0;
signalVoltagel.p.1i + resistorl.p.i = 0.0;
signalVoltagel.n.i + emfl.n.i + groundl.p.i = 0.0;
assert (1.0 + resistorl.alpha * (resistorl.T_heatPort - resistorl.T_ref) >= le-15,
— "Temperature outside scope of model!");
resistorl.R_actual = resistorl.R % (1.0 + resistorl.alpha * (resistorl.T_
—heatPort - resistorl.T_ref));
resistorl.v = resistorl.R_actual *» resistorl.i;
resistorl.LossPower = resistorl.v * resistorl.i;
resistorl.T_heatPort = resistorl.T;
resistorl.v = resistorl.p.v - resistorl.n.v;
0.0 = resistorl.p.i + resistorl.n.i;
resistorl.i = resistorl.p.i;
inductorl.L % der (inductorl.i) = inductorl.v;
inductorl.v = inductorl.p.v - inductorl.n.v;
0.0 = inductorl.p.i + inductorl.n.i;
inductorl.i = inductorl.p.i;
groundl.p.v = 0.0;
load.phi = load.flange_a.phi;
load.phi = load.flange_b.phi;

(continues on next page)

1.2. Interactive Session with Examples 11

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

load.w = der(load.phi);

load.a = der(load.w);

load.J % load.a = load.flange_a.tau + load.flange_b.tau;
emfl.fixed.flange.phi = emfl.fixed.phiO;
emfl.internalSupport.flange.tau = emfl.internalSupport.tau;
emfl.internalSupport.flange.phi = emfl.internalSupport.phi;
emfl.v = emfl.p.v — emfl.n.v;

0.0 = emfl.p.i + emfl.n.i;

emfl.i = emfl.p.1i;

emfl.phi = emfl.flange.phi - emfl.internalSupport.phi;
emfl.w = der (emfl.phi);

emfl.k » emfl.w = emfl.v;
emfl.tau = -emfl.k » emfl.i;
emfl.tauElectrical = -emfl.tau;

emfl.tau = emfl.flange.tau;
stepl.y = stepl.offset + (if time < stepl.startTime then 0.0 else stepl.height);
signalVoltagel.v = signalVoltagel.p.v - signalVoltagel.n.v;
0.0 = signalvVoltagel.p.i + signalVoltagel.n.i;
signalVoltagel.i = signalVoltagel.p.i;
end dcmotor;

Note:

Notification: dcmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

We plot part of the simulated result:

T
load.w
load.phi

15 1

0.5]

Figure 1.2: Rotation and rotational velocity of the DC motor

12 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation result
variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
keywords have been bold-faced by hand for better readability):

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")
true

>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;
equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der (v) = if flying then -g else 0;
der (h) = v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge (impact) then -expre(v) else 0;
flying = v_new > 0O;
reinit (v, v_new);
end when;
end BouncingBall;

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos (Modelica script)
file sim_BouncingBall.mos that contains these commands:

>>> writeFile("sim_BouncingBall.mos", "

loadFile (getInstallationDirectoryPath() + \"/share/doc/omc/testmodels/
—BouncingBall.mo\");

simulate (BouncingBall, stopTime=3.0);

/* plot ({h, flying}); =/
")
true
>>> runScript ("sim_BouncingBall.mos")
"true
record SimulationResult

resultFile = \"«DOCHOME»/BouncingBall_res.mat\",

simulationOptions = \"startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'BouncingBall', options =
—''", outputFormat = 'mat', variableFilter = '.%', cflags = '', simflags = ''\",

messages = \"LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
\"I

timeFrontend = 0.003214542,

timeBackend = 0.005775756,

timeSimCode = 0.001811544,

timeTemplates = 0.003676386,

(continues on next page)

1.2. Interactive Session with Examples 13

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

timeCompile = 0.636434615,
timeSimulation = 0.024643179,
timeTotal = 0.675671139

end SimulationResult;

"

model Switch
Real v;
Real i;
Real i1l;
Real itot;
Boolean open;
equation
itot = 1i + 1i1;
if open then
v = 0;
else
i = 0;
end if;
1 - 11 = 0;
1 - v -1 = 0;
open = time >= 0.5;
end Switch;

>>> simulate (Switch, startTime=0, stopTime=1)
record SimulationResult

resultFile = "«DOCHOME»/Switch_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOflIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Switch', options = "',
—outputFormat = 'mat', variableFilter '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.002543191,

timeBackend = 0.00884041,
timeSimCode = 0.001939049,
timeTemplates = 0.004073077,

timeCompile = 0.607701175,
timeSimulation = 0.019247736,
timeTotal = 0.644461291

end SimulationResult;

Retrieve the value of itot at time=0 using the val(variableName, time) function:

>>> val (itot, 0)
1.0

Plot itot and open:

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

14 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

2 T T T T .
itot
open
15 F b
1
0.5 i
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Figure 1.3: Plot when the switch opens
1.2.8 Clear All Models
Now, first clear all loaded libraries and models:
>>> clear ()
true
List the loaded models — nothing left:
>>> list ()
nmnn
1.2.9 VanDerPol Model and Parametric Plot
We load another model, the VanDerPol model (or via the menu File->Load Model):
>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/VanDerPol.
—mo")
true
It is simulated:
>>> simulate (VanDerPol, stopTime=80)
record SimulationResult
resultFile = "«DOCHOME»/VanDerPol_res.mat",
simulationOptions = "startTime = 0.0, stopTime = 80.0, numberOfIntervals = 500,
— tolerance = le-06, method = 'dassl', fileNamePrefix = 'VanDerPol', options = "'
— outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",
messages = "LOG_SUCCESS | info | The initialization finished
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
4

timeFrontend = 0.002610156,
timeBackend = 0.002936875,
timeSimCode .000913858,
timeTemplates = 0.003735014,
timeCompile = 0.5941603010000001,

0
0

(continues on next page)

1.2. Interactive Session with Examples 15

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

timeSimulation = 0.023324175,
timeTotal = 0.6278218790000001
end SimulationResult;

It is plotted:

>>> plotParametric("x","y")

2.5 T T T T T T T T T

2 b -
15 1

1k -
0.5 1

> 0Fr .

-0.5
1k i
-1.5

2k i

2.5 ! ! ! ! ! ! ! ! !
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Figure 1.4: VanDerPol plotParametric(x,y)

Perform code instantiation to flat form of the VanDerPol model:

>>> instantiateModel (VanDerPol)
class VanDerPol "Van der Pol oscillator model"
Real x(start = 1.0, fixed = true);

Real y(start = 1.0, fixed = true);
parameter Real lambda = 0.3;
equation
der (x) = y;
der(y) = (-x) + lambda * (1.0 — x % x) * y;

end VanDerPol;

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers, see
for example the variable name to the right in the plot below:

16 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

File Edit Special

Plot by OpenModelica
1.0f i i 1 &= =

g.8r }

0.6 }

0.0

0,0 0.3 1.0 1.2 2.0 2.2

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):

>>> k := 0;

>>> for 1 in 1:1000 loop
k := k + 1i;

end for;

>>> k

500500

A nested loop summing reals and integers:

>>> g := 0.0;
>>> h := 5;
>>> for i in {23.0,77.12,88.23} loop
for j in 1i:0.5:(i+1l) loop
g =g+ 3J;
g := g+ h / 2;
end for;
h :=h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>>> h; g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>>> j.="";
>>> 1lst := {"Here ", "are ","some ","strings."};
>>> g = "";

>>> for i in lst loop

(continues on next page)

1.2. Interactive Session with Examples 17

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

s := s + 1ij
end for;
>>> 5

"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>>> g:="";
>>> i:=1;
>>> while i<=10 loop
s:="abc "+s;
i:=1i+1;
end while;
>>> 3
"abc abc abc abc abc abc abc abc abc abc "

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with elseif"

>>> if false then

a := 5;
elseif a > 50 then
b:= "test"; a:= 100;
else
a:=34;
end if;

Take a look at the variables a and b:

>>> a;b
100
"test"

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:

>>> ga:=1:5
{1,2,3,4,5}

Type in a function:

function mySqr
input Real x;
output Real y;

algorithm
ViI=X*X;

end mySqr;

Call the function:

>>> b:i=mySqr (2)
4.0

Look at the value of variable a:

18 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

>>> a
{1,2,3,4,5}

Look at the type of a:

>>> typeOf (a)
"Integer[5]"

Retrieve the type of b:

>>> typeOf (b)
"Real "

What is the type of mySqr? Cannot currently be handled.

>>> typeOf (mySqgr)

List the available variables:

>>> listVariables ()
{b,a,s,1lst,i,h,g,k,currentSimulationResult}

Clear again:

>>> clear ()
true

1.2.13 Getting Information about Error Cause

Call the function getErrorString() in order to get more information about the error cause after a simulation failure:

>>> getErrorString()

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. plt and mat are the only formats that
allow you to use the val() or plot() functions after a simulation. Compared to the speed of plt, mat is roughly 5
times for small files, and scales better for larger files due to being a binary format. The csv format is roughly twice
as fast as plt on data-heavy simulations. The plt format allocates all output data in RAM during simulation, which
means that simulations may fail due applications only being able to address 4GB of memory on 32-bit platforms.
Empty does no output at all and should be by far the fastest. The csv and plt formats are suitable when using an
external scripts or tools like gnuplot to generate plots or process data. The mat format can be post-processed in
MATLAB or Octave.

>>> simulate (...
>>> simulate (...

(
(
(
(

outputFormat="mat")
outputFormat="csv")
outputFormat="plt")
outputFormat="empty")

>>> simulate (...
>>> simulate (...

~ S~ S~ 0~

It is also possible to specify which variables should be present in the result-file. This is done by using POSIX
Extended Regular Expressions. The given expression must match the full variable name (* and $ symbols are
automatically added to the given regular expression).

/l Default, match everything

>>> simulate (... , variableFilter=".x")

1.2. Interactive Session with Examples 19

http://www.mathworks.com/products/matlab
http://www.gnu.org/software/octave/
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

/I match indices of variable myVar that only contain the numbers using combinations

/1 of the letters 1 through 3

’>>> simulate (... , variableFilter="myVar\\\[[1-3]7*\\\1")

// match x or y or z

’>>> simulate (... , variableFilter="x|y|z")

1.2.15 Using External Functions

See Chapter Interoperability — C and Python for more information about calling functions in other programming
languages.

1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a new OpenModelica feature that auto-
matically partitions the system of equations and schedules the parts for execution on different cores using shared-
memory OpenMP based execution. The speedup obtained is dependent on the model structure, whether the system
of equations can be partitioned well. This version in the current OpenModelica release is an experimental ver-
sion without load balancing. The following command, not yet available from the OpenModelica GUI, will run a
parallel simulation on a model:

>>> omc —d=openmp model.mo

1.2.17 Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not compatible. It is possible to keep mul-
tiple versions of the same library stored in the directory given by calling getModelicaPath(). By calling load-
Model(Modelica,{"3.2"}), OpenModelica will search for a directory called "Modelica 3.2" or a file called "Mod-
elica 3.2.mo". Itis possible to give several library versions to search for, giving preference for a pre-release version
of a library if it is installed. If the searched version is "default", the priority is: no version name (Modelica), main
release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1) and unordered versions (Modelica Spe-
cial Release).

The loadModel command will also look at the uses annotation of the top-level class after it has been loaded. Given
the following package, Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST automatically.

package Modelica
annotation (uses (Complex (version="1.0"),
ModelicaServices (version="1.1")));

end Modelica;

>>> clear ()
true

Packages will also be loaded if a model has a uses-annotation:

model M
annotation (uses (Modelica (version="3.2.1")));
end M;

>>> instantiateModel (M)
class M
end M;

20 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

Note:
Notification: Automatically loaded package Modelica 3.2.1 due to uses annotation from M.
Notification: Automatically loaded package Complex 3.2.1 due to uses annotation from Modelica.

Notification: Automatically loaded package ModelicaServices 3.2.1 due to uses annotation from Modelica.

Packages will also be loaded by looking at the first identifier in the path:

>>> instantiateModel (Modelica.Electrical.Analog.Basic.Ground)
class Modelica.Electrical.Analog.Basic.Ground "Ground node"

Real p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
Real p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin
=";
equation
p.i = 0.0;
p.v = 0.0;

end Modelica.Electrical.Analog.Basic.Ground;

Note:
Notification: Automatically loaded package Complex 4.0.0 due to uses annotation from Modelica.
Notification: Automatically loaded package ModelicaServices 4.0.0 due to uses annotation from Modelica.

Notification: Automatically loaded package Modelica default due to usage.

1.2.18 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC) server.
Current examples of such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the OMEdit graphic
model editor, etc. This API is untyped for performance reasons, i.e., no type checking and minimal error checking
is done on the calls. The results of a call is returned as a text string in Modelica syntax form, which the client has
to parse. An example parser in C++ is available in the OMNotebook source code, whereas another example parser
in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on this API
is available in the system documentation. First we load and list the model again to show its structure:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo");
>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;

equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
der (h) = v;

when {h <= 0.0 and v <= 0.0, impact} then

(continues on next page)

1.2. Interactive Session with Examples 21

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

v_new = if edge(impact) then -expre(v) else 0;
flying = v_new > 0;
reinit (v, v_new);
end when;
end BouncingBall;

Different kinds of calls with returned results:

>>> getClassRestriction (BouncingBall)

"model"

>>> getClassInformation (BouncingBall)

("model","", false, false, false, "/var/lib/jenkinsl/ws/CMake_builds/z-experiment/

—build/share/doc/omc/testmodels/BouncingBall .mo", false,1,1,23,17,{}, false, false,"
_’","",false, ||","", "", "",ll")

>>> isFunction (BouncingBall)

false

>>> existClass (BouncingBall)

true

>>> getComponents (BouncingBall)

{{Real, e, "coefficient of restitution", "public", false, false, false, false,
—"parameter", "none", "unspecified", {}},{Real, g, "gravity acceleration", "public
—", false, false, false, false, "parameter", "none", "unspecified", {}}, {Real, h,
—"height of ball", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}},{Real, v, "velocity of ball", "public", false, false, false,
—false, "unspecified", "none", "unspecified", {}},{Boolean, flying, "true, if |
—ball is flying", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}},{Boolean, impact, "", "public", false, false, false, false,
—"unspecified", "none", "unspecified", {}},{Real, v_new, "", "public", false,
—false, false, false, "unspecified", "none", "unspecified", {}},{Integer, foo, "",
— "public", false, false, false, false, "unspecified", "none", "unspecified", {}}}
>>> getConnectionCount (BouncingBall)

0

>>> getInheritanceCount (BouncingBall)

0

>>> getComponentModifierValue (BouncingBall,e)

llo.7ll

>>> getComponentModifierNames (BouncingBall, "e")

{}

>>> getClassRestriction (BouncingBall)

"model"

>>> getVersion() // Version of the currently running OMC

"OMCompiler v1.21.0-dev.386+g47499%e64ec"

1.2.19 Quit OpenModelica

Leave and quit OpenModelica:

>>> quit ()

22 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

1.2.20 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional parame-
ters.

dumpXMLDAE(modelnamel ,asInSimulationCode=<Boolean>] [filePrefix=<String>] [,storeln-
Temp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before dumping the
model), the other options are relative to the file storage: filePrefix for specifying a different name and storeInTemp
to use the temporary directory. The optional parameter addMathMLCode gives the possibility to don't print the
MathML code within the xml file, to make it more readable. Usage is trivial, just: addMathMLCode=true/false
(default value is false).

1.2.21 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname);

This command dumps the mathematical representation of a model using a Matlab representation. Example:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> exportDAEtoMatlab (BouncingBall)

"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Adjacency Matrix

o)

% number of rows: 6

IM={{3,6},{1,{"if", "true','=='" {3}, {},}},{{"1f", 'true','==" {4},{},}}, {5}, {2, {"1if
—', 'edge (impact)"' {3}, {5},}},{4,2}};

VL = {'foo','v_new', "impact', 'flying','v', 'h'};

EgStr = {'impact = h <= 0.0;"',"'"foo = if impact then 1 else 2;','der(v) = if flying,
—then -g else 0.0;','der(h) = v;','when {h <= 0.0 and v <= 0.0, impact} then v_
—new = 1f edge (impact) then (-e) * pre(v) else 0.0; end when;', 'when {h <= 0.0,
—and v <= 0.0, impact} then flying = v_new > 0.0; end when;'};

OldEgStr={'class BouncingBall',' parameter Real e = 0.7 "coefficient of

—restitution";',' parameter Real g = 9.81 "gravity acceleration";',' Real
—h(start = 1.0, fixed = true) "height of ball";',' Real v (fixed = true)
—"velocity of ball";',' Boolean flying(start = true, fixed = true) "true, if
—ball is flying";',' Boolean impact;',' Real v_new(fixed = true);"',"' Integer,,
—~foo; ', 'equation', ' impact = h <= 0.0;"'," foo = if impact then 1 else 2;','
—der(v) = if flying then -g else 0.0;"'," der(h) = v;',"' when {h <= 0.0 and v <=_
—0.0, impact} then',' v_new = if edge (impact) then -e x pre(v) else 0.0;',"' .
—~flying = v_new > 0.0;"'," reinit (v, v_new);',' end when;','end BouncingBall; "',

=ty

1.2. Interactive Session with Examples 23

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.

simulate(modelname) Translate a model named modelname and simulate it.

simulate(modelnamel startTime=<Real>][,stopTime=<Real>][,numberOflntervals
=<Integer>][,outputlnterval=<Real>][,method=<String>]
[,tolerance=<Real>][,fixedStepSize=<Real>]

[,outputFormat=<String>]) Translate and simulate a model, with optional start time, stop time, and optional
number of simulation intervals or steps for which the simulation results will be computed. More intervals will
give higher time resolution, but occupy more space and take longer to compute. The default number of intervals
is 500. It is possible to choose solving method, default is “dassl”, “euler” and “rungekutta” are also available.
Output format “mat” is default. “plt” and “mat” (MATLAB) are the only ones that work with the val() command,
“csv” (comma separated values) and “empty” (no output) are also available (see section Alternative Simulation
Output Formats).

plot(vars) Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or plot(x1).

plotParametric(var!, var2) Plot var2 relative to varl from the most recently simulated model, e.g. plotParamet-
ric(x,y).

cd() Return the current directory.

cd(dir) Change directory to the directory given as string.

clear() Clear all loaded definitions.

clearVariables() Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model, according to several optional param-
eters.

exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateModel(modelname)Performs code instantiation of a model/class and return a string containing the flat
class definition.

list() Return a string containing all loaded class definitions.
list(modelname) Return a string containing the class definition of the named class.
listVariables() Return a vector of the names of the currently defined variables.

loadModel(classname) Load model or package of name classname from the path indicated by the environment
variable OPENMODELICALIBRARY.

loadFile(str) Load Modelica file (.mo) with name given as string argument str.
readFile(str) Load file given as string str and return a string containing the file content.
runScript(str) Execute script file with file name given as string argument str.

system(str) Execute str as a system(shell) command in the operating system; return integer success value. Output
into stdout from a shell command is put into the console window.

timing(expr) Evaluate expression expr and return the number of seconds (elapsed time) the evaluation took.
typeOf(variable) Return the type of the variable as a string.

saveModel(str,modelname) Save the model/class with name modelname in the file given by the string argument
str.

val(variable,timePoint) Return the (interpolated) value of the variable at time timePoint.
help() Print this helptext (returned as a string).

quit() Leave and quit the OpenModelica environment

24 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

1.4 Running the compiler from command line

The OpenModelica compiler can also be used from command line, in Windows cmd.exe or a Unix shell. The fol-
lowing examples assume omc is on the PATH; if it is not, you can run C: \OpenModelica 1.16.0\build\
bin\omc.exe or similar (depending on where you installed OpenModelica).

1.4.1 Example Session 1 — obtaining information about command line parame-
ters

$ omc —--help

OpenModelica Compiler OMCompiler v1.21.0-dev.386+g47499%e64ec
Copyright © 2019 Open Source Modelica Consortium (OSMC)
Distributed under OMSC-PL and GPL, see www.openmodelica.org

Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]
« Libraries: Fully qualified names of libraries to load before processing Model or
—Script.

Documentation is available in the built-in package OpenModelica.Scripting or
online <https://build.openmodelica.org/Documentation/OpenModelica.Scripting.html>.

1.4.2 Example Session 2 — create an TestModel.mo file and run omc on it

model TestModel
parameter Real x = 1;
end TestModel;

S omc TestModel.mo

class TestModel
parameter Real x = 1.0;

end TestModel;

1.4.3 Example Session 3 — create a mos-script and run omc on it

loadModel (Modelica) ;

getErrorString();

simulate (Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum) ;
getErrorString();

$ omc TestScript.mos

false

"Error: Failed to open file for writing: //.openmodelica/libraries/index. json.tmpl
Error: Failed to download package index https://libraries.openmodelica.org/index/
—vl/index.json to file //.openmodelica/libraries/index. json.

Error: Failed to open file for writing: //.openmodelica/libraries/index. json.tmpl
Error: Failed to download package index https://libraries.openmodelica.org/index/
—vl/index.json to file //.openmodelica/libraries/index. json.

Error: Failed to load package Modelica (default) using MODELICAPATH //.
—openmodelica/libraries/.

n

record SimulationResult

resultFile = "",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOflIntervals = 500,
—~tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'Modelica.Mechanics.
—MultiBody.Examples.Elementary.Pendulum', options = '', outputFormat = 'mat',
—variableFilter = '.x', cflags = "', simflags = "'",

(continues on next page)

1.4. Running the compiler from command line 25

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

messages = "Simulation Failed. Model: Modelica.Mechanics.MultiBody.Examples.
—Elementary.Pendulum does not exist! Please load it first before simulation.",

timeFrontend = 0.0,

timeBackend = 0.0,

timeSimCode = 0.0,

timeTemplates = 0.0,

timeCompile = 0.0,

timeSimulation = 0.0,

timeTotal = 0.0
end SimulationResult;

nn

In order to obtain more information from the compiler one can use the command line options --
showErrorMessages -d=failtrace when running the compiler:

$ omc —--showErrorMessages —-d=failtrace TestScript.mos
InstFunction.getRecordConstructorFunction failed for OpenModelica.Scripting.
—loadModel

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE ()>].<Prefix.NOPRE ()>.Modelica_,
—env: <global scope>

— Static.elabCref failed: Modelica in env: <global scope>

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE ()>].<Prefix.NOPRE ()>.Modelica_,
—env: <global scope>

timeSimulation = 0.0,
timeTotal = 0.0

end SimulationResult;
nmnn

26 Chapter 1. Introduction

CHAPTER
TWO

PACKAGE MANAGEMENT

2.1 Overview of Basic Modelica Package Management Concepts

The Modelica language promotes the orderly reuse of component models by means of packages that contain
structured libraries of reusable models. The most prominent example is the Modelica Standard Library (MSL),
that contains basic models covering many fields of engineering. Other libraries, both open-source and commercial,
are available to cover specific applications domains.

When you start a simulation project using Modelica, it is common practice to collect all related system models
in a project-specific package that you develop. The models in this package are often instantiated (e.g. by drag-
and-drop in OMEdit) from released libraries, which are read-only for your project. This establishes a dependency
between your project package and a certain version of a read-only package (or library), which is the one you have
loaded in OMEdit and that you drag-and-drop components from.

This dependency is automatically marked in your package by adding a uses annotation at the top level.
For example, if you drag and drop components from MSL 4.0.0 into models of your package, the
annotation (uses (Modelica (version="4.0.0"))); will be added automatically to it. This infor-
mation allows OpenModelica to automatically load all the libraries that are required to compile the models in your
own package next time you (or someone else, possibly on a different computer) loads your package, provided they
are installed in places on the computer's file system where OpenModelica can find them.

The default place where OpenModelica looks for packages is the so-called MODELICAPATH. You can check
where it is by typing getModelicaPath () in the Interactive Environment (Tools | OpenModelica Compiler
CLI in OMEdit). Installed read-only libraries are placed by default in the MODELICAPATH.

When a new version of certain package comes out, conversion annotations in it declare whether your models using
a certain older version of it can be used as they are with the new one, which is then 100% backwards-compatible,
or whether they need to be upgraded by running a conversion script, provided with the new version of the package.
The former case is declared explicitly by a conversion (noneFromVersion) annotation. For example, a
conversion (noneFromVersion="3.0.0") annotation in version 3.1 . 0 of a certain package means that
all packages using version 3.0.0 canuse 3. 1.0 without any change. Of course it is preferrable to use a newer,
backwards-compatible version, as it contains bugfixes and possibly new features.

Hence, if you install a new version of a library which is 100% backwards-compatible with the previous ones, all
your models that used the old one will automatically load and use the new one, without the need of any further
action.

If the new version is not backwards-compatible, instead, you will need to create a new version of your library that
uses it, by running the provided conversion scripts.

OpenModelica has a package manager that can be used to install and update libraries on your computer, and is
able to run conversion scripts. Keep in mind there are three stages in package usage: available packages are
indexed on the OSMC servers and can be downloaded from public repositories; installed packages are stored
in the MODELICAPATH of your computer; loaded packages are loaded in memory in an active OMC session,
either via the Interactive Environment, or via the OMEdit GUI, where they are shown in the Libraries Browser.
When you load a package, OpenModelica tries to load the best possible installed versions of all the dependencies
declared in the uses annotation.

27

https://specification.modelica.org/maint/3.5/annotations.html#version-handling
https://specification.modelica.org/maint/3.5/packages.html#the-modelica-library-path-modelicapath
https://specification.modelica.org/maint/3.5/annotations.html#version-handling

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

2.2 The Package Manager

The Open Source Modelica Consortium (OSMC) maintains a collection of publicly available, open-source Mod-
elica libraries on its servers, see https://github.com/OpenModelica/OMPackageManager. These libraries are rou-
tinely tested with past released versions of OpenModelica, as well as with the current development version on the
master branch, see the overview report. Based on the testing results and on information gathered from the library
developers, these packages are classified in terms of level of support in OpenModelica. Backwards-compatibility
information is also collected from the conversion annotations.

The OpenModelica Package Manager relies on this information to install the best versions of the library depen-
dencies of your own, locally developed Modelica packages and models. It can be run both from the OMEdit
GUI and from the command-line interactive environment. The libraries and their index. json index file with
all the library metadata are installed in the ~/.openmodelica/libraries directory under Linux and in
the $AppData%\.openmodelicallibraries directory on Windows. Note that these directories are user-
specific, so if there are multiple users on the same computer, each of them will install and manage his/her own set
of libraries independently from the others.

The Package Manager may install multiple builds of the same library version in your own package manager
directory, if they are indexed on the OSMC servers. When this happens, they are distinguished among each other
by means of semver-style pre- or post-release metadata in the top directory name on the file system. Post-release
builds are denoted by a plus sign (e.g. 2.0.0+build. 02) and have higher priority over the corresponding plain
release (e.g. 2.0.0), while pre-release builds are denoted by a minus sign (e.g. 2.0.0-dev.30) and have a
lower priority.

When loading a certain version of a library, unless a specific build is explicitly referenced, the one with
higher precedence will always be loaded. For example, if the versions 2.0.0-beta.01, 2.0.0, and 2.
0.0+build.01 are installed, the latter is loaded by libraries with uses annotation requiring version 2.0 . Q.
Unless, of course, there are later backwards-compatible versions installed, e.g., 2. 0.1, in which case the one
with the highest release number and priority is installed.

In any case, semver version semantics is only used to order the releases, while backwards-compatibility is deter-
mined exclusively on the basis of noneFromVersion annotations.

When installing OpenModelica, a cached version of the latest versions of the Modelica Standard Library is in-
cluded in the installation files. As soon as a user starts any OpenModelica tool (e.g., OMEdit, OMNotebook,
OMShell, or direct command-line invocation of omc), if the user's .openmodelica directory is empty the
Modelica Standard Library will be installed automatically using this cached version. This happens when using
OpenModelica for the first time, or if the contents of the . openmodelica directory have been deleted to get rid
of all installed libraries. This automatic installation needs no Internet connection, so it also works behind firewalls
or in set-ups with limited available bandwidth. Therefore, the Modelica Standard Library is immediately available
without the need of using the package manager explicitly. It is then possible to install and manage other libraries
using the package manager, as explained previously.

2.2.1 Package Management in OMEdit

Installing a new library in OMEdit.

2.2.2 Running Conversion Scripts in OMEdit

Converting a library in OMEdit.

28 Chapter 2. Package Management

https://github.com/OpenModelica/OMPackageManager
https://libraries.openmodelica.org/branches/overview-combined.html
https://semver.org/#semantic-versioning-specification-semver

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

2.2.3 Automatically Loaded Packages in OMEdit

When you start OMEdit, some packages can be automatically loaded into the environment, and shown in the
Libraries Browser. You can configure which ones are loaded from the ToolslOptions|Libraries menu.

Please note that automatically loaded libraries may be in conflict with the dependencies of packages that you may
later load from the File menu. For example, if you automatically load Modelica 4.0 . 0, and then load a library
XYZ that still uses MSL 3. 2. 3, you get a conflict, because Modelica 4 . 0 . 0 is not backwards-compatible with
Modelica 3. 2. 3, so XYZ cannot be used.

In this case you have two options:

¢ Cancel Operation: this means XYZ is not actually loaded, and all previously loaded libraries remain in
place.

* Unload all and Reload XYZ: in this case, all previously loaded libraries, that may generate conflicts, are
unloaded first; then XYZ is loaded, and finally the right versions of the libraries XYZ uses, as declared in
its uses annotation, will be loaded automatically.

If you are normally working with only one version of the Modelica standard library, you can set it to be automati-
cally loaded from the ToolslOptionsl|Libraries menu; in case you need to work with a library that uses a previous,
non-backwards compatible version, the Unload all and Reload option comes handy. Otherwise, you can avoid
loading the Modelica library automatically upon starting OMEdit, and let the right version of the Modelica li-
brary be loaded automatically when you open the library you want to work with. In this case, if you want to get
the Modelica library into the Package Browser to start developing a new library, you can do so easily from the
Welcome tab, by clicking on the System Libraries button and selecting the version that you want to load.

2.2.4 Manually Loading Packages

If you want to maintain full control over which library dependencies are loaded, you can use the File | Open
Model/Library Files(s) menu command in OMEdit to open the libraries one by one from specific locations in your
file system. Note, however, that whenever a library is loaded, its dependencies, that are declared in its uses
annotation, will automatically be loaded. If you want to avoid that, you need to load the library dependencies in
reverse order, so that the intended library dependencies are already loaded when you open the library that needs
them.

If you are using the Interactive Environment, you can use the loadFile () command to load libraries from
specific locations on the file system, also in reverse dependency order, unless you also set the optional uses =
false input argument to disable the automatic loading of dependencies.

2.2.5 Using the Package Manager from the Interactive Environment

The Package Manager can also be used from the Interactive Environment command line shell. Here is a list
of examples of relevant commands; please type them followed by getErrorString(), e.g., updatePackagelndex();
getErrorString(), in order to get additional information, notifications and error messages.

updatePackagelndex() - this command puts the Package Manager in contact with the OSMC servers and
updates the internally stored list of available packages;

getAvailablePackageVersions(Building, "") - lists all available versions of the Buildings library on the
OSMC server, starting from the most recent one, in descending order of priority. Note that pre-release
versions have lower priority than all other versions;

getAvailablePackageVersions(Building, "7.0.0") - lists all available versions of the Buildings library on the
OSMC server that are backwards-compatible with version 7. 0. 0, in descending order of priority;

installPackage(Buildings, "") - install the most recent version of the Building libraries, and all its depen-
dencies;

installPackage(Buildings, "7.0.0") - install the most recent version of the Building libraries which is
backwards-compatible with version 7. 0. 0, and all its dependencies;

installPackage(Buildings, "7.0.0", exactMatch = true) - install version 7.0 . 0 even if there are more recent
backwards-compatible versions available, and all its dependencies;

2.2. The Package Manager 29

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

e upgradelnstalledPackages(installNewestVersions = true) - installs the latest available version of all installed
packages.

2.3 How the package index works

The package index is generated by OMPackageManager on an OSMC server, based on these settings. See its
documentation to see how to add new packages to the index, change support level, and so on.

The index is generated by scanning git repositories on github. All tags and optionally some specific branches are
scanned. The tag name is parsed as if it was a semantic version, with prerelease and metadata of the tag added to
the version of Modelica packages in the repository. If the tag name is not a semantic version, it is sorted differently.

Packages are sorted as follows:
» Support level: each package is given a level of support in the index

» Semantic version: according to the semver specification, but build metadata is also considered (sorted the
same way as pre-releases)

* Non-semantic versions: alphabetically

30 Chapter 2. Package Management

https://github.com/OpenModelica/OMPackageManager
https://github.com/OpenModelica/OMPackageManager/blob/master/repos.json

CHAPTER
THREE

OMEDIT — OPENMODELICA CONNECTION EDITOR

OMEdit — OpenModelica Connection Editor is the new Graphical User Interface for graphical model editing in
OpenModelica. It is implemented in C++ using the Qt graphical user interface library and supports the Modelica
Standard Library that is included in the latest OpenModelica installation. This chapter gives a brief introduction
to OMEdit and also demonstrates how to create a DCMotor model using the editor.

OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:
* Modeling — Easy model creation for Modelica models.
* Pre-defined models — Browsing the Modelica Standard library to access the provided models.
 User defined models — Users can create their own models for immediate usage and later reuse.

* Component interfaces — Smart connection editing for drawing and editing connections between model in-
terfaces.

* Simulation — Subsystem for running simulations and specifying simulation parameters start and stop time,
etc.

* Plotting — Interface to plot variables from simulated models.

3.1 Starting OMEdit

A splash screen similar to the one shown in Figure 3.1 will appear indicating that it is starting OMEdit. The
executable is found in different places depending on the platform (see below).

3.1.1 Microsoft Windows
OMEdit can be launched wusing the executable placed in OpenModelicalnstallationDirec-

tory/bin/OMEdit/OMEdit.exe. Alternately, choose OpenModelica > OpenModelica Connection Editor from the
start menu in Windows.

3.1.2 Linux

Start OMEdit by either selecting the corresponding menu application item or typing “OMEdit” at the shell or
command prompt.

31

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

OMEdit

—
. L L
{

Figure 3.1: OMEdit Splash Screen.

3.1.3 Mac OS X

The default installation is /Application/MacPorts/OMEdit.app.

3.2 MainWindow & Browsers

The MainWindow contains several dockable browsers,
e Libraries Browser
¢ Documentation Browser
* Variables Browser
* Messages Browser
Figure 10.2 shows the MainWindow and browsers.

The default location of the browsers are shown in Figure 10.2. All browsers except for Message Browser can
be docked into left or right column. The Messages Browser can be docked into top or bottom areas. If you
want OMEdit to remember the new docked position of the browsers then you must enable Preserve User's GUI
Customizations option, see section General Options.

32 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

o OMEdit - OpenModelica Connection Editor = B

File Edit View Simulation FMI Export Tools Help
BB 9%

FwHB - @Heee \OHNOTH
Libraries Browser Documentation Browser @ X

& X
|Search Classes | \ < Previous | [Next

v

Libraries

4 E OpenModelica

3 D MeodelicaServices
> . Complex

b P7%2] Modelica

[o ModelicaReference

Variables Browser g X

|Find Variables | ¥

Variables Value

£ >
F X

X:108.62 ¥:-16.90 o Modeling 8

Figure 3.2: OMEdit MainWindow and Browsers.

3.2. MainWindow & Browsers 33

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.2.1 Filter Classes

To filter a class click Edit > Filter Classes or press keyboard shortcut Ctrl+Shift+F. The loaded Modelica classes
can be filtered by typing any part of the class name.

3.2.2 Libraries Browser

To view the Libraries Browser click View > Windows > Libraries Browser. Shows the list of loaded Modelica
classes. Each item of the Libraries Browser has right click menu for easy manipulation and usage of the class. The
classes are shown in a tree structure with name and icon. The protected classes are not shown by default. If you
want to see the protected classes then you must enable the Show Protected Classes option, see section General
Options.

3.2.3 Documentation Browser

Displays the HTML documentation of Modelica classes. It contains the navigation buttons for moving forward
and backward. It also contains a WYSIWYG editor which allows writing class documentation in HTML format.
To view the Documentation Browser click View > Windows > Documentation Browser.

Documentation Browser n
» - 5 L)
info rev hadr e
. ~
Modelica

Modelica Standard Library - Version 3.2.2

Information
Package Modelica® is a standardized and free package that is developed together with the Modelica® language from the Modelica

Association, see https:/'www.Modelica.org. It is also caled Modelica Standard Library. It provides model components in many dormains
that are based on standardized interface definitions. Some typical examples are shown in the next figure:

ambient
Ripe
l.l. 1

Star2 : -
I |

cnnven:h-on

Mt

Ll
AIMC1

For an introduction, have especially a look at:

* Overview provides an overview of the Modelica Standard Library inside the User's Guide.
¢ Release Motes summarizes the changes of new versions of this package.

+ Contact lists the contributors of the Modelica Standard Library.

« The Examples packages in the various libraries, demonstrate how to use the components of the corresponding sublibrary.

This version of the Modelica Standard Library consists of

« 1600 models and blocks, and
« 1350 functions

that are directly usable (= number of public, non-partial classes). It is fully compliant to Modelica Specification Version 3.2 Revision 2 and it
has heen tested with Madelica tonls fram different vendars.

Figure 3.3: Documentation Browser.

34 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.2.4 Variables Browser

The class variables are structured in the form of the tree and are displayed in the Variables Browser. Each variable
has a checkbox. Ticking the checkbox will plot the variable values. There is a find box on the top for filtering the
variable in the tree. The filtering can be done using Regular Expression, Wildcard and Fixed String. The complete
Variables Browser can be collapsed and expanded using the Collapse All and Expand All buttons.

The browser allows manipulation of changeable parameters for Plot Window. It also displays the unit and descrip-
tion of the variable.

The browser also contains the slider and animation buttons. These controls are used for variable graphics and
schematic animation of models i.e., DynamicSelect annotation. They are also used for debugging of state ma-
chines. Open the Diagram Window for animation. It is only possible to animate one model at a time. This is
achieved by marking the result file active in the Variables Browser. The animation only read the values from the
active result file. It is possible to simulate several models. In that case, the user will see a list of result files in
the Variables Browser. The user can switch between different result files by right clicking on the result file and
selecting Set Active in the context menu.

Variables Browser g X

|FiItE|' Variables

|:| Casze Sensitive Regular Expression o
Expand All Collapse All

Simulation Time Unit g -

“ ’ II Time:| 0.0 Speed:| 1~
)

Variables Value Display Unit Description
=] @ Meodelica.E...huaCircuit
=1
C F Capacitance
[] derfv) 0.014557 km2...-1.g der(Voltage drop of...pins (= p.v - nv))
i 0.14557 A Current flowing from pin p to pin n
n

Yoltage drop of the... pins (= p.v - nw)

[=Y = I =

= T &1 & M

= =] ra
(=9

=
=
[=]

Figure 3.4: Variables Browser.

3.2. MainWindow & Browsers 35

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.2.5 Messages Browser

Shows the list of errors. Following kinds of error can occur,
* Syntax
e Grammar
e Translation
* Symbolic
¢ Simulation
e Scripting

See section Messages Options for Messages Browser options.

3.3 Perspectives

The perspective tabs are loacted at the bottom right of the MainWindow:
* Welcome Perspective
* Modeling Perspective
* Plotting Perspective

* Debugging Perspective

3.3.1 Welcome Perspective

The Welcome Perspective shows the list of recent files and the list of latest news from https://www.openmodelica.
org. See Figure 3.5. The orientation of recent files and latest news can be horizontal or vertical. User is allowed
to show/hide the latest news. See section General Options.

3.3.2 Modeling Perspective

The Modeling Perpective provides the interface where user can create and design their models. See Figure 3.6.

The Modeling Perspective interface can be viewed in two different modes, the tabbed view and subwindow view,
see section General Options.

3.3.3 Plotting Perspective

The Plotting Perspective shows the simulation results of the models. Plotting Perspective will automatically
become active when the simulation of the model is finished successfully. It will also become active when user
opens any of the OpenModelica’s supported result file. Similar to Modeling Perspective this perspective can also
be viewed in two different modes, the tabbed view and subwindow view, see section General Options.

3.3.4 Debugging Perspective

The application automatically switches to Debugging Perpective when user simulates the class with algorithmic
debugger. The prespective shows the list of stack frames, breakpoints and variables.

36 Chapter 3. OMEdit — OpenModelica Connection Editor

https://www.openmodelica.org
https://www.openmodelica.org

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

ot OMEdit - OpenModelica Connection Editor — O *

File Edit View Sirmulation FMI Export Debug Git Tools Help

JeBB - l@meee/\® -EH|GQf X |-

Libraries Browser A X

|Filter Classes | ¥ ~t

OMEdit - OpenModelica Connection Editor

Libraries

> E OpenModelica

> [] ModelicaServices

Recent Files Latest News
> . Complex
> @ Meodelica E:> C:/OpenModelica/OMCompiler/Exan ED’ February &, 2017: OpenMeodelica 1.11.0 released
’ 0 ModelicaReference E:> C:/Users/adeas31/Desktop/Connecto ED’ January 17, 2017: OpenModelica 1.11 Beta3 released

E:> C:/Users/adeas31/Desktop/PhotoVolt December 20, 2016: OpenMeodelica 1.11 Beta2 released

E:> C:/Users/adeas31/Desktop/OmcOmc Movernber 22, 2016 OpenModelica 1.9.7 released

E:> C:/Users/adeas31/Desktop/Folder/pa March 16, 2016 OpenModelica 1.9.6 released

February 18, 2016: OpenModelica 1.9.4 beta2 released

EC}’ March 9, 2016: OpenModelica 1.9.4 released
ED’ Program OpenModelica Annual Workshop 2016

Clear Recent Files Reload | For more details visit our website www.openmodelica.or

oo oty e

t Welcome oﬁ Modeling s Plotting *» Debugging

Figure 3.5: OMEdit Welcome Perspective.

3.3. Perspectives 37

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

ot OMEdit - OpenModelica Connection Editor — O *
File Edit View Sirmulation FMI Export Debug Git Tools Help

teBB @oee \® -E-| QP9 X5
Libraries Browser T x| o4 DCMotor™® 8
[Fiter Classes | @ |.|.. A=) ‘szble |Mode| |Diagram View ‘DCI\"Iotor ‘DCI'\"Iotor |Une: 1,Cal: 0 ‘ h|
Libraries
@ OpenModelica
D ModelicaServices
. Complex
P72 Modelica
o MeodelicaReference

[

¥:-124.07 ¥:-32.34 t Welcome gﬁ Modeling ﬁ Plotting ‘» Debugging

Figure 3.6: OMEdit Modeling Perspective.

38

Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

ot OMEdit - OpenModelica Connection Editor - [Plot: 1] — O *,
IZ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
FeBB @O0 \® -E| Q][R]X 5
Libraries Browser @ %' Zoom Pan | AutoScale = FitinView Save | Print | Grid | Detailed Grid || Variables Browser g X
|Filter Classes | ¥ |Filter Variables | &
Libraries emf.phi [deg] Simulation Time Linit l:l

E OpenMeodelica 0 __\\\\- Variables Value
[] ModelicaServices E‘M
. Complex -1 = emf

P72 Modelica [dertph) -03403

-3 fined
o MaodelicaReference b flange
E DCMotor] i -0.53350
-3

internalSupport

[k 1.0

-4 n
E \ p
-5] [phi -7.23033
] v -0.3403
] \ w -0.3403
-6 7] ground1
] \ inductorl
74 inertial
] resistor]
5] i i o . A signalvoltagel
0 0.2 0.4 0.6 0.8 1 stepl
time [s] ‘ N

¥:-138.55 ¥:-43.45 t Welcome oﬁ Modeling m Flotting ‘ Debugging

Figure 3.7: OMEdit Plotting Perspective.

3.3. Perspectives 39

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation FMI Export Debug Git Tools Help
[[=3 9 o]
FeBA Heee \PHOTHE < EH-©-2-9 X5~
Libraries Browser & X Stack Frames Browser & X BreakPoints Browser & X | Locals Browser F X
5 io Il W] 2 2 [y <[souvedotb_mvent[ire i Nome Type vaue
))) ® 5 C/Users/..dByTwo.mo inValue Real 0
L ~
Libraries Function Line File outValue Real 4.1445)
E OpenModelica E’> getV.yTwo 35 C:/Users/adeas31/De...eMultipliedByTwo.mo
D ModelicaServices Simul...ion_1 5 C:/Users/adeas31/De.../SimulationModel.mo
Simu..ns_ 0 33 :/Users/adeas31/App...ulaticnModel_12jac.h
. Complex ; ; r . ‘h - -
Simul...tions 43 C:/Users/adeas31/App...ulationModel_12jac.h
@ Modelica fumb_ finn hd
o ModelicaReference E getValueMultipliedByTwo [5¢]
m DCMotor |I'I o&o |Wr1'tzble |Function |Text\ﬁew |getVaIueMuIﬁp|iedByTwo C:/Use.. Two.mo | Line: 5, Col: 0 | ﬁ|
getValueM.. liedByTwo 1 function getValueMultipliedByTwo
M| SimulationModel 2 input Real inValue;
3 output Eeal outValue:;
1 algorithm
® S outValue := inValue * 2;
&8 end getValueMultipliedByTwo;
£ >
4.1445230292290475e-316
Qutput Browser [4
Debugger CLI QOutput Browser
¥: -95,10 i 105.72 t Welcome oﬁ Modeling ﬂ Plotting ‘ Debugging

Figure 3.8: OMEdit Debugging Perspective.

40

Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.4 File Menu

* New

* New Modelica Class - Creates a new Modelica class.

* New SSP Model - Creates a new SSP model.

* Open Model/Library File(s) - Opens the Modelica file or a library.

* Open/Convert Modelica File(s) With Encoding - Opens the Modelica file or a library with a specific encod-
ing. It is also possible to convert to UTF-8.

* Load Library - Loads a Modelica library. Allows the user to select the library path assuming that the path
contains a package.mo file.

* Load Encrypted Library - Loads an encrypted library. see OpenModelica Encryption

* Open Result File(s) - Opens a result file.

* Open Transformations File - Opens a transformational debugger file.

e Unload All - Unloads all loaded classes.

* New Composite Model - Creates a new composite model.

* Open Composite Model(s) - Loads an existing composite model.

* Load External Model(s) - Loads the external models that can be used within composite model.
* Open Directory - Loads the files of a directory recursively. The files are loaded as text files.

* Save - Saves the class.

* Save As - Save as the class.

* Save Total - Saves the class and all the classes it uses in a single file. The class and its dependencies can
only be loaded later by using the loadFile() API function in a script. Allows third parties to reproduce an
issue with a class without worrying about library dependencies.

e Import

e FMU - Imports the FMU.

* FMU Model Description - Imports the FMU model description.

* From OMNotbook - Imports the Modelica models from OMNotebook.

* Ngspice netlist - Imports the ngspice netlist to Modelica code.

* "Export"

* To Clipboard - Exports the current model to clipboard.

 Image - Exports the current model to image.

e FMU - Exports the current model to FMU.

* Read-only Package - Exports a zipped Modelica library with file extension .mol

* Encrypted Package - Exports an encrypted package. see OpenModelica Encryption
* XML - Exports the current model to a xml file.

e Figaro - Exports the current model to Figaro.

* To OMNotebook - Exports the current model to a OMNotebook file.

 System Libraries - Contains a list of system libraries.

* Manage Libraries

* Install Library - Opens a dialog to select and install a new library. see Install Library
» Upgrade Installed Libraries - Opens a dialog to upgrade the installed libraries.

» Update Library Index - Updates the library index.

e Recent Files - Contains a list of recent files.

3.4. File Menu 41

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

e Clear Recent Files - Clears the list of recent files.
e Print - Prints the current model.

* Quit - Quit the OpenModelica Connection Editor.

3.5 Edit Menu

* Undo - Undoes the last change.
* Redo - Redoes the last undone change.

e Filter Classes - Filters the classes in Libraries Browser. see Filter Classes

3.6 View Menu

 Toolbars - Toggle visibility of toolbars.

» Windows - Toggle visibility of windows.

* Close Window - Closes the current model window.

* Close All Windows - Closes all the model windows.

* Close All Windows But This - Closes all the model windows except the current.

* Cascade Windows - Arranges all the child windows in a cascade pattern.

* Tile Windows Horizontally - Arranges all child windows in a horizontally tiled pattern.
* Tile Windows Vertically - Arranges all child windows in a vertically tiled pattern.
* Toggle Tab/Sub-window View - Switches between tab and subwindow view.

* Grid Lines - Toggle grid lines of the current model.

* Reset Zoom - Resets the zoom of the current model.

* Zoom In - Zoom in the current model.

e Zoom Out - Zoom out the current model.

* Fit to Diagram - Fit the current model diagram in the view.

3.7 SSP Menu

* Add System - Adds the system to a model.

* Add/Edit Icon - Add/Edit the system/submodel icon.

* Delete Icon - Deletes the system/submodel icon.

* Add Connector - Adds a connector to a system/submodel.
Add Bus - Adds a bus to a system/submodel.

Add TLM Bus - Adds a TLM bus to a system/submodel.
Add SubModel - Adds a submodel to a system.

42 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.8 Simulation Menu

* Check Model - Checks the current model.

* Check All Models - Checks all the models of a library.
* Instantiate Model - Instantiates the current model.

e Simulation Setup - Opens the simulation setup window.
* Simulate - Simulates the current model.

 Simulate with Transformational Debugger - Simulates the current model and opens the transformational
debugger.

* Simulate with Algorithmic Debugger - Simulates the current model and opens the algorithmic debugger.
* Simulate with Animation - Simulates the current model and open the animation.

* Archived Simulations - Shows the list of simulations already finished or running. Double clicking on any of
them opens the simulation output window.

3.9 Data Reconciliation

* Calculate Data Reconciliation - Opens the dialog to run the data reconciliation algorithm.

3.10 Sensitivity Optimization Menu

* Run Sensitivity Analysis and Optimization - Runs the sensitivity analysis and optimization.

3.11 Debug Menu

* Debug Configurations - Opens the debug configurations window.

e Attach to Running Process - Attaches the algorithmic debugger to a running process.

3.12 Tools Menu

* OpenModelica Compiler CLI - Opens the OpenModelica Compiler command line interface window.

* OpenModelica Command Prompt - Opens the OpenModelica Command Prompt (Only available on Win-
dows).

* Open Temporary Directory - Opens the current temporary directory.
* Open Working Directory - Opens the current working directory.
* Open Terminal - Runs the terminal command set in General Options.

* Options - Opens the options window.

3.8. Simulation Menu 43

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.13 Help Menu

* OpenModelica User's Guide - Opens the OpenModelica User's Guide.

* OpenModelica User's Guide (PDF) - Opens the OpenModelica User's Guide (PDF).

* OpenModelica System Documentation - Opens the OpenModelica System Documentation.

* OpenModelica Scripting Documentation - Opens the OpenModelica Scripting Documentation.
* Modelica Documentation - Opens the Modelica Documentation.

* OMSimulator User's Guide - Opens the OMSimulator User's Guide.

* OpenModelica TLM Simulator Documentation - Opens the OpenModelica TLM Simulator Documentation.

About OMEdit - Shows the information about OpenModelica Connection Editor.

3.14 Modeling a Model

3.14.1 Creating a New Modelica Class

Creating a new Modelica class in OMEdit is rather straightforward. Choose any of the following methods,
* Select File > New > New Modelica Class from the menu.
* Click on New Modelica Class toolbar button.
* Click on the Create New Modelica Class button available at the left bottom of Welcome Perspective.

e Press Ctrl+N.

3.14.2 Opening a Modelica File

Choose any of the following methods to open a Modelica file,
* Select File > Open Model/Library File(s) from the menu.
* Click on Open Model/Library File(s) toolbar button.
* Click on the Open Model/Library File(s) button available at the right bottom of Welcome Perspective.
* Press Ctrl+O.
(Note, for editing Modelica system files like MSL (not recommended), see Editing Modelica Standard Library)

3.14.3 Opening a Modelica File with Encoding

Select File > Open/Convert Modelica File(s) With Encoding from the menu. It is also possible to convert files to
UTF-8.

3.14.4 Model Widget

For each Modelica class one Model Widget is created. It has a statusbar and a view area. The statusbar contains
buttons for navigation between the views and labels for information. The view area is used to display the icon,
diagram and text layers of Modelica class. See Figure 3.9.

44 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

oA DCMotor* %]
II-IE € | writable | Model | Diagram View | C:/Users/adeas31/Desktop/DCmotor.mo Line: 1, Col: 0 | &
~
resistor 1 inductorl
sepl
4 oo
=
»)ﬁ
z
+ 5
[| [
startTime=startTime
groundl
w
< >

Figure 3.9: Model Widget showing the Diagram View.

3.14. Modeling a Model 45

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.14.5 Adding Component Models

Drag the models from the Libraries Browser and drop them on either Diagram or Icon View of Model Widget.

3.14.6 Making Connections

In order to connect one component model to another the user first needs to enable the connect mode (<:) from
the toolbar.

Move the mouse over the connector. The mouse cursor will change from arrow cursor to cross cursor. To start
the connection press left button and move while keeping the button pressed. Now release the left button. Move
towards the end connector and click when cursor changes to cross cursor.

3.15 Simulating a Model

The simulation process in OMEdit is split into three main phases:

1. The Modelica model is translated into C/C++ code. The model is first instantiated by the frontend, which
turns it into a flat set of variables, parameters, equations, algorithms, and functions. The backend then
analyzes the mathematical structure of the flat model, applies symbolic simplifications and determines how
the equations can be solved efficiently. Finally, based on this information, model-specific C/C++ code is
generated. This part of the process can be influenced by setting Translation Flags (a.k.a. Command Line
Options), e.g. deciding which kind of structural simplifications should be performed during the translation
phase.

2. The C/C++ code is compiled and linked into an executable simulation code. Additional C/C++ compiler
flags can be given to influence this part of the process, e.g. by setting compiler optimizations such as —03.
Since multiple C/C++ source code files are generated for a given model, they are compiled in parallel by
OMEdit, exploiting the power of multi-core CPUs.

3. The simulation executable is started and produces the simulation results in a .mat or .csv file. The runtime
behaviour can be influenced by Simulation Flags, e.g. by choosing specific solvers, or changing the output
file name. Note that it it possible to re-simulate a model multiple times, changing parameter values from the
Variables Browser and/or changing some Simulation Flags. In this case, only Phase 3. is repeated, skipping
Phases 1. and 2., which enables much faster iterations.

The simulation options for each model are stored inside the OMEdit data structure. They are set according to the
following sequence,

* Each model has its own translation and simulation options.

* If the model is opened for the first time then the translation and simulation options are set to defaults, that
can be customized in Tools | Options | Simulation.

* experiment,__ OpenModelica_commandLineOptionsand__ OpenModelica_simulationFlags
annotations are applied if the model contains them.

e After that all the changes done via Simulation Setup window for a certain model are pre-
served for the whole session. If you want to use the same settings in future sessions then
you should store them inside experiment, OpenModelica_commandLineOptions, and
__OpenModelica_simulationFlags annotations.

The OMEdit Simulation Setup can be launched by,
* Selecting Simulation > Simulation Setup from the menu. (requires a model to be active in ModelWidget)
¢ Clicking on the Simulation Setup toolbar button. (requires a model to be active in ModelWidget)

 Right clicking the model from the Libraries Browser and choosing Simulation Setup.

46 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.15.1 General

* Simulation Interval
e Start Time — the simulation start time.
* Stop Time — the simulation stop time.
e Number of Intervals — the simulation number of intervals.
e Interval — the length of one interval (i.e., stepsize)
¢ Integration
* Method — the simulation solver. See section Integration Methods for solver details.
» Tolerance — the simulation tolerance.
e Jacobian - the jacobian method to use.
* DASSL/IDA Options
* Root Finding - Activates the internal root finding procedure of dassl.
* Restart After Event - Activates the restart of dassl after an event is performed.
e [nitial Step Size
* Maximum Step Size
* Maximum Integration Order
e C/C++ Compiler Flags (Optional) — the optional C/C++ compiler flags.
* Number of Processors — the number of processors used to build the simulation.
* Build Only — only builds the class.
* Launch Transformational Debugger — launches the transformational debugger.
e Launch Algorithmic Debugger — launches the algorithmic debugger.

e Launch Animation — launches the 3d animation window.

3.15.2 Interactive Simulation

» Simulate with steps (makes the interactive simulation synchronous; plots nicer curves at the expense of
performance)

» Simulation server port

3.15.3 Translation Flags

3.15.4 Simulation Flags

* Model Setup File (Optional) — specifies a new setup XML file to the generated simulation code.

* [Initialization Method (Optional) — specifies the initialization method.

* Equation System Initialization File (Optional) — specifies an external file for the initialization of the model.
» Equation System Initialization Time (Optional) — specifies a time for the initialization of the model.

* Clock (Optional) — the type of clock to use.

* Linear Solver (Optional) — specifies the linear solver method.

* Non Linear Solver (Optional) — specifies the nonlinear solver.

* Linearization Time (Optional) — specifies a time where the linearization of the model should be performed.

* Qutput Variables (Optional) — outputs the variables a, b and c at the end of the simulation to the standard
output.

3.15. Simulating a Model 47

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

Profiling — creates a profiling HTML file.

CPU Time — dumps the cpu-time into the result file.

Enable All Warnings — outputs all warnings.

Logging (Optional)

stdout - standard output stream. This stream is always active, can be disabled with -lv=-stdout
assert - This stream is always active, can be disabled with -lv=-assert
LOG_DASSL - additional information about dassl solver.
LOG_DASSL_STATES - outputs the states at every dassl call.

LOG_DEBUG - additional debug information.

LOG_DELAY - Debug information for delay operator.

LOG_DIVISION - Log division by zero.

LOG_DSS - outputs information about dynamic state selection.
LOG_DSS_JAC - outputs jacobian of the dynamic state selection.

LOG_DT - additional information about dynamic tearing.

LOG_DT_CONS - additional information about dynamic tearing (local and global constraints).
LOG_EVENTS - additional information during event iteration.
LOG_EVENTS_V - verbose logging of event system.

LOG_GBODE - Information about GBODE solver.

LOG_GBODE'_V - Verbose information about GBODE solver.
LOG_GBODE_NLS - Log non-linear solver process of GBODE solver.
LOG_GBODE_NLS_V - Verbose log non-linear solver process of GBODE solver.
LOG_GBODE_STATES - Output states at every GBODE call.

LOG_INIT - additional information during initialization.
LOG_INIT_HOMOTOPY - Log homotopy initialization.

LOG_INIT_V - Verbose information during initialization.

LOG_IPOPT - information from Ipopt.

LOG_IPOPT_FULL - more information from Ipopt.

LOG_IPOPT _JAC - check jacobian matrix with Ipopt.

LOG_IPOPT_HESSE - check hessian matrix with Ipopt.
LOG_IPOPT_ERROR - print max error in the optimization.

LOG_JAC - Outputs the jacobian matrix used by ODE solvers.

LOG_LS - logging for linear systems.

LOG_LS_V - verbose logging of linear systems.

LOG_NLS - logging for nonlinear systems.

LOG_NLS_V - verbose logging of nonlinear systems.
LOG_NLS_HOMOTOPY - logging of homotopy solver for nonlinear systems.
LOG_NLS_JAC - outputs the jacobian of nonlinear systems.
LOG_NLS_JAC_TEST - tests the analytical jacobian of nonlinear systems.

LOG_NLS_NEWTON_DIAG - Log Newton diagnostics. A Diagnostic method to figure out which individual
initial guess values are more likely to be causing the convergence failure of Newton-type iterative nonlinear
solvers.

LOG_NLS_RES - outputs every evaluation of the residual function.

48

Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

LOG_NLS_EXTRAPOLATE - outputs debug information about extrapolate process.
LOG_RES_INIT - outputs residuals of the initialization.

LOG_RT - additional information regarding real-time processes.
LOG_SIMULATION - additional information about simulation process.
LOG_SOLVER - additional information about solver process.

LOG_SOLVER_V - verbose information about the integration process.
LOG_SOLVER_CONTEXT - context information during the solver process.
LOG_SOTI - final solution of the initialization.

LOG_SPATIALDISTR - logging of internal operations for spatialDistribution.
LOG_STATS - additional statistics about timer/events/solver.

LOG_STATS_V - additional statistics for LOG_STATS.

LOG_SUCCESS - This stream is always active, can be disabled with -lv=-LOG_SUCCESS.
LOG_SYNCHRONOUS - Log clocks and sub-clocks for synchronous features.
LOG_ZEROCROSSINGS - additional information about the zerocrossings.
Additional Simulation Flags (Optional) — specify any other simulation flag.

3.15.5 Output

Output Format — the simulation result file output format.

Single Precision - Output results in single precision (only for mat output format).

File Name Prefix (Optional) - the name is used as a prefix for the output files.

Result File (Optional) - the simulation result file name.

Variable Filter (Optional) - only output variables with names fully matching the regular expression
*Protected Variables * - adds the protected variables in result file.

Equidistant Time Grid — output the internal steps given by dassl instead of interpolating results into an
equidistant time grid as given by stepSize or numberOfIntervals

Store Variables at Events — adds the variables at time events.

Show Generated File — displays the generated files in a dialog box.

The Variable Filter takes a regular expression input and only saves in the simulation results file those variables
whose names fully match it. Here are some simple examples:

. * matches any variable (default choice)
xy . + matches variables starting with xy
. +yz matches variables ending with yz

abc\.def . matches variables starting with abc . def. Note that the . character is a regex metacharac-
ter, so it must be escaped by a \

.*body\.a_0\[1\] matches variables ending with body.a_0[1]. Note that ., [, and] must be
escaped

x\ [. =\] matches all elements of array x
x\ [[2—4]\] matches elements 2, 3, and 4 of array x
abc. | def . » matches variables starting with abc or de f

.+der\ (.\) matches all derivatives in the model. Note that (and) must be escaped

Please note that all the model variables will still be shown in the Variables Browser tree; however, only those for
which results were actually saved will have a checkbox to plot them.

3.15.

Simulating a Model 49

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.15.6 CSV-File Data Input

When simulating Modelica models with top-level inputs (input variables or input connectors), these inputs are
assumed to be equal to their start value by default. However, it is possible to feed them with input signals ob-
tained from CSV (Comma-Separated Value) input data files, by means of the -csvinput simulation flag, that can
be set in the Additional Simulation Flags (Optional) field of the Simulation Flags tab. For example, setting
—-csvInput=myinput.csv causes the runtime executable to read such input data from the myinput.csv
file.

CSV files should contain the names of the input variables in the first row, beginning with t ime on the first column,
and the values of such variables for each point in time in subsequent rows, with non-decreasing time values. The
variable names should be enclosed by quotation marks in case they contain spaces, to avoid ambiguities. The
default separator for data items within each row is the comma, but it is also possible to use other separators, e.g.,
space, tab, or semi-colon; in this case, the file should start with the separator specification "sep=x" (including
the quotation marks), where x is the separator character.

For example, assume your model has three top-level inputs named ul, u2, and u3. These are valid CSV input
files:

time, u3, u2, ul

0.0, 0.0, 0.0, 0.0

1.0, 0.0, 0.0, 0.0

2.0, 0.0, 0.0, 1.0
"sep=;" time; u3; u2; ul
0.0; 0.0; 0.0; 0.0

1.0; 0.0; 0.0; 0.0

2.0; 0.0; 0.0; 1.0

"sep= " "time" "u3" "u2" "ul"
0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0

2.0 0.0 0.0 1.0

Note that input labels need not be lexicographically ordered, the association between the columns and the inputs
is given by the first row.

The CSV-file provides the values of the top level inputs at the specified points in time; linear interpolation is used
to provide intermediate values between any two subsequent data points. Discontinuous inputs can be obtained
by providing two consecutive rows with the same time value, containing the left limit values and the right limit
values.

Unless an absolute pathname is provided for the CSV-files, OMEdit will load it from the sub-directory of the
working directory which has the same name of the model, where all the other input and output data files are
located.

3.15.7 Data Reconciliation

* Algorithm — data reconciliation algorithm.
* Measurement Input File — measurement input file.
 Correlation Matrix Input File — correlation matrix file.

* Epsilon

50 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.16 2D Plotting

Successful simulation of model produces the result file which contains the instance variables that are candidate for
plotting. Variables Browser will show the list of such instance variables. Each variable has a checkbox, checking
it will plot the variable. See Figure 3.7. To get several plot windows tiled horizontally or vertically use the menu
items Tile Windows Horizontally or Tile Windows Vertically under View Menu.

3.16.1 Types of Plotting

The plotting type depends on the active Plot Window. By default the plotting type is Time Plot.

Time Plot

Plots the variable over the simulation time. You can have multiple Time Plot windows by clicking on New Plot

Window toolbar button (|Z).

Plot Parametric

Draws a two-dimensional parametric diagram, between variables x and y, with y as a function of x. You can have
multiple Plot Parametric windows by clicking on the New Plot Parametric toolbar button (I@).

Select the x-axis variable while holding down the shift key, release the shift key and then select y-axis variables.
One or many y-axis variables can be selected against one x-axis variable. To select a new x-axis variable press
and hold the shift key again.

Unchecking the x-axis variable will uncheck all y-axis variables linked to it.

Array Plot

Plots an array variable so that the array elements' indexes are on the x-axis and corresponding elements' values are
on the y-axis. The time is controlled by the slider above the variable tree. When an array is present in the model,
it has a principal array node in the variable tree. To plot this array as an Array Plot, match the principal node. The
principal node may be expanded into particular array elements. To plot a single element in the Time Plot, match

the element. A new Array Plot window is opened using the New Array Plot Window toolbar button (|L").

Array Parametric Plot
Plots the first array elements' values on the x-axis versus the second array elements' values on the y-axis. The time
is controlled by the slider above the variable tree. To create a new Array Parametric Plot, press the New Array

Parametric Plot Window toolbar button (| s), then match the principle array node in the variable tree view to be
plotted on the x-axis and match the principle array node to be plotted on the y-axis.

Diagram Window

Shows the active ModelWidget as a read only diagram. You can only have one Diagram Window. To show it click

on Diagram Window toolbar button (Oig).

3.16. 2D Plotting 51

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.16.2 Plot Window

A plot window shows the plot curve of instance variables. Several plot curves can be plotted in the same plot
window. See Figure 3.7.

Plot Window Menu

* Auto Scale - Automatically scales the horizontal and vertical axes.
* Fit in View - Adjusts the plot canvas to according to the size of plot curves.
* Save - Saves the plot to file system as .png, .svg or .bmp.
* Print - Prints the plot.
* Grid - Shows grid lines.
* Detailed Grid - Shows detailed grid lines.
* No Grid - Hides grid lines.
* Log X - Logarithmic scale of the horizontal axis.
* Log Y - Logarithmic scale of the vertical axis.
* Setup - Shows a setup window.
e Variables - List of all plotted variables.
* General - Variable general information.
* Legend - Display name for legend.
* File - File name where variable data is stored.
* Appearance - Visual settings of variable.
* Color - Display color.
e Pattern - Line pattern of curve.
e Thickness - Line thickness of curve.
* Hide - Hide/Show the curve.
» Toggle Sign - Toggles the sign of curve.
* Titles - Plot, axes and footer titles settings.
* Legend - Sets legend position and font.
* Range - Automatic or manual axes range.
* Auto Scale - Automatically scales the horizontal and vertical axes.
* X-Axis
* Minimum - Minimum value for x-axis.
* Maximum - Maximum value for x-axis.
* Y-Axis
* Minimum - Minimum value for y-axis.
* Maximum - Maximum value for y-axis.

* Prefix Units - Automatically pick the right prefix for units.

52 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.17 Re-simulating a Model

The Variables Browser allows manipulation of changeable parameters for re-simulation. After changing the pa-

rameter values user can click on the re-simulate toolbar button (9), or right click the model in Variables Browser
and choose re-simulate from the menu.

3.18 3D Visualization

Since OpenModelica 1.11 , OMEdit has built-in 3D visualization, which replaces third-party libraries (such as
Modelica3D) for 3D visualization.

3.18.1 Running a Visualization

The 3d visualization is based on OpenSceneGraph. In order to run the visualization simply right click the class in
Libraries Browser an choose “Simulate with Animation” as shown in Figure 3.10.

&% OMEdit - OpenModelica Connection Editor - [DoublePendulum] — O
% File Edit View Simulation FMI Export Debug Tools Help - & x
’ 9 L3 . -
PeB R Heee \OHOTR < EQY - D> X T
Libraries Browser g x |II-I o’& E o | Writable | Model | Diagram View | Modelim.Memanics.MuIﬁBody.Examples.EIemeniary.Dou| | Line: 1, Col: 0 | |
|Sea|'ch Classes | L 4 I
A
Libraries G‘i Open Class
D ModelicaServices o View Documentation
Complex Save Total
= .
@ Modelica E Instantiate Model
o UsersGuide Q Check Model
(8] Blocks @) Check All Models
ComplexBlocks i) Simulate Ctrl+B boxBodyl Rudfi=2 boxBody2
@ StateGraph # Simulate with Transformational Debugger] I I-—-I] I
@] Electrical ‘ Simulate with Algorithmic Debugger r={05,0, 0} —o0n r={0.5 0.0}
Magnetic 0 Sirmulate with Animation
=] Mechanics S| Simulation Setup
=] a MultiBody W Duplicate
.
o UsersGuide B Export FMU
World S Export XML
= E] Examples B Export Figaro
= Elementa
E] 4 Update Bindings
o DoublePendulum
() DoublePenduluminitTip
| ForceAndTorque
() FreeBody Y
— v
Simulates the Modelica class with Animation ¥:-89.44 ¥:-53.85 t Welcome di Modeling & Plotting [4 Debugging

Figure 3.10: OMEdit Simulate with Animation.

One can also run the visualization via Simulation > Simulate with Animation from the menu.

When simulating a model in animation mode, the flag +d=visxml is set. Hence, the compiler will generate a
scene description file _visual.xml which stores all information on the multibody shapes. This scene description
references all variables which are needed for the animation of the multibody system. When simulating with
+d=visxml, the compiler will always generate results for these variables.

3.17. Re-simulating a Model 53

https://github.com/OpenModelica/Modelica3D

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.18.2 Viewing a Visualization

After the successful simulation of the model, the visualization window will show up automatically as shown in

Figure 3.11.

ot OMEdit - OpenModelica Connection Editor

SRRl X

Export Debug Tools

Help

Hoeee \oHOTH -

-

W K

=

File Edit Simulation FMI
Libraries Browser
|Filter Classes

Libraries o

= 7?77 Modelica

0
=)

©
=
Ztﬂ]
=

B |\ | Multigody
o UsersGuide
World

2| p Examples

E [| Ele.ary

ComplexBlocks

() Doin ~

I

g X | Modelica.Medﬂanics.MuIﬁBody.Examples.EIementary.DoubIePendqum_res.mat@ |

e [s]: peed 1 - {_—;\ —~ |Filter variables | &

» ’ 3 9 » |x » g LI' »

Variables Browser g X

Simulation Time Unit E]

m

Variables E Valu
=] @ Modelic...endulum

boxBodyl

boxBody2

damper

revolutel

revolute?

world

4| (11} LS

X: 17.97 ¥: 15.26

| t\'\n‘elmme | clil\‘lodeling | gPlotﬁng | .‘Debugging

Figure 3.11: OMEdit 3D Visualization.

The animation starts with pushing the play button. The animation is played until stopTime or until the pause
button is pushed. By pushing the previous button, the animation jumps to the initial point of time. Points of time
can be selected by moving the time slider or by inserting a simulation time in the Time-box. The speed factor of
animation in relation to realtime can be set in the Speed-dialog. Other animations can be openend by using the
open file button and selecting a result file with a corresping scene description file.

The 3D camera view can be manipulated as follows:

Operation Key Mouse Action
Move Closer/Further none Wheel

Move Closer/Further Right Mouse Hold Up/Down
Move Up/Down/Left/Right | Middle Mouse Hold Move Mouse
Move Up/Down/Left/Right | Left and Right Mouse Hold | Move Mouse
Rotate Left Mouse Hold Move Mouse
Shape context menu Right Mouse + Shift

Predefined views (Isometric, Side, Front, Top) can be selected and the scene can be tilted by 90° either clock or
anticlockwise with the rotation buttons.

54

Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.18.3 Additional Visualization Features

The shapes that are displayed in the viewer can be selected with shift + right click. If a shape is selected, a context
menu pops up that offers additional visualization features

1 shape ' |€ Change Transparency
Reset Transparency and Texture [Make Shape Invisible

Change Color

&

.. Apply Check Texture
oo

&

Apply Customn Texture

Remove Texure

The following features can be selected:

Menu Description

Change Transparency | The shape becomes either transparent or intransparent.

Make Shape Invisible | The shape becomes invisible.

Change Color A color dialog pops up and the color of the shape can be set.

Apply Check Texture A checked texture is applied to the shape.

Apply Custom Texture | A file selection dialog pops up and an image file can be selected as a texture.
Remove Texture Removes the current texture of the shape.

3.18. 3D Visualization

55

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.19 Animation of Realtime FMUs

Instead of a result file, OMEdit can load Functional Mock-up Units to retrieve the data for the animation of
multibody systems. Just like opening a mat-file from the animation-plotting view, one can open an FMU-file.
Necessarily, the FMU has to be generated with the +d=visxml flag activated, so that a scene description file is
generated in the same directory as the FMU. Currently, only FMU 1.0 and FMU 2.0 model exchange are supported.
When choosing an FMU, the simulation settings window pops up to choose solver and step size. Afterwards, the
model initializes and can be simulated by pressing the play button.

3.19.1 Interactive Realtime Animation of FMUs

FMUs can be simulated with realtime user interaction. A possible solution is to equip the model with an inter-
action model from the Modelica_DeviceDrivers library (https://github.com/modelica/Modelica_DeviceDrivers).
The realtime synchronization is done by OMEdit so no additional time synchronization model is necessary.

&t OMEdit - OpenModelica Connection Editor l‘:' E] éj
File Edit View Simulation FMI Expot Debug Git Tools Help

s8R oo \PHOTREK 5- O9E »%-9- 7

Libraries Browser 8 x| 4 DoublePendulum_interactive™ 8 |
Filter Classes _I N *@]E o ‘Writable |Mode\ |Diagram View |DoubIePendqum_interacﬁve |D:fProgramminngPENMODELICA...ub\ePendqum_inheracﬁve.mo | |

-

Libraries

@ OpenModelica

o ModelicaReference

ModelicaServices
Complex
. 777 Modelica =ddl
: : Bl +1
l DU Modelica_..ceDrivers +
—) I
Modelica...chronous p' \ +1

m

positionl
1

| tWeImme | diMUdeIing | aPlotﬁng | uDebugging

56 Chapter 3. OMEdit — OpenModelica Connection Editor

https://github.com/modelica/Modelica_DeviceDrivers

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.20 Interactive Simulation

Warning: Interactive simulation is an experimental feature.

Interactive simulation is enabled by selecting interactive simulation in the simulation setup.

There are two main modes of execution: asynchronous and synchronous (simulate with steps). The difference is
that in synchronous (step mode), OMEdit sends a command to the simulation for each step that the simulation
should take. The asynchronous mode simply tells the simulation to run and samples variables values in real-time;
if the simulation runs very fast, fewer values will be sampled.

When running in asynchronous mode, it is possible to simulate the model in real-time (with a scaling factor just
like simulation flag -7z, but with the ability to change the scaling factor during the interactive simulation). In the
synchronous mode, the speed of the simulation does not directly correspond to real-time.

3.21 How to Create User Defined Shapes — Icons

Users can create shapes of their own by using the shape creation tools available in OMEdit.

 Line Tool — Draws a line. A line is created with a minimum of two points. In order to create a line, the user
first selects the line tool from the toolbar and then click on the Icon/Diagram View; this will start creating a
line. If a user clicks again on the Icon/Diagram View a new line point is created. In order to finish the line
creation, user has to double click on the Icon/Diagram View.

* Polygon Tool — Draws a polygon. A polygon is created in a similar fashion as a line is created. The only
difference between a line and a polygon is that, if a polygon contains two points it will look like a line and
if a polygon contains more than two points it will become a closed polygon shape.

* Rectangle Tool — Draws a rectangle. The rectangle only contains two points where first point indicates the
starting point and the second point indicates the ending the point. In order to create rectangle, the user
has to select the rectangle tool from the toolbar and then click on the Icon/Diagram View, this click will
become the first point of rectangle. In order to finish the rectangle creation, the user has to click again on the
Icon/Diagram View where he/she wants to finish the rectangle. The second click will become the second
point of rectangle.

* Ellipse Tool — Draws an ellipse. The ellipse is created in a similar way as a rectangle is created.
e Text Tool — Draws a text label.
* Bitmap Tool — Draws a bitmap container.

The shape tools are located in the toolbar. See Figure 3.12.

The user can select any of the shape tools and start drawing on the Icon/Diagram View. The shapes created on the
Diagram View of Model Widget are part of the diagram and the shapes created on the Icon View will become the
icon representation of the model.

For example, if a user creates a model with name testModel and add a rectangle using the rectangle tool and a
polygon using the polygon tool, in the Icon View of the model. The model’s Modelica Text will appear as follows:

model testModel

annotation (Icon (graphics = {Rectangle(rotation = 0, lineColor = {0,0,255},
—~fillColor = {0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.
—None, lineThickness = 0.25, extent = {{ -64.5,88},{63, —-22.5}}),Polygon(points =
—{{ -47.5, -29.5},{52.5, -29.5},{4.5, -86},{ -47.5, -29.5}}, rotation = 0,
—~lineColor = {0,0,255}, fillColor = {0,0,255}, pattern = LinePattern.Solid,
—~fillPattern = FillPattern.None, lineThickness = 0.25)1}));
end testModel;

In the above code snippet of testModel, the rectangle and a polygon are added to the icon annotation of the model.
Similarly, any user defined shape drawn on a Diagram View of the model will be added to the diagram annotation
of the model.

3.20. Interactive Simulation 57

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(Rectangle Tool (Text Tool >

\

(¢ Line Tool) A4—“WOHOEN —»(Bitmap Tool D

/N

(Polygon Tool) (¢ Ellipse Tool)

Figure 3.12: User defined shapes.

3.22 Global head section in documentation

If you want to use same styles or same JavaScript for the classes contained inside a package then you can de-
fine __ OpenModelica_infoHeader annotation inside the Documentation annotation of a package. For
example,

package P
model M
annotation (Documentation (info="<html>
Click here
</html>"));
end M;
annotation (Documentation (___OpenModelica_infoHeader="
<script type=\"text/javascript\">
function HelloWorld() {
alert (\"Hello World!'\")
}
</script>"));
end P;

In the above example model M does not need to define the javascript function HelloWorld. It is only defined
once at the package level using the __OpenModelica_infoHeader and then all classes contained in the
package can use it.

In addition styles and JavaScript can be added from file locations using Modelica URIs. Example:

package P
model M
annotation (Documentation (info="<html>
Click here
</html>"));
end M;
annotation (Documentation (___OpenModelica_infoHeader="
<script type=\"text/javascript\">
src=\"modelica://P/Resources/hello.js\">
t
</script>"));
end P;

Where the file Resources/hello. js then contains:

58 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

function HelloWorld() {
alert ("Hello World!™);

}

3.2

3 Options

OMEdit allows users to save several options which will be remembered across different sessions of OMEdit. The
Options Dialog can be used for reading and writing the options.

3.23.1 General Options

General

Language — Sets the application language.

Working Directory — Sets the application working directory. All files are generated in this directory.
Toolbar Icon Size — Sets the size for toolbar icons.

Preserve User’s GUI Customizations — If true then OMEdit will remember its windows and toolbars posi-
tions and sizes.

Terminal Command — Sets the terminal command. When user clicks on Tools > Open Terminal then this
command is executed.

Terminal Command Arguments — Sets the terminal command arguments.
Hide Variables Browser — Hides the variable browser when switching away from plotting perspective.

Activate Access Annotations — Activates the access annotations for the non-encrypted libraries. Access
annotations are always active for encrypted libraries.

Create a model.bak-mo backup file when deleting a model

Display errors/warnings when instantiating the graphical annotations - if true then the errors/warnings are
shown when using OMC API for graphical annotations.

Libraries Browser
Library Icon Size — Sets the size for library icons.

Max. Library Icon Text Length to Show — Sets the maximum text length that can be shown in the icon in
Libraries Browser.

Show Protected Classes — If enabled then Libraries Browser will also list the protected classes.

Show Hidden Classes — If enabled then Libraries Browser will also list the hidden classes. Ignores the
annotation(Protection(access = Access.hide))

Synchronize with Model Widget — If enabled then Libraries Browser will scroll automatically to the active
Model Widget i.e., the current model.

Enable Auto Save - Enables/disables the auto save feature.

Auto Save interval — Sets the auto save interval value. The minimum possible interval value is 60 seconds.
Welcome Page

Horizontal View/Vertical View — Sets the view mode for welcome page.

Show Latest News - If enabled then the latest news from https://openmodelica.org are shown.

Recent Files and Latest News Size - Sets the display size for recent files and latest news items.

Optional Features

Enable instance API - Enables/disables the use of json based instance api. The instance API enables the
features like conditional connectors, dialog enable, replaceable etc.

3.23

. Options 59

https://openmodelica.org

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.23.2 Libraries Options

¢ General

MODELICAPATH — Sets the MODELICAPATH. MODELICAPATH is used to load libraries.

» System libraries loaded automatically on startup - The list of system libraries that are loaded on startup.

* Load latest Modelica version on startup - Is true then the latest available version of the Modelica Standard
Library is always loaded alongwith its dependencies.

* User libraries loaded automatically on startup - The list of user libraries/files that are loaded on startup.

3.23.3 Text Editor Options

e Format
* Line Ending - Sets the file line ending.
* Byte Order Mark (BOM) - Sets the file BOM.
 Tabs and Indentation
 Tab Policy — Sets the tab policy to either spaces or tabs only.
* Tab Size — Sets the tab size.
¢ Indent Size — Sets the indent size.
» Syntax Highlight and Text Wrapping
* Enable Syntax Highlighting — Enable/Disable the syntax highlighting.

e Enable Code Folding - Enable/Disable the code folding. When code folding is enabled multi-
line annotations are collapsed into a compact icon (a rectangle containing "...)"). A marker
containing a "+" sign becomes available at the left-side of the involved line, allowing the code
to be expanded/re-collapsed at will.

* Match Parentheses within Comments and Quotes — Enable/Disable the matching of parentheses
within comments and quotes.

* Enable Line Wrapping — Enable/Disable the line wrapping.
* Autocomplete
* Enable Autocomplete — Enables/Disables the autocomplete.
 Font
 Font Family — Shows the names list of available fonts. Sets the font for the editor.

e Font Size — Sets the font size for the editor.

3.23.4 Modelica Editor Options

* Preserve Text Indentation — If true then uses diffModelicaFileListings API call otherwise uses the OMC
pretty-printing.

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* [tem Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

60 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.23.5 MetaModelica Editor Options

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

3.23.6 CompositeModel Editor Options

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

3.23.7 SSP Editor Options

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

3.23.8 C/C++ Editor Options

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

3.23.9 HTML Editor Options

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

3.23.10 Graphical Views Options

* General

Modeling View Mode

Tabbed View/SubWindow View — Sets the view mode for modeling.
Default View

Icon View/DiagramView/Modelica Text View/Documentation View — If no preferredView annotation is
defined then this setting is used to show the respective view when user double clicks on the class in
the Libraries Browser.

— Move connectors together on both icon and diagram layers

* Graphics

3.23. Options 61

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

— Icon/Diagram View
* Extent
Left — Defines the left extent point for the view.
* Bottom — Defines the bottom extent point for the view.
% Right — Defines the right extent point for the view.
+ Top — Defines the top extent point for the view.
Grid
* Horizontal — Defines the horizontal size of the view grid.
* Vertical — Defines the vertical size of the view grid.
* Component
* Scale factor — Defines the initial scale factor for the component dragged on the view.

Preserve aspect ratio — If true then the component’s aspect ratio is preserved while scaling.

3.23.11 Simulation Options

» Simulation
e Translation Flags
* Matching Algorithm — sets the matching algorithm for simulation.
¢ Index Reduction Method — sets the index reduction method for simulation.

e Show additional information from the initialization process - prints the information from the
initialization process

e Evaluate all parameters (faster simulation, cannot change them at runtime) - makes the simu-
lation more efficient but you have to recompile the model if you want to change the parameter
instead of re-simulate.

* Enable analytical jacobian for non-linear strong components - enables analytical jacobian for
non-linear strong components without user-defined function calls.

* Enable parallelization of independent systems of equations (Experimental)

* Enable old frontend for code generation

e Enable FMU Import - See FMI Import.

* Additional Translation Flags — sets the translation flags see Options

» Target Language — sets the target language in which the code is generated.

» Target Build — sets the target build that is used to compile the generated code.
* C Compiler — sets the C compiler for compiling the generated code.

e CXX Compiler — sets the CXX compiler for compiling the generated code.

e Use static linking — if true then static linking is used for simulation executable. The default is
dynamic linking. This option is only available on Windows.

* Post compilation command - if not empty allows to run a command after the compilation step. A
possible use-case is to be able to sign the binaries before execution to comply with the security
policy. The command is run in the same folder where the simulation executable is created. The
interpreter executable must be passed to run shell scripts, eg on Windows: powershell.exe -File
C:script.psl

e Ignore __OpenModelica_commandLineOptions annotation — if true then ignores the __ Open-
Modelica_commandLineOptions annotation while running the simulation.

e Ignore __OpenModelica_simulationFlags annotation — if true then ignores the __OpenModel-
ica_simulationFlags annotation while running the simulation.

62 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

* Save class before simulation — if true then always saves the class before running the simulation.

* Switch to plotting perspective after simulation — if true then GUI always switches to plotting
perspective after the simulation.

* Close completed simulation output windows before simulation — if true then the completed sim-
ulation output windows are closed before starting a new simulation.

* Delete intermediate compilation files — if true then the files generated during the compilation
are deleted automatically.

e Delete entire simulation directory of the model when OMEdit is closed — if true then the entire
simulation directory is deleted on quit.

e Output
o Structured - Shows the simulation output in the form of tree structure.
o Formatted Text - Shows the simulation output in the form of formatted text.

e Display Limit - Sets the display limit for simulation output. A link to log file is shown once the
limit is reached.

3.23.12 Messages Options

¢ General

* Qutput Size - Specifies the maximum number of rows the Messages Browser may have. If there are more
rows then the rows are removed from the beginning.

* Reset messages number before simulation — Resets the messages counter before starting the simulation.

* Clear messages browser before checking, instantiation & simulation — If enabled then the messages browser
is cleared before checking, instantiation & simulation of model.

* Font and Colors

* Font Family — Sets the font for the messages.

* Font Size — Sets the font size for the messages.

* Notification Color — Sets the text color for notification messages.
* Warning Color — Sets the text color for warning messages.

» Error Color — Sets the text color for error messages.

3.23.13 Notifications Options

* Notifications
* Always quit without prompt — If true then OMEdit will quit without prompting the user.

* Show item dropped on itself message — If true then a message will pop-up when a class is dragged
and dropped on itself.

» Show model is partial and component is added as replaceable message — If true then a message
will pop-up when a partial class is added to another class.

* Show component is declared as inner message — If true then a message will pop-up when an
inner component is added to another class.

* Show save model for bitmap insertion message — If true then a message will pop-up when user
tries to insert a bitmap from a local directory to an unsaved class.

* Always ask for the dragged component name — If true then a message will pop-up when user
drag & drop the component on the graphical view.

* Always ask for what to do with the text editor error — If true then a message will always pop-up
when there is an error in the text editor.

3.23. Options 63

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

¢ If new frontend for code generation fails

* Always ask for old frontend

Try with old frontend once

Switch to old frontend permanently

* Keep using new frontend

3.23.14 Line Style Options

Line Style

Color — Sets the line color.

Pattern — Sets the line pattern.

Thickness — Sets the line thickness.

Start Arrow — Sets the line start arrow.

End Arrow — Sets the line end arrow.

Arrow Size — Sets the start and end arrow size.

Smooth — If true then the line is drawn as a Bezier curve.

3.23.15 Fill Style Options

Fill Style
Color — Sets the fill color.
Pattern — Sets the fill pattern.

3.23.16 Plotting Options

General
Auto Scale — Sets whether to auto scale the plots or not.

Prefix Units — Automatically pick the right prefix for units for the new plot windows. For existing plot
windows use the Plot Window Menu.

Plotting View Mode

Tabbed View/SubWindow View — Sets the view mode for plotting.
Curve Style

Pattern — Sets the curve pattern.

Thickness — Sets the curve thickness.

Variable filter

Filter Interval - Delay in filtering the variables. Set the value to O if you don't want any delay.
Font Size - sets the font size for plot window items

Title

Vertical Axis Title

Vertical Axis Numbers

Horizontal Axis Title

Horizontal Axis Numbers

Footer

64

Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

e Legend

3.23.17 Figaro Options

* Figaro
e Figaro Library — the Figaro library file path.
 Tree generation options — the Figaro tree generation options file path.

e Figaro Processor — the Figaro processor location.

3.23.18 Debugger Options

* Algorithmic Debugger

* GDB Path — the gnu debugger path

* GDB Command Timeout — timeout for gdb commands.

* GDB Output Limit — limits the GDB output to N characters.
* Display C frames — if true then shows the C stack frames.

e Display unknown frames — if true then shows the unknown stack frames. Unknown stack frames means
frames whose file path is unknown.

* Clear old output on a new run — if true then clears the output window on new run.
* Clear old log on new run — if true then clears the log window on new run.
* Transformational Debugger

* Always show Transformational Debugger after compilation — if true then always open the Transformational
Debugger window after model compilation.

* Generate operations in the info xml — if true then adds the operations information in the info xml file.

3.23.19 FMI Options

* Export
* Version
e 1.0 — Sets the FMI export version to 1.0
e 2.0 — Sets the FMI export version to 2.0
* Type
* Model Exchange — Sets the FMI export type to Model Exchange.
* Co-Simulation — Sets the FMI export type to Co-Simulation.

* Model Exchange and Co-Simulation — Sets the FMI export type to Model Exchange and Co-
Simulation.

e FMU Name — Sets a prefix for generated FMU file.
* Move FMU — Moves the generated FMU to a specified path.
* Platforms

The list of platforms is created by searching for programs in the PATH matching pattern
"--#-%cc"." Add the host triple to the PATH to get it listed. A source-code only FMU is
generated if no platform is selected.

¢ Solver for Co-Simulation
e Explicit Euler
e CVODE

3.23. Options 65

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

* Model Description Filters - Sets the variable filter for model description file see omcflag-
fmifilter

e Include Modelica based resources via loadResource

e Include Source Code - Sets if the exported FMU can contain source code. Model Description
Filter "blackBox" will override this, because black box FMUs do never contain their source
code.

* Generate Debug Symbols - Generates a FMU with debug symbols.
e Import

* Delete FMU directory and generated model when OMEdit is closed - If true then the temporary FMU
directory that is created for importing the FMU will be deleted.

3.23.20 OMTLMSimulator Options

* General
* Path - path to OMTLMSimulator bin directory.
* Manager Process - path to OMTLMSimulator managar process.

* Monitor Process - path to OMTLMSimulator monitor process.

3.23.21 OMSimulator/SSP Options

* General
* Command Line Options - sets the OMSimulator command line options.

* Logging Level - OMSimulator logging level.

3.24 _ OpenModelica_commandLineOptions Annotation

OpenModelica specific annotation to define the command line options needed to simulate the model. For example
if you always want to simulate the model with a specific matching algorithm and index reduction method instead
of the default ones then you can write the following code,

model Test

annotation (___OpenModelica_commandLineOptions = "--matchingAlgorithm=BFSB —-—
—indexReductionMethod=dynamicStateSelection");
end Test;

The annotation is a space separated list of options where each option is either just a command line flag or a flag
with a value.

In OMEdit open the Simulation Setup and set the Translation Flags then in the bottom check Save translation
flags inside model i.e., __OpenModelica_commandLineOptions annotation and click on OK.

It you want to ignore this annotation then use setCommandLineOptions("--
ignoreCommandLineOptionsAnnotation=true"). In OMEdit Tools > Options > Simulation check Ignore
__OpenModelica_commandLineOptions annotation.

66 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.25 _ OpenModelica_simulationFlags Annotation

OpenModelica specific annotation to define the simulation options needed to simulate the model. For example if
you always want to simulate the model with a specific solver instead of the default DASSL and would also like to
see the cpu time then you can write the following code,

model Test
annotation (___OpenModelica_simulationFlags (s = "heun", cpu = "()"));
end Test;

The annotation is a comma separated list of options where each option is a simulation flag with a value. For flags
that doesn't have any value use () (See the above code example).

In OMEdit open the Simulation Setup and set the Simulation Flags then in the bottom check Save simulation flags
inside model i.e., __OpenModelica_simulationFlags annotation and click on OK.

If you want to ignore this annotation then use setCommandLineOptions("--
ignoreSimulationFlagsAnnotation=true"). In OMEdit Tools > Options > Simulation check Ignore __OpenMod-
elica_simulationFlags annotation.

3.26 Global and Local Flags

There is a large number of optional settings and flags to influence the way OpenModelica generates the simulation
code (Compiler flags, a.k.a. Translation flags or Command Line Options) and the way the simulation executable
is run (Simulation Flags).

The global default settings can be accessed and changed with the Tools > Options menu. It is also possible to reset
them to factory state by clicking on the Reset button of the Tools > Options dialog window.

When you start OMEdit and you simulate a model for the first time, the model-specific simulation ses-
sion settings are initialized by copying the global default settings, and then by applying any further settings
that are saved in the model within OpenModelica-specific __OpenModelica_commandLineOptions and
__OpenModelica_simulationFlags annotations. Note that the latter may partially override the former, if
they give different values to the same flags.

You can change those model-specific settings at will with the Simulation Setup window. Any change you make
will be remembered until the end of the simulation session, i.e. until you close OMEdit. This is very useful
to experiment with different settings and find the optimal ones, or to investigate bugs by turning on logging
options, etc. If you check the Save translation flags and Save simulation flags options in
the simulation setup, those settings will be saved in the model within the corresponding OpenModelica-specific
annotations, so that you can get the same behavior when you start a new session later on, or if someone else loads
the model on a different computer. Otherwise, all of those changes will be forgotten when you exit OMEdit.

If you change the global default settings after running some models, the simulation settings of those models will
be reset as if you closed OMEdit and restarted a new session: the new global options will first be applied, and then
any further setting saved in the OpenModelica-specific annotations will be applied, possibly overriding the global
options if the same flags get different values from the annotations. Any model-specific settings that you may have
changed with Simulation Setup up to that point will be lost, unless you saved them in the OpenModelica-specific
annotations before changing the global default settings.

3.25. _ OpenModelica_simulationFlags Annotation 67

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

3.27 Debugger

For debugging capability, see Debugging.

3.28 Editing Modelica Standard Library

By default OMEdit loads the Modelica Standard Library (MSL) as a system library. System libraries are read-
only. If you want to edit MSL you need to load it as user library instead of system library. We don't recommend
editing MSL but if you really need to and understand the consequences then follow these steps,

e Go to Tools > Options > Libraries.

* Remove Modelica & ModelicaReference from list of system libraries.

* Uncheck force loading of Modelica Standard Library.

Add SOPENMODELICAHOME/lib/omlibrary/Modelica X.X/package.mo under user libraries.
* Restart OMEdit.

3.29 Install Library

A new library can be installed with the help of the package manager. Click File->Manage Libraries->Install
Library to open the install library dialog. OMEdit lists the libraries that are available for installation through the
package manager.

3.30 Convert Libraries using Conversion Scripts

In order to convert the libraries right-click the model/package in the Libraries Browser and choose Convert to
newer versions of used libraries. OMEdit will read the used libraries from the uses-annotation and list any new
version of the library that provide the conversion using the conversion script.

3.31 State Machines

3.31.1 Creating a New Modelica State Class

Follow the same steps as defined in Creating a New Modelica Class. Additionally make sure you check the State
checkbox.

3.31.2 Making Transitions

]
In order to make a transition from one state to another the user first needs to enable the transition mode (—3) from
the toolbar.

Move the mouse over the state. The mouse cursor will change from arrow cursor to cross cursor. To start the
transition press left button and move while keeping the button pressed. Now release the left button. Move towards
the end state and click when cursor changes to cross cursor.

A Create Transition dialog box will appear which allows you to set the transition attributes. Cancelling the dialog
will cancel the transition.

Double click the transition or right click and choose Edit Transition to modify the transition attributes.

68 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

o’ OMEdit - Install Library ?

Install Library

Level of support by OpenModelica

Full Partial
|:| Experimental |:| Obsolete

|:| None

Name: AdvancedNoise

Version: 1.1.0
https://github.com/DLR-SR/AdvancedNoise.qgit

Exact Match (Install only the specified version of dependencies)

OK Cancel

Figure 3.13: Install Library.

3.31. State Machines

69

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

? X

ati OMEdit - Convert M to newer versions of used libr...

Following libraries from the uses annotation have new versions available.

Library To From
Modelica 4.0.0+maint.om v~ 3.2.3

Note: The converted class and used library might be reloaded.
If the new used library is not available then it will be installed.
This operation can take sometime depending on the conversions.

Backup your work before starting the conversion.

OK Cancel

Figure 3.14: Converts the model/package to newer version of used libraries.

70 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

o't OMEdit - Create New Modelica Class 7 pd
Mame: Statel

Spedalization: Model i
Extends (optional): Browse...
Insert in class (optional): Browse...

[] Partial

[] Encapsulated
State

Ik Cancel

Figure 3.15: Creating a new Modelica state.

3.31.3 State Machines Simulation

Support for Modelica state machines was added in the Modelica Language Specification v3.3. A subtle problem
can occur if Modelica v3.2 libraries are loaded, e.g., the Modelica Standard Library v3.2.2, because in this case
OMC automatically switches into Modelica v3.2 compatibility mode. Trying to simulate a state machine in
Modelica v3.2 compatibility mode results in an error. It is possible to use the OMC flag --std=latest in order to
ensure (at least) Modelica v3.3 support. In OMEdit this can be achieved by setting that flag in the Tools > Options
> Simulation dialog.

3.31.4 State Machines Debugger
Modelica state machines debugger is implemented as a visualization, which allows the user to run the state ma-
chines simulation as an animation.

A special Diagram Window is developed to visualize the active and inactive states. The active and inactive value
of the states are stored in the OpenModelica simulation result file. After the successful simulation, of the state
machine model, OMEdit reads the start, stop time values, and initializes the visualization controls accordingly.

The controls allows the easy manipulation of the visualization,
* Rewind — resets the visualization to start.
¢ Play — starts the visualization.
* Pause — pauses the visualization.
¢ Time — allows the user to jump at any specific time.
» Speed — speed of the visualization.
* Slider — controls the time.

The visualization is based on the simulation result file. All three formats of the simulation result file are supported
i.e., mat, csv and plt where mat is a matlab file format, csv is a comma separated file and plt is an ordered text file.

It is only possible to debug one state machine at a time. This is achieved by marking the result file active in the
Variables Browser. The visualization only read the values from the active result file. It is possible to simulate
several state machine models. In that case, the user will see a list of result files in the Variables Browser. The user

3.31. State Machines 71

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

OMEdit - Options

E General

% Libraries
Text Editor
Modelica Editor
MetaModelica Editor
CompositeModel Editor
C/C++ Editor
HTML Editor

agi Graphical Views

l’ Simulation

@ Messages

0 Motifications

Simulation
Matching Algorithm: PFPlusExt b
Index Reduction Method: | dynamicStateSelection ~
Target Language: C w
Target Compiler: gec ~
OMC Flags: --std=latest | | K}
[] 1gnore __openModelica_commandLineOptions annotation
y [1gnore __oOpenModelica_simulationFlags annotation g

* The changes will take effect after restart. OK Cancel
Figure 3.16: Ensure (at least) Modelica v3.3 support.
&% OMEdit - OpenModelica Connection Editor - O *
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
() e ¢ CsV A .
FPeBR 95 XPl-E a4 S Y &
Libraries Browser g x |X Plot : 1 B 4 Diagram %] Variables Browser 8 X
Filter Classes L4 A | [Filter Variables ¢
Libraries Simulation Time Unit s =
@ OpenModelica I
MedelicaServi
e D> I wefis sl
. Complex
@ Modelica Variables Value Displ
o ModelicaReference Sta te 1 = @ (Active...erQuter
=] E SMGraphi...estCases i “
] m O previous(i) 42
- -
SimpleS.. tations smOf
m InnerQuter ctatel
. Maraninchi2003_2 state?
E Components true
m DeepHierarchy
v
£ > £ >
t Welcome oﬁ Modeling ﬂ Plotting ‘ Debugging

Figure 3.17: State machine debugger in OMEdit.

72

Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

can switch between different result files by right clicking on the result file and selecting Set Active in the context
menu.

3.32 Using OMEdit as Text Editor

OMEdit can be be used as a Text editor. Currently support for editing MetaModelica,Modelica and C/C++ are
available with syntax highlighting and autocompletion of keywords and types. Additionaly the Modelica and
MetaModelica files are provided with autocompletion of code-snippets along with keywords and types. The users
can load the directory from file menu File > Open Directory. which opens the Directory structure in the Libraries-
browser.

&% OMEdit - OpenModelica Connection Editor — O x
File Edit View Simulation Debug OMSimulator Git Tools Help
j‘ MNew Modelica Class Ctrl+N
& Open Model/Library File(s) Ctrl+O
Open/Convert Modelica File(s) With Encoding
(e oy @ a Ope pdelica Connectio dlto
Load Encrypted Library
Open Result File(s) Ctrl+Shift+O
Open Transformations File rent F|Ies Latest NeWS
' New Composite Model -/OPENMODELICAGIT/Op, " & b January 31, 2019: OpenMadelica 1.13.2 released
0 Open Composite Model(s)
Load External Model(s) :/OPENMODELICAGIT/Og £» December 20, 2018: OpenModelica 1.13.0 released
. :/OPENMODELICAGIT/Og £» December 10, 2018: OpenModelica 1.13.0-dev.betal r
Open Directory
. -fUsers/arupa54/Downloi B> Program OpenModelica Annual Workshop 2019 v
B save Ctrl+S N < N
f"] Save As
Fae Tl r Recent Files Reload | For more details visit our website www.openmodelica.org
Import 4 -
B , e New Modelica Class Open Model/Library File(s)
System Libraries » Browser 8 X
Recent Files [,7- History: | New Search <
Clear Recent Files
All -
& Print.. Ctrl+P
or: ‘ V|
Quit cl+Q ben: [+ -]
Search
Search Browser Messages Browser
Opens the directory Ln: 439, Col: 20 @ welcome ot Modeling 58 Plotting @i Debugging

Figure 3.18: open-directory

After the directory is opened in the Libraries-browser, the users can expand the directory structure and click the
file which opens in the texteditor.

3.32.1 Advanced Search

Support to search in OMEdit texteditor is available. The search browser can be enabled by selecting View >
Windows > Search browser or through shortcut keys (ctrl+h).

The users can start the search by loading the directory they want to search and fill in the text to be searched for
and file pattern if needed and click the search button.

After the search is completed the results are presented to the users in a separate window, The search results contains
the following

1) The name of the files where the searched word is matched

2) The line number and text of the matched word.

3.32. Using OMEdit as Text Editor 73

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

% OMEdit - OpenModelica Connection Editor - O XK
File Edit WView Simulation Debug OMSimulator Git Tools Help
i L. L m— =2 & =
TEE”?! @O\®\O\ ‘OEOT< ' 'I‘{} > i' ot ™ "i"”
Libraries Browser & x u\i BackendDAEUl.mo a

‘Fi\ter Classes | ¥

E |Writab\e | C:/OPENMODELICAGIT/OpenModelica/ OMCompiler/ Compiler/BackEnd/BackendDAEULIl. mo | |

Libraries ~ tl = Expression.typeof (el); ~
H@ ModelicaReference t2 = ComponentReference.creflastType (cr):
T[] Modelicaservices b = Expression.equalTypes (tl,t2):;
1M complex wrongEgnsl = List.consOnTrue (not
HP% Modelica b, e,wrongEgns) ;
T OMCompiler then (e,wrongEgnsl);
3rdParty /)
common else (inEqg, inEgs);
=17 compiler 439 end matchcontinue;
= ‘BackEnd end checkEguationSize;
d& AdjacencyMatrixmo
&/ BackendDAE.mo [l public function checkAssertCondition "Succeds if
&/ BackendDAECreate.mo condition of assert is not constant false”
£/ BackendDAEEXT.mo input DAE.Exp cond; v
:‘. BackendDAEFunc.mo S BT 8 x
#& BackendDAEOptimize.mo . istory: [T -
#& BackendDAETransform.mo it
BackendDAEUtil.mo Seope: o .
#& BackendDump.mo
g. BackendEquation.mo Seaiing | V‘
&/ Backendinline.mo File Pattern: | ~]
g. BackendVariable.mo Search
#& BackendVarTransform.mo
S&) E?naryiree;rrlo v Search Browser Messages Browser

Ln: 439, Col: 20 6L Welcome A Modeling Plotting @ Debugging

Figure 3.19: openfile in texteditor

The users can click the line number or the matched text and it will automatically open the file in the texteditor and
move the cursor to matched line number of the text.

The users can perform multiple searches and go back to old search results using search histroy option.

3.33 Temporary Directory, Log Files and Working Directory

On Unix/Linux systems temporary directory is the path in the TMPDIR environment variable or /tmp if TMPDIR is
not defined appended with directory paths OpenModelica< USERNAME>/OMEdit so the complete path is usually
/tmp/OpenModelica< USERNAME>/OMEdit.

On Windows its the path in the TEMP or TMP environment variable appended with directory paths OpenModel-
ica/OMEdit so the complete path is usually %TEMP%/OpenModelica/OMEdit.

All the log files are always generated in the temporary directory. Choose Tools > Open Temporary Directory to
open the temporary directory.

By default the working directory has the same path as the temporary directory. You can change the working
directory from Tools > Options > General see section General Options.

For each simulation a new directory with the model name is created in the working directory and then all the
simulation intermediate and results files are generated in it.

74 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

o OMEdit - OpenModel

’j' = ﬂ Toolbars

Libraries Brov

Filter Classes

lE Oper O, ResetZo
O Mo @, ZoomIn

ica Connection Editor - O *

File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help

> |

Windows N
Toggle Tab/Sub-window View

Libraries || Grid Lines

om Crl+0 |2

Ctrl++ .

G Mode 9\ Zoom Qut Ctrl+-

. Complex B C/OPENMODENCAGIT/C

2 Modelica € C,/OpenPBS/OpenPBS/pz
OMCompiler

E» C/Users/arupa54/AppDa

Libraries Browser
Documentation Browser
Variables Browser

3D Viewer Browser
Messages Browser
Search Browser

Stack Frames Browser
BreakPoints Browser
Locals Browser
Output Browser
Debugger CLI

nection Editor

lews

31, 2019: OpenModelica 1.13.2 released
F 20, 2018: OpenModelica 1.13.0 released

[10, 2018: OpenModelica 1.13.0-dev.beta released
W

< Close Window
Close All Windows

Close All Windows But This

Clear Recent Files

For more details visit our website www.openmodelica.org

>

Cascade Windows

Create New Modelica Class

Tile Windows Horizontally

Open Model/Library File(s)

Figure 3.20: Enable omedit search browser

3.34 High DPI Settings

. Tile Windows Vertically g x
ks I. ' |- History: | Mew Search =
Scope: oMCompiler -
Search for: | V|
File Pattern: | * V|
Search
Messages Browser Search Browser
t Welcome n’.& Modeling Plotting ‘ Debuqging

When the text is too big / too small to read there are options to change the font size used in OMEdit, see 7Text

Editor Options.

If you are using a high-resolution screen (1080p, 4k and more) and the app is blurry or the overall proportions of

the different windows are off, it can help to change the DPI settings.

On Windows it is possible to change the scaling factor to adjust the size of text, apps and other times, but the
default setting might not be appropriate for OMEdit e.g., on compact notebooks with high resolution screens.

You can either change the scaling factor for the whole Windows system or only change the scaling used for
OMEdit. This is done by changing the Compatibility settings for High DPI settings for OMEdit.exe with the

following steps:

1. Press Windows-Key and type OpenModelica Connection Editor and right-click on the app and Open file

location, Figure 3.24.

2. Right-click on OpenModelica Connection Editor and open Properties.

3. In the properties window go to tab Compatibility and open Change high DPI settings. In the High DPI
settings for OMEdit.exe choose Use the settings to fix scaling problems for this program instead of the one
in Settings and Override high DPI scaling behavior.Scaling performed by: and choose System from the

drop-down menu, Figure 3.25.

3.34. High DPI Settings

75

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

u& Bac..mo Y Messages Browser Search Browser

o%% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
[(0 LN ; [—
J.h @O\G)\e\ \\’..T.” ' 0” =, ® *' wou | il »
Libraries Browser & x ﬁ.ﬁ BackendDump.mo B &% BackendDump.interface.mo [
IMI A ‘E ‘Wrﬂable ‘C:,I’OPENMDDEIJI:AG]T!OpenModeIica!{)MCompiIer!CompilerfbootfhuildeackendDump.interface.rrn ‘ a
Libraries ~ 14 ZH:I “
ﬂ OpenModelica 143|=| function dumpDAE
F|@ Modeli...erence 1 input BackendDAE.BackendDAE inDAE;
F10) Modeli...vices 1 guzputDigckendDAE.BackendDHE outDAE;
E. Complex g en Hmp .
i MOdehca_ 148 function dumpBackendDAE
=| = omcompiler 149 input BackendDAE.BackendDAE inBackendDAE;
3rdParty 150 input String heading:
commaon 151 - end dumpBackendDAE;
=]~ compiler 152
[=] © Backend 153 function dumpBackendDAEToModelica
ot Adj...mo 154 input BackendDAE.BackendDAE inBackendDAE; v
g& Bac...mo Search Browser F X
"& Bac..mo 2 '»'v'-' | History: |Mew Search -
p& Bac...mo
p& Bac...mo Scope: OMCompiler M
d‘i Bac..mo Search for: |dumpEackendDAEFoModeIica V|
p& Bac...mo
ﬂ& File Pattern: |*.mo V|
Bac...mo
g‘& Bac...mo Search
p& Bac...mo
p& Bac...mo

Figure 3.21: Start search in search browser

Ln: 153, Col: O tWeIcome Daﬁ Modeling a Plotting * Debugging

76 Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

FeBR

g& OMEdit - OpenModelica Connection Editor

File Edit View Simulation

O X

FMI Export Debug OMSimulator

@O\e\e\ \..

Git Tools Help

TR <=-K-O9%98 > - &- 7~ #-

»

Libraries Browser g x p’& BackendDump.mo B8 g& BackendDump.interface.mo %]
M‘ T |Wrilable | C:/OPENMODELICAGIT /OpenMadelica/OMCompiler/Compiler/boat/build/BackendDump.interface.mo | h‘
Libraries A~ 150 L input String heading: &
HE OpenModelica 15 _ end dumpBackendDAE;
+ @ Modeli...erence 152)]
1) Modeli..rvices 153[= function dumpBackendDAEToModelica
B Complex 154 input BackendDAE.BackendDAE inBackendDAE;:
77 Mode 155 input String suffix;
oaelica 56 - end dumpBackendDAEToModelica;
El OMCompiler
3rdParty function dumpEgSystem
common input BackendDAE.EgSystem inEgSystem;
[=] T compiler input String heading;
[=] © Backend end dumpEgSystem;
& Adj..mo 162 | v
Bac...mo Search Browser 8 x
‘,& Bac...mo s
G& Bac..mo o @ G History: |Pr01ecthMCompi\er:dumpBackendDAEI’oModel v|
Bac..mo Searched 1160 of 1160 files. Search Completed. 3 FOUND
‘,& Bac...mo
Cancel
ﬂ'& Bac...mo
ﬂ'& Bac...mo E| C,/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/boot/build/BackendDump.interface.mo ~
‘,& Bac...mo 153 function dumpBackendDAEToModelica
“& Bac...mo |156 end dumpBackendDAEToModelica;
".& Bac...mo |¢| C./OPENMODELICAGIT/OpenMaodelica/OMCompiler/Compiler/BackEnd/Backend Dump.mo v
Bac..mo | Messages Browser Search Browser
Ln: 156, Col: 0 tWEﬂCOme o't Modeling 5 Flotting “ Debugging
Figure 3.22: Search Results
3.34. High DPI Settings 77

OpenModelica

User’s Guide, Release v1.21.0-dev-386-g47499e64ec

o't OMEdit - OpenModelica Connection Editor - O >
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
[LD Y / 3 —
TeBE r Boee \PHOTRE <= E- O%9E > - &- T~ ¥~
Libraries Browser X A BackendDump.mo (] o% Bsackendbump.interface.mo [X]
Filter Classes T | Writable |C:fDPENMDDEL'IEAG]'I',poenModelicafDMCompiler,fCompiler,fbaot,,’buildjliackendﬂump.interface.rno ‘ o ‘
Libraries ~ input String heading: ~
ﬂ OpenModelica end dumpBackendDAE;
Bﬂ Modeli...erence . .
FI) Modeii..rvices furllctlon dumpBackendDBEToModel}ca
@ Complex input BackendDAE.BackendDAE inBackendDAE;
1P% Model input String suffix;
oaelica end dumpBackendDAEToModelica;
El OMCompiler
3rdParty function SisiHeERERR=S
common input BackendDAE.EgSystem inEqSystem;
[=] © compiler 1 input String heading;
[=] © Backend 161 - end dumpEgSystem;
& Adj...mo 162 | v
ﬁ Bac..mo Search Browser 8 x
Bac...mo
L} e — - -
d& Bac..ma " G G History: |Project-OMCompiler: dumpEqSystem |
u‘& Bac...mo Searched 557 of 1160 Pr‘cqect-:)l'dComp\er' dumpBackendDAET oModelica 14 FOUND
ﬂ.& Bac...mo Project-OMCompiler: dumpEqSystem
d& Bac...mo
u‘fg Bac...mo EEI C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/boot/build/BackendDump.interface.mo ~
Bac...mo EE| C./OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/SynchronousFeatures.mo
uﬁ Bac...mo Ezl C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/Resolveloops.ma
u.& Bac...mo |:-| C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/OnRelaxation.mo ©
u‘& Bac..mo v | Messages Browser Search Browser
Ln: 158, Col: 23 tWe\come g& Modeling & Flotting & Debugging

Figure 3.23: Search History

78

Chapter 3. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

All Apps

Documents Web More ¥

Best match

ﬂ-‘i OpenMadelica Connection Editor

App L3 Run as administrator
Search work and web [0 Open file location
£ omedit - See work and web results <3 Pin to Start
O omedit idf <3 Pin to taskbar
Photos il Uninstall
OMEdit-plot-DualMassOscillator.png >
Recent

L oMEdit

View

Tl open ~
B Edit

elect all

elect none

Security

General

Details Previous Versions

Shortcut Compatibility

fthis program isn't working carrectly on this version of Windows, try
Name running the compatibility roubleshooter.

Run compaiibility roubleshooter
B8 Documentation

How do | choose y settings manually?

I pySimulator Compatibility mode

[CJRun this program in compatibility mode for:
B OpenModelica Connection Editor
Windows &

g’ OpenModelica Notebook
Settings

&7 OpenModel e

E OpenModeli 8-bit (256) calor

Run in 640 x 480 screen resolution

& OpenModelica Website
[Disable fullscreen optimizations

B Uninstall OpenModelica [[JRunthis program as an administrator

™ This PC [Registerthis program for restart

W Network [JUse legacy display ICC color management

. Change high DPI settings
A Linux

8items | 1item selected 1.95KB |

‘y Change settings for all users

Cancel

'nModelica Connection Editor

App

B DualMassOscillator.mo

High DPI settings for OMEdit.exe

Choose the high DPI settings for this program.

Program DPI

Use this setting to fix scaling problems for this pragram
mslead of the one in Settings

Open Advanced scaling settings

A program might look blurry if the DPI for your main display
changes after you sign in to Windows. Windows can try to fix
this scaling problem for this program by using the DFI that's
set for your main display when you open this program.

Use the DPI that's set for my main display when

Isigned in to Windows v

Learn more

High DPI scaling override

[Cverride high DPLscaling behavior.
Scaling performed by:

System

Cancel

Figure 3.25: Change high DPI settings for OMEdit.exe

3.34. High DPI Settings

79

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

80 Chapter 3. OMEdit — OpenModelica Connection Editor

CHAPTER
FOUR

2D PLOTTING

This chapter covers the 2D plotting available in OpenModelica via OMNotebook, OMShell and command line
script. The plotting is based on OMPIot application. See also OMEdit 2D Plotting.

4.1 Example

class HelloWorld

Real x(start = 1, fixed = true);
parameter Real a = 1;

equation
der (x) = — a * x;

end HelloWorld;

To create a simple time plot the above model HelloWorld is simulated. To reduce the amount of simulation data in
this example the number of intervals is limited with the argument numberOflIntervals=5. The simulation is started
with the command below.

>>> simulate (HelloWorld, outputFormat="csv", startTime=0, stopTime=4, |
—numberOfIntervals=5)
record SimulationResult
resultFile = "«DOCHOME»/HelloWorld_res.csv",
simulationOptions = "startTime = 0.0, stopTime = 4.0, numberOfIntervals = 5, |,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'HelloWorld', options = '',
— outputFormat = 'csv', variableFilter = '.x', cflags = '', simflags =
messages = "LOG_SUCCESS | info | The initialization finished,

[
4

—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.004728007,

timeBackend = 0.005816511000000001,
timeSimCode = 0.006891260000000001,
timeTemplates = 0.0040045,

timeCompile = 0.6435579530000001,
timeSimulation = 0.021388218,
timeTotal = 0.686540869

end SimulationResult;

Warning:
[<interactive>:2:3-2:34:writable] Warning: Components are deprecated in class.
[<interactive>:3:3-3:23:writable] Warning: Components are deprecated in class.

[<interactive>:5:3-5:19:writable] Warning: Equation sections are deprecated in class.

‘When the simulation is finished the file HelloWorld_res.csv contains the simulation data:

81

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

Listing 4.1: HelloWorld_res.csv

"time", "X", "der(x) n

0,1,-1
0.8,0.4493289092712475,-0.4493289092712475
1.6,0.2018973974273906,-0.2018973974273906
2.4,0.09071896372718975,-0.09071896372718975
3.2,0.04076293845066793,-0.04076293845066793
4,0.01831609502171534,-0.01831609502171534
4,0.01831609502171534,-0.01831609502171534

09 i

0.8 1

0.7

0.6

03 1

0.1 -

Figure 4.1: Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, for example using the default 500 intervals, a much
smoother plot can be obtained. Note that the default solver method dassl has more internal points than the output
points in the initial plot. The results are identical, except the detailed plot has a smoother curve.

>>> (O==system("./HelloWorld -override stepSize=0.008")
true

>>> res:=strtok (readFile ("HelloWorld_res.csv"), "\n");
>>> res[end]
"4,0.01831609502171534,-0.01831609502171534"

4.2 Plot Command Interface

Plot command have a number of optional arguments to further customize the the resulting diagram.

>>> list (OpenModelica.Scripting.plot, interfaceOnly=true)
"function plot
input VariableNames vars \"The variables you want to plot\";
input Boolean externalWindow = false \"Opens the plot in a new plot window\";
input String fileName = \"<default>\" \"The filename containing the variables.
—<default> will read the last simulation result\";
input String title = \"\" \"This text will be used as the diagram title.\";
input String grid = \"simple\" \"Sets the grid for the plot i.e simple, detailed,
— none.\";

(continues on next page)

82 Chapter 4. 2D Plotting

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

0.9
0.8

0.7 T

0.6

0.5

0.4

03 _

0.2 N

0.1 T

Figure 4.2: Simple 2D plot of the HelloWorld example with a larger number of output points.

(continued from previous page)

input Boolean logX = false \"Determines whether or not the horizontal axis is_
—logarithmically scaled.\";

input Boolean logY = false \"Determines whether or not the vertical axis is_
—logarithmically scaled.\";

input String xLabel = \"time\" \"This text will be used as the horizontal label,
—in the diagram.\";

input String yLabel = \"\" \"This text will be used as the vertical label in the_
—diagram.\";

input Real xRange([2] = {0.0, 0.0} \"Determines the horizontal interval that is_
—visible in the diagram. {0,0} will select a suitable range.\";
input Real yRange[2] = {0.0, 0.0} \"Determines the vertical interval that is_

—visible in the diagram. {0,0} will select a suitable range.\";

input Real curveWidth = 1.0 \"Sets the width of the curve.\";

input Integer curveStyle = 1 \"Sets the style of the curve. SolidLine=1,
—DashLine=2, DotLine=3, DashDotLine=4, DashDotDotLine=5, Sticks=6, Steps=7.\";

input String legendPosition = \"top\" \"Sets the POSITION of the legend i.e left,
— right, top, bottom, none.\";

input String footer = \"\" \"This text will be used as the diagram footer.\";

input Boolean autoScale = true \"Use auto scale while plotting.\";

input Boolean forceOMPlot = false \"if true launches OMPlot and doesn't call,_
—callback function even if it is defined.\";

output Boolean success \"Returns true on success\";
end plot;"

4.2. Plot Command Interface 83

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

84 Chapter 4. 2D Plotting

CHAPTER
FIVE

SOLVING MODELICA MODELS

5.1 Integration Methods

By default OpenModelica transforms a Modelica model into an ODE representation to perform a simulation by
using numerical integration methods. This section contains additional information about the different integration
methods in OpenModelica. They can be selected by the method parameter of the simulate command or the -s

simflag.
The different methods are also called solver and can be distinguished by their characteristic:
* explicit vs. implicit
* order
* step size control
* multi step

A good introduction on this topic may be found in [CK06] and a more mathematical approach can be found in
[HNorsettW93].

5.1.1 DASSL

DASSL is the default solver in OpenModelica, because of a severals reasons. It is an implicit, higher order,
multi-step solver with a step-size control and with these properties it is quite stable for a wide range of models.
Furthermore it has a mature source code, which was originally developed in the eighties an initial description may
be found in [Pet82].

This solver is based on backward differentiation formula (BDF), which is a family of implicit methods for numer-
ical integration. The used implementation is called DASPK?2.0 (see') and it is translated automatically to C by f2¢
(see?).

The following simulation flags can be used to adjust the behavior of the solver for specific simulation problems:
Jjacobian, noRootFinding, noRestart, initialStepSize, maxStepSize, maxIntegrationOrder, noEquidistantTimeGrid.

5.1.2 IDA

The IDA solver is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic equa-
tion Solvers [HBG+05]. The implementation is based on DASPK with an extended linear solver interface, which
includes an interface to the high performance sparse linear solver KLU [DN10].

The simulation flags of DASSL are also valid for the IDA solver and furthermore it has the following IDA specific
flags: idaLsS, idaMaxNonLinlters, idaMaxConvFails, idaNonLinConvCoef, idaMaxErrorTestFails.

I DASPK Webpage
2 Cdaskr source

85

https://cse.cs.ucsb.edu/software
https://github.com/wibraun/Cdaskr

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

5.1.3 CVODE

The CVODE solver is part of sundials: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers
[HBG+05]. CVODE solves initial value problems for ordinary differential equation (ODE) systems with variable-
order, variable-step multistep methods.

In OpenModelica, CVODE uses a combination of Backward Differentiation Formulas (varying order 1 to 5) as
linear multi-step method and a modified Newton iteration with fixed Jacobian as non-linear solver per default.
This setting is advised for stiff problems which are very common for Modelica models. For non-stiff problems
an combination of an Adams-Moulton formula (varying order 1 to 12) as linear multi-step method together with a
fixed-point iteration as non-linear solver method can be choosen.

Both non-linear solver methods are internal functions of CVODE and use its internal direct dense linear solver
CVDense. For the Jacobian of the ODE CVODE will use its internal dense difference quotient approximation.

CVODE has the following solver specific flags: cvodeNonlinearSolverlteration, cvodeLinearMultistepMethod.

5.1.4 GBODE

GBODE stands for Generic Bi-rate ordinary differential equation (ODE) solver and is a generic implementation
for any Runge-Kutta (RK) scheme [HNorsettW00]. In GBODE there are already many different implicit and
explicit RK methods (e.g. SDIRK, ESDIRK, Gauss, Radau, Lobatto, Fehlberg, DOPRI45, Merson) with different
approximation order configurable and ready to use. New RK schemes can easily be added, if the corresponding
Butcher tableau is available. By default the solver runs in single-rate mode using the embedded RK scheme
ESDIRK4 [KC19] with variable-step-size control and efficient event handling.

The bi-rate mode can be utilized using the simulation flag gbratio. This flag determines the percentage of fast
states with respect to all states. These states will then be automatically detected during integration based on the
estimated approximation error and afterwards refined using an appropriate inner step-size control and interpolated
values of the slow states.

The solver utilizes by default the sparsity pattern of the ODE Jacobian and solves the corresponding non-linear
system in case of an implicit chosen RK scheme using KINSOL.

GBODE is highly configurable and the following simulation flags can be used to adjust the behavior of the solver
for specific simulation problems: gbratio, gbm, gbctrl, gbnls, gbint, gberr, gbfm, gbfctrl, gbfnls, gbfint, gbferr.

This solver will replace obsolete and no longer maintained solvers providing a lot more using the following
simulation flags:

old: —-s=euler
new: -s=gbode —gbm=expl_euler —-gbctrl=const

old: —-s=heun
new: -s=gbode —gbm=heun -gbctrl=const

old: —-s=impeuler
new: -s=gbode —gbm=impl_euler -gbctrl=const

old: -s=trapezoid
new: -s=gbode —gbm=trapezoid -gbctrl=const

old: -s=imprungekutta
new -s=gbode —gbm=(one of the lobatto or radau or gauss RK methods) —gbctrl=const

old: —-s=irksco
new: -s=gbode -gbm=trapezoid

old: —-s=rungekuttaSsc
new: -s=gbode —-gbm=rungekuttaSsc

86 Chapter 5. Solving Modelica Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

5.1.5 Basic Explicit Solvers

The basic explicit solvers are performing with a fixed step-size and differ only in the integration order. The
step-size is based on the numberOflntervals, the startTime and stopTime parameters in the simulate command:
stopTime — startTime

stepSize ~
P numberOflntervals

e culer - order 1

¢ heun - order 2

* rungekutta - order 4

5.1.6 Basic Implicit Solvers

The basic implicit solvers are all based on the non-linear solver KINSOL from the SUNDIALS suite. The un-
derlining linear solver can be modified with the simflag -impRKLS. The step-size is determined as for the basic
explicit solvers.

* impeuler - order 1
e trapezoid - order 2

» imprungekutta - Based on Radau IIA and Lobatto IIIA defined by its Butcher tableau where the order can
be adjusted by -impRKorder.

5.1.7 Experimental Solvers

The following solvers are marked as experimental, mostly because they are till now not tested very well.

* cvode - experimental implementation of SUNDIALS CVODE solver - BDF or Adams-Moulton method -
step size control, order 1-12

* rungekuttaSsc - Runge-Kutta based on Novikov (2016) - explicit, step-size control, order 4-5
¢ irksco - Own developed Runge-Kutta solver - implicit, step-size control, order 1-2
* symSolver - Symbolic inline solver (requires --symSolver) - fixed step-size, order 1

e symSolverSsc - Symbolic implicit inline Euler with step-size control (requires --symSolver) - step-size
control, order 1-2

* gss - A QSS solver

5.2 DAE Mode Simulation

Beside the default ODE simulation, OpenModelica is able to simulate models in DAE mode. The DAE mode is
enabled by the flag --daeMode. In general the whole equation system of a model is passed to the DAE integrator,
including all algebraic loops. This reduces the amount of work that needs to be done in the post optimization
phase of the OpenModelica backend. Thus models with large algebraic loops might compile faster in DAE mode.

Once a model is compiled in DAE mode the simulation can be only performed with SUNDIALS/IDA integrator
and with enabled -daeMode simulation flag. Both are enabled automatically by default, when a simulation run is
started.

5.2. DAE Mode Simulation 87

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

5.3 Initialization

To simulate an ODE representation of an Modelica model with one of the methods shown in /ntegration Methods
a valid initial state is needed. Equations from an initial equation or initial algorithm block define a desired initial
system.

5.3.1 Choosing start values
Only non-linear iteration variables in non-linear strong components require start values. All other start values will
have no influence on convergence of the initial system.

Use -d=initialization to show additional information from the initialization process. In OMEdit Tools->Options-
>Simulation->OMCFlags, in OMNotebook call setCommandLineOptions("-d=initialization")

fixed1

n={0,0, 1} 1 bodyl

fixedTranslation1
a b

L 1l
r={0.3, 0, 0} m

revolutePlanar m=1 kg
r={0,0,0} m 5
u e}
o
o]
=
=h
o
o
=
g
o
2
=2
3
(%)
3
o o
o
o]
=
body2
world m=1kg
| r={1.1, 0,0} m
-
X

n={1,0,0}1
fixed2

Figure 5.1: piston.mo

model piston
Modelica.Mechanics.MultiBody.Parts.Fixed fixedl annotation (
Placement (visible = true, transformation(origin = {-80, 70}, extent = {{-10,
—~10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Parts.Body bodyl (m = 1) annotation (
Placement (visible = true, transformation(origin = {30, 70}, extent = {{-10, -
—~10}, {10, 10}}, rotation = 0)));

(continues on next page)

88 Chapter 5. Solving Modelica Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

Modelica.Mechanics.MultiBody.Parts.FixedTranslation fixedTranslationl(r = {0.3,
—~0, 0}) annotation/(
Placement (visible = true, transformation(origin = {-10, 70}, extent = {{-10, -
10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Parts.FixedTranslation fixedTranslation2(r = {0.8,
—0, 0}) annotation (
Placement (visible = true, transformation(origin = {10, 20}, extent = {{-10, -
—10}, {10, 10}}, rotation = -90)));
Modelica.Mechanics.MultiBody.Parts.Fixed fixed2 (animation = false, r = {1.1, O,
—0}) annotation (
Placement (visible = true, transformation(origin = {70, -60}, extent = {{-10, -
—~10}, {10, 10}}, rotation = 180)));
Modelica.Mechanics.MultiBody.Parts.Body body2 (m = 1) annotation (
Placement (visible = true, transformation(origin = {30, -30}, extent = {{-10,
10}, {10, 10}}, rotation = 0)));
inner Modelica.Mechanics.MultiBody.World world annotation (
Placement (visible = true, transformation(origin = {-70, -50}, extent = {{-10,
—~10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Joints.Prismatic prismatic(animation = true) |
—annotation (
Placement (visible = true, transformation(origin = {30, -60}, extent = {{-10, -
—~10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Joints.RevolutePlanarLoopConstraint revolutePlanar
—annotation (
Placement (visible = true, transformation(origin = {-50, 70}, extent = {{-10, -
10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Joints.Revolute revolutel (a(fixed = false),
—phi(fixed = false), w(fixed = false)) annotation (
Placement (visible = true, transformation(origin = {10, 48}, extent = {{-10, -
10}, {10, 10}}, rotation = -90)));
Modelica.Mechanics.MultiBody.Joints.Revolute revolute2 annotation (
Placement (visible = true, transformation(origin = {10, -10}, extent = {{-10,
10}, {10, 10}}, rotation = -90)));
equation
connect (prismatic.frame_b, fixed2.frame_b) annotation
Line (points = {{40, -60}, {60, -60}, {60, -60}, {60, -60}}, color = {95, 95,
—95}));
connect (fixedl.frame_b, revolutePlanar.frame_a) annotation (
Line (points = {{-70, 70}, {-60, 70}, {-60, 70}, {-60, 70}}));
connect (revolutePlanar. frame_b, fixedTranslationl.frame_a) annotation
Line (points = {{-40, 70}, {-20, 70}, {-20, 70}, {-20, 70}}, color = {95, 95,
—95}));
connect (fixedTranslationl.frame_b, revolutel.frame_a) annotation (
Line (points = {{0, 70}, {10, 70}, {10, 58}, {10, 58}}, color = {95, 95, 95}));
connect (revolutel.frame_b, fixedTranslation2.frame_a) annotation (
Line (points = {{10, 38}, {10, 38}, {10, 30}, {10, 30}}, color = {95, 95, 95}));
connect (revolute2.frame_b, prismatic.frame_a) annotation (
Line (points = {{10, -20}, {10, -20}, {10, -60}, {20, -60}, {20, -60}}));
connect (revolute2. frame_b, body2.frame_a) annotation/(
Line (points = {{10, -20}, {10, -20}, {10, -30}, {20, -30}, {20, -30}}, color =
—{95, 95, 95}1));
connect (revolute2.frame_a, fixedTranslation2.frame_b) annotation (
Line (points = {{10, 0}, {10, 0}, {10, 10}, {10, 10}}, color = {95, 95, 95}));
connect (fixedTranslationl.frame_b, bodyl.frame_a) annotation (
Line (points = {{0, 70}, {18, 70}, {18, 70}, {20, 70}}));

end piston;

>>> loadModel (Modelica);

>>> gsetCommandLineOptions ("-d=initialization");

>>> buildModel (piston);

"[/var/lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.

—0fmaint.om/Mechanics/MultiBody/Parts/Body.mo: [4:3-15:bb:writable] WHconfinugs on next page)

—Parameter body2.r_CM[3]

5.3. Initialization

has no value, and is fixed during initialization_

89

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

[/var/1lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter body2.r_CM[2] has no value, and is fixed during initialization,
— (fixed=true), using available start value (start=0.0) as default wvalue.
[/var/lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter body2.r_ CM[1] has no value, and is fixed during initialization,
— (fixed=true), using available start value (start=0.0) as default wvalue.
[/var/lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter bodyl.r CM[3] has no value, and is fixed during initialization,
— (fixed=true), using available start value (start=0.0) as default wvalue.
[/var/1lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter bodyl.r_ CM[2] has no value, and is fixed during initialization,
— (fixed=true), using available start value (start=0.0) as default wvalue.
[/var/lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter bodyl.r CM[1l] has no value, and is fixed during initialization,,
— (fixed=true), using available start value (start=0.0) as default value.
Warning: Assuming fixed start value for the following 2 variables:
SSTATESET2.x:VARIABLE (start = /*Realx/ ($SSTATESET2.A[1]) * SSTART.
—revolutel.phi + /*Realx/ (SSTATESET2.A[2]) * S$START.revolute2.phi fixed = true)
—type: Real
SSTATESET1.x:VARIABLE (start = /+Realx/ ($SSTATESET1.A[1]) = SSTART.
—revolutel.w + /*Realx/ (SSTATESET1.A[2]) * $START.revolute2.w fixed = true)
—type: Real

n

—

—

Note how OpenModelica will inform the user about relevant and irrelevant start values for this model and for
which variables a fixed default start value is assumed. The model has four joints but only one degree of freedom,
so one of the joints revolutePlanar or prismatic must be initialized.

So, initializing phi and w of revolutePlanar will give a sensible start system.

model pistonInitialize

extends piston(revolutel.phi.fixed true, revolutel.phi.start = -1.
—221730476396031, revolutel.w.fixed = true, revolutel.w.start = 5);
equation
end pistonInitialize;

>>> getCommandLineOptions ("-d=initialization");

>>> simulate (pistonInitialize, stopTime=2.0);
"[/var/lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter body2.r_CM[3] has no value, and is fixed during initialization,,

— (fixed=true), using available start value (start=0.0) as default value.
[/var/lib/Jjenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter body2.r_CM[2] has no value, and is fixed during initialization,

— (fixed=true), using available start value (start=0.0) as default value.
[/var/lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter body2.r_CM[1l] has no value, and is fixed during initialization,,

— (fixed=true), using available start value (start=0.0) as default wvalue.
[/var/lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter bodyl.r CM[3] has no value, and is fixed during initialization,

— (fixed=true), using available start value (start=0.0) as default wvalue.
[/var/lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:

Parameter bodyl r CM[2]1 hg no aluy , and 1 fixed (‘]117"ihf:/f initiglization

. . . (continues on next page)
— (fixed=true), using available start value (start=0.0) as default value.

90 Chapter 5. Solving Modelica Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

[/var/lib/jenkinsl/ws/CMake_builds/z-experiment/build/lib/omlibrary/Modelica 4.0.
—0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter bodyl.r_CM[1l] has no value, and is fixed during initialization,

— (fixed=true), using available start value (start=0.0) as default wvalue.

1.1 T T

T
body2.frame,.ro[1] ——

=
T
|

0.8

0.7

0.6

Figure 5.2: Vertical movement of mass body2.

5.3.2 Importing initial values from previous simulations

In many use cases it is useful to import initial values from previous simulations, possibly obtained with another
Modelica tool, which are saved in a .mat file. There are two different options to do that.

The first option is to solve the initial equations specified by the Modelica model, using the previous simulation
results to obtain good initial guesses for the iterative solvers. This can be very helpful in case the initialization
problem involves the solution of large nonlinear systems of equations by means of iterative algorithms, whose con-
vergence is sensitive to the selected initial guess. Importing a previously found solution allows the OpenModelica
solver to pick very good initial guesses for the unknowns of the iterative solvers, thus achieving convergence with
a few iterations at most. Since the initial equations are solved anyway, the values of all variables and derivatives, as
well as of all parameters with fixed = false attribute, are re-computed and fully consistent with the selected initial
conditions, even in case the previously saved simulation results refer to a slightly different model configuration.
Note that parameters with fixed = true will also get their values from the imported .mat file, so if you want to
change them you need to edit the .mat file accordingly.

This option is activated by selecting the simulation result file name in the OMEdit Simulation Setup | Simulation
Flag | Equation System Initialization File input field, or by setting the additional simulation flag -iif=resultfile.mat.
By activating the checkbox Save simulation flags inside the model i.e., __OpenModelica_simulationFlags anno-
tation, a custom annotation __OpenModelica_simulationFlags(iif="filename.mat") is added to the model, so this
setting is saved with the model and is reused when loading the model again later on. It is also possible to specify
at which point in time of the saved simulation results the initial values should be picked, by means of the Simu-
lation Setup | Simulation Flags | Equation System Initialization Time input field, or by setting the simulation flag
-iit=initialTime Value.

The second option is to skip the solution of the initial equations entirely, and to directly start the simulation using
the imported start values. In this case, the initial equations of the model are ignored, and the initial values of all
parameters and state variables are set to the values loaded from the .mat file. This option is useful in particular to
restart a simulation from the final state of a previous one, without bothering about changing the initial conditions
manually in the Modelica model. Note that the algebraic variables will be recomputed starting from the imported

5.3. Initialization 91

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

initial state and parameter values; the values of algebraic variables in the imported file will be used to initialize
iteration variables in nonlinear implicit equations of the simulation model, or otherwise ignored.

To activate this second option, set Simulation Setup | Simulation Flag | Initialization Method to none in
OMEdit, or set the simulation flag -iim=none. Also in this case, activating the checkbox Save simulation
flags inside model, i.e. __OpenModelica_simulationFlags annotation saves this option in an __OpenModel-
ica_simulationFlags(iim=none) annotation, so it is retained for future simulations of the same model.

The following minimal working example demonstrates the use of the initial value import feature. You can create a
new package ImportlnitialValues in OMEdit, copy and paste its code from here, and then run the different models
init.

package ImportInitialValues "Test cases for importing initial values in,,
—OpenModelica"
partial model Base "The mother of all models"
Real v1, v2, x;
parameter Real pl;
parameter Real p2 = 2xpl;
final Real p3 = 3*pl;
end Base;

model ResultFileGenerator "Dummy model for generating the initial.mat file"
extends Base(pl = 7, p2 = 10);
equation
vl = 2.8;
v2 = 10;
der (x) = 0;
initial equation
x = 4;
annotation (
experiment (StopTime = 1),
__OpenModelica_simulationFlags(r = "initial.mat"));
end ResultFileGenerator;

model M "Relies on Modelica code only for initialization"
extends Base (
vl (start = 14),
pl =1, p2 = 1);
equation
(vl — 3)x (vl + 10)*(vl - 15) = 0;
v2 = time;
der (x) = —-x;
initial equation
X = 6;
end M;

model M2 "Imports parameters and initial guesses only, solve initial equations"
extends VN;

annotation (__ OpenModelica_simulationFlags (iif = "initial.mat"));

end M2;

model M3 "import parameters, initial guesses and initial states, skip initial_
—equations"
extends V;
annotation (__OpenModelica_simulationFlags (iim = "none", iif = "initial.mat"));
end M3;
end ImportInitialValues;

Running the ResultFileGenerator model creates a .mat file with some initial values in the working directory: pl/
=7,p2=10,p3 =21,vl =2.8,v2 =10,x =4, der(x) = 0.

When running model M, the simulation process only relies on the initial and guess values provided by the Modelica
source code. Regarding the parameter values, p/ = I, 'p2 = 1, p3 = 3*pl = 3; regarding v/, the implicit cubic
equation is solved iteratively using the start value 14 as an initial guess, thus converging to the nearest solution v/

92 Chapter 5. Solving Modelica Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

= 15. The other variable v2 can be computed explicitly, so there is no need of any guess value for it. Finally, the
initial value of the state variable is set to x = 6 by the initial equations.

When running model M2, the values of the .mat file are imported to provide values for non-final parameters and
guess values for the initial equations, which are solved starting from there. Hence, the imported parameter values
pl =7 and p2 = 10 override the model's binding equations, that would set both to 1; on the other hand, the final
parameter p3 is computed based on the final binding equation to p3 = pI*3 = 21. Regarding v/, the iterative solver
converges to the solution closest to the imported start value of 2.8, i.e. vI = 3, while v2 is computed explicitly, so
it doesn't depend on the imported start value. The initial value of the state x = 6 is obtained by solving the initial
equation, which is explicit and thus ignores the imported guess value x = 4.

Finally, when running model M3, parameters are handled like in the previous case, as well as the algebraic vari-
ables vI and v2. However, in this case the initial equations are skipped, so the state variable gets its initial value x
= 4 straight from the imported .mat file.

5.3.3 Homotopy Method

For complex start conditions OpenModelica can have trouble finding a solution for the initialization problem with
the default Newton method.

Modelica offers the homotopy operator® to formulate actual and simplified expression for equations, with homo-
topy parameter \ going from 0 to 1:

actual - X\ + simplified - (1 — N).

OpenModelica has different solvers available for non-linear systems. Initializing with homotopy on the first try
is default if a homotopy operator is used. It can be switched off with noHomotopyOnFirstTry. For a general
overview see [SCO+11], for details on the implementation in OpenModelica see [OB13].

The homotopy methods distinguish between local and global methods meaning, if A affects the entire initialization
system or only local strong connected components. In addition the homotopy methods can use equidistant A or
and adaptive \ in [0,1].

Default order of methods tried to solve initialization system
If there is no homotopy in the model
* Solve without homotopy method.
If there is homotopy in the model or solving without homotopy failed
* Try global homotopy approach with equidistant \.
The default homotopy method will do three global equidistant steps from O to 1 to solve the initialization system.

Several compiler and simulation flags influence initialization with homotopy: --homotopyApproach,
-homAdaptBend, -homBacktraceStrategy, -homHEps, -homMaxLambdaSteps, -homMaxNewtonSteps,
-homMaxTries, -homNegStartDir, -homotopyOnkFirstTry, -homTauDecFac, -homTauDecFacPredictor, -
homTaulncFac, -homTaulncThreshold, -homTauMax, -homTauMin, -homTauStart, -ils.

5.4 Algebraic Solvers

If the ODE system contains equations that need to be solved together, so called algebraic loops, OpenModelica
can use a variety of different linear and non-linear methods to solve the equation system during simulation.

For the C runtime the linear solver can be set with -/s and the non-linear solver with -n/s. There are dense and
sparse solver available.

Linear solvers
* default : Lapack with totalpivot as fallback [ABB+99]
* lapack : Non-Sparse LU factorization using [ABB+99]

3 Modelica Association, Modelica® - A Unified Object-Oriented Language for Systems Modeling Language Specification - Version 3.4,
2017 - Section 3.7.2.4

5.4. Algebraic Solvers 93

https://specification.modelica.org/maint/3.4/Ch3.html#homotopy
https://specification.modelica.org/maint/3.4/Ch3.html#homotopy

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

e [is : Tterative linear solver [Nis10]
* klu : Sparse LU factorization [Nat05]
* umfpack : Sparse unsymmetric multifrontal LU factorization [Dav(04]
* totalpivot : Total pivoting LU factorization for underdetermined systems
Non-linear solvers
e hybrid : Modified Powell hybrid method from MINPACK [DJS96]
e kinsol : Combination of Newton-Krylov, Picard and fixed-point solver [T+98]
* newton : Newton-Raphson method [CKO06]
* mixed : Homotopy with hybrid as fallback [Kel78] [BBOR15]
* homotopy : Damped Newton solver with fixed-point solver and Newton homotopy solver as fallbacks

In addition, there are further optional settings for the algebraic solvers available. A few of them are listed in the
following:

General: -nlsLS
Newton: -newton -newtonFTol -newtonMaxStepFactor -newtonXTol
Sparse solver: -nlssMinSize -nlssMaxDensity

Enable logging: -lv=LOG_LS -lv=LOG_LS_V -lv=LOG_NLS -lv=LOG_NLS_V

5.4.1 References

94 Chapter 5. Solving Modelica Models

CHAPTER
SIX

DEBUGGING

There are two main ways to debug Modelica code, the transformations browser, which shows the transformations
OpenModelica performs on the equations. There is also a debugger for debugging of algorithm sections and
functions.

6.1 The Equation-based Debugger

This section gives a short description how to get started using the equation-based debugger in OMEdit.

6.1.1 Enable Tracing Symbolic Transformations

This enables tracing symbolic transformations of equations. It is optional but strongly recommended in order to
fully use the debugger. The compilation time overhead from having this tracing on is less than 1%, however, in
addition to that, some time is needed for the system to write the xml file containing the transformation tracing
information.

Enable -d=infoXmlOperations in Tools->Options->Simulation (see section Simulation Options) OR alternatively
click on the checkbox Generate operations in the info xml in Tools->Options->Debugger (see section Debugger
Options) which performs the same thing.

This adds all the transformations performed by OpenModelica on the equations and variables stored in the
model_info.xml file. This is necessary for the debugger to be able to show the whole path from the source
equation(s) to the position of the bug.

6.1.2 Load a Model to Debug

Load an interesting model. We will use the package Debugging.mo since it contains suitable, broken models to
demonstrate common errors.

6.1.3 Simulate and Start the Debugger

Select and simulate the model as usual. For example, if using the Debugging package, select the model Debug-
ging.Chattering.ChatteringEvents1. If there is an error, you will get a clickable link that starts the debugger. If the
user interface is unresponsive or the running simulation uses too much processing power, click cancel simulation
first.

95

https://github.com/OpenModelica/OMCompiler/blob/master/Examples/Debugging.mo

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

Running Simulation of Debugging.C hattering.C hatteringEvents1.
Please wait for a while.

IRNRNRNNNNNNNNNNRNEE

Cancel Simulation

™ OMEdit - Debugging.Chattering.ChatteringEvents1 Simulation Output - 0O &

Output Compilation]

Jtop/OpenModel ica /OMEd] ¢ /Debugging . Chattering . ChatteringEventsl -

port=50212 -logFormat=xml -w -1wv=LOG_ STATS
stdout | info | Chattering detected arcund time

0.500000005..0.500000995001 (100 state events in a row with a total time
delta less than the step size 0.002). This can be a performance
bottleneck. Use -1v LOG EVENTS for more information. The zZero-crossing

was: 2 > 0.0 D;e%g more

Figure 6.1: Simulating the model.

96 Chapter 6. Debugging

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

6.1.4 Use the Transformation Debugger for Browsing

The debugger opens on the equation where the error was found. You can browse through the dependencies
(variables that are defined by the equation, or the equation is dependent on), and similar for variables. The
equations and variables form a bipartite graph that you can walk.

If the -d=infoXmlOperations was used or you clicked the “generate operations” button, the operations performed
on the equations and variables can be viewed. In the example package, there are not a lot of operations because
the models are small.

Try some larger models, e.g. in the MultiBody library or some other library, to see more operations with several
transformation steps between different versions of the relevant equation(s). If you do not trigger any errors in a
model, you can still open the debugger, using File->Open Transformations File (model_info.json).

OMEdit - Transformational Debugger

& | /tmp/Openmodelica_marsj/OMEdit/Debugging.Chattering.ChatteringEvents1_infoxml

Variables | [Source Browser |
Variables Browser |[Defined In Equations | [Used In Equations | /home/marsj/trunk/testsuite/openmodelica,
Find Variables |inc» Type Equation Inc * Type Equation 1 within ;

"] Case Sensitive Regular Expression = |:2 initial (assignmen...0 else 1.0 |:3 initial (assignment)y=2.0%z £ Eiﬁﬁg?;eggﬂﬂsggn;Tﬁt

Expand All Collapse All 5 regular (assignmen...0 else 1.0 6 regular (assignment)y=2.0%z declarative models"

Variables ¥ Comment Line Location 2 package Chattering "Models
X 7 fhom...q. with chattering behaviour™
v 8 /hom...g. 5 model ChatteringEventsl

6 "Exhibits chattering
= 9 /hom...g. after t = 0.5, with
[variable Operations generated events”
: 7 Real x(start=1
Operations '
B fixed=true);
8 Real y;
Real z;
16 equation
11 z = if x > @ then -1
else 1;
12 y = 2%z;
13 der(x) =y;
(j v 14 annotation

Equations | (Documentation(info="<html>

Eauati B Defi) a 15 <p>After t = 8.5, chattering
quations Browser | [Defines | [Depends | Lakes place, due to the

Inc v+ Type Equation Variable ¥ | Variable M discontinuity in the right
1 initial (assignment) x=1.0 z Lx handtnde ?f the first

- . equation.</p>
2 !n!t!al (ass!gnment‘...o else 1.0 16 <p>Chattering can be
3 initial (assignment)y=2.0%z detected because lots of
4 initial (assignment) der(x) =y tightly spaced events are
5 & : . 0else 1.0 generated. The feedback to
e {assgnmen . the user should allow to
6 reqular (assignment)y=2.0%z identify the equation from
7 reqular (assignment) der(x) =y = = which the zero crossing
[Equation Operations | function that generates the
Operations events originates.</p>

17 </html=>"),
experiment (StopTime=1});

tsolved: z=if x> 0.0 then-1.0 else 1.0
18 end ChatteringEventsl;

original: z = if x > 0 then -1 else 1; => flattened: z = if x > 0.0 then -1.0 else 1.0;

24 model ChatteringEvents2
21 "Exhibits chattering
after t = 0.422, with

nenerated events" -

Figure 6.2: Transfomations Browser.

6.1. The Equation-based Debugger 97

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

6.2 The Algorithmic Debugger

This section gives a short description how to get started using the algorithmic debugger in OMEdit. See section
Simulation Options for further details of debugger options.

6.2.1 Adding Breakpoints

There are two ways to add the breakpoints,

* Click directly on the line number in Text View, a red circle is created indicating a breakpoint as shown in
Figure 6.3.

* Open the Algorithmic Debugger window and add a breakpoint using the right click menu of Breakpoints
Browser window.

g |
gi OMEdit - OpenModelica Connection Editor - [SimulationModel] l = Q
B Fle Edit View Simulaion FMI Export Tools Help NEE
FEHH 00 BQAQ WemNeEN[EQ9reS 8- 9 X »
Libraries Browser g X |II-I aﬁﬂ |Wriheab|e |Mode| ‘ Text View ‘ C:/Usersfadeas31/.. imulationModel. mo ‘ Line: 1, Col: 0 | i‘
L 1 model SimulationModel
+ Complex Beal =x=(start = 1);
1 7 Modelica Real y(start = 1);
o) algorithm
* ﬂ ModelicaReference [] x = getValueMulcipliedByTwo (x) ;
+ || ModelicaServices ¥ = X;
+ EI OpenModelica end SimulationModel;

|:|E| SimulationMaodel

getValueMultipliedByTwo

¥:-96.28 ¥: 100.83 €L welcome | o4 Modeling Plotting

Figure 6.3: Adding breakpoint in Text View.

6.2.2 Start the Algorithmic Debugger

You should add breakpoints before starting the debugger because sometimes the simulation finishes quickly and
you won’t get any chance to add the breakpoints.

There are four ways to start the debugger,
* Open the Simulation Setup and click on Launch Algorithmic Debugger before pressing Simulate.
 Right click the model in Libraries Browser and select Simulate with Algorithmic Debugger.
* Open the Algorithmic Debugger window and from menu select Debug-> Debug Configurations.

* Open the Algorithmic Debugger window and from menu select Debug-> Attach to Running Process.

98 Chapter 6. Debugging

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

6.2.3 Debug Configurations

If you already have a simulation executable with debugging symbols outside of OMEdit then you can use the
Debug->Debug Configurations option to load it.

The debugger also supports MetaModelica data structures so one can debug omc executable. Select omc exe-
cutable as program and write the name of the mos script file in Arguments.

.)
@& OMEdit - Debug Cenfigurations ﬂ
bk,

& New_configurationl Mame: |New_-:nnﬁguratinn1 |

Program: || || Browse...
Working Directory: | | | Browse...

GOE Path: |C:,.’DMDEV,.’touIS,.’mingw,.'hin,.’gdb.E}(E || Browse...
Arguments:

[Apply][Reset]

[Save] [Saue &Debug] [Cancel]

Figure 6.4: Debug Configurations.

6.2.4 Attach to Running Process

If you already have a running simulation executable with debugging symbols outside of OMEdit then you can
use the Debug->Attach to Running Process option to attach the debugger with it. Figure 6.5 shows the Attach
to Running Process dialog. The dialog shows the list of processes running on the machine. The user selects the
program that he/she wish to debug. OMEdit debugger attaches to the process.

6.2. The Algorithmic Debugger 99

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

i ™
@& OMEdit - Attach to Running Pracess u

Attach to Process ID: |
| Filter Processes |
Process ID Mame : d
8760 AAM Updates Notifier.exe |—|

I 2164 AESTSr04.exe
2288 AppleMobileDeviceService.exe
3896 BT5tackServer.exe
1612 BT Tray.exe
7696 BluetocothHeadsetProxy.exe
7972 CCC.exe
7580 C55.55erviceManager.exe
6628 CamRecorder.exe
4960 CcrmExec.exe
588 CrRcService.exe
628 ConversionService.exe
1744 Cenceridae o
OK Refresh] [Cancel

Figure 6.5: Attach to Running Process.

100 Chapter 6. Debugging

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

6.2.5 Using the Algorithmic Debugger Window

Figure 6.6 shows the Algorithmic Debugger window. The window contains the following browsers,

* Stack Frames Browser — shows the list of frames. It contains the program context buttons like resume,
interrupt, exit, step over, step in, step return. It also contains a threads drop down which allows switching

between different threads.

* BreakPoints Browser — shows the list of breakpoints. Allows adding/editing/removing breakpoints.

* Locals Browser — Shows the list of local variables with values. Select the variable and the value will be
shown in the bottom right window. This is just for convenience because some variables might have long

values.

* Debugger CLI — shows the commands sent to gdb and their responses. This is for advanced users who want

to have more control of the debugger. It allows sending commands to gdb.

* Output Browser — shows the output of the debugged executable.

&% OMEdit - OpenModelica Connection Editor - [getValueMultipliedByTwo] — O *
E File Edit View Simulation Debug OMSimulator Git Tools Help - 8 X
W E * = 5/995 9 - &
JeB8R Heee \oHOTR < =K B % -
Libraries Browser & X Stack Frames Browser & X | BreakPoints Browser & X Locals Browser g X
Tinm ||'E R |Threads: 1 - |Sbo_._d1 Line File MName Type Value
)) ; ®5 C:/Users/ade...liedByTwo.mo inValue Real 0
L ~
Libraries Functon lne |Fe outValue Real 4.94065...5
SimulationModel [getValueMultipliedByTwo 5 C/Use.. Two
< . con 300 SUser. Mo ¥
getValueM...liedByTwo . SimulationM...aFunction 2 90 C: U_EI...H)C
|II-I oﬁ E o |Wr1'13ble |Funcﬁon |Te)rt\|"|ew |get\|‘alueMth'p|iedByTwo C:Nsers!a...edByTwo.mc| |
function getValusMultipliedByTwo
input Real inValue;
output EReal outValue;
algorithm
[I outValue := inValue * 2;
end getValusMultipliedByTwo;
£ >
a
Messages Browser & X OutputBrowser g X
all MNotifications Warnings Errors
Debugger CLI Qutput Browser
Ln: 5, Col: 0 t Welcome oﬂ Modeling ﬁ Flotting o Debugging
Figure 6.6: Algorithmic Debugger.
6.2. The Algorithmic Debugger 101

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

102 Chapter 6. Debugging

CHAPTER
SEVEN

PORTING MODELICA LIBRARIES TO OPENMODELICA

One of the goals of OpenModelica is to provide a full, no-compromise implementation of the latest version of the
Modelica Language Specification, released by the non-profit Modelica Association. This means that a main re-
quirement for a Modelica library to work in OpenModelica is to be fully compliant to the Language Specification.

Libraries and models developed with other Modelica tools may contain some code which is not valid according to
the current language specification, but still accepted by that tool, e.g. to support legacy code of their customers. In
order to use those libraries and models in OpenModelica, one needs to make sure that such code is replaced by a
valid one. Note that getting rid of invalid Modelica code does not make the library only usable in OpenModelica;
to the contrary, doing that is the best guarantee that the library will be usable both with the original tool used for
development and with OpenModelica, as well as with any other present or future Modelica tool that follows the
standard strictly.

The first recommendation is to use any flag or option of the tool that was originally used to develop the library, that
allows to check for strict compliance to the language specification. For example, Dymola features a translation
option 'Pedantic mode for checking Modelica semantics' that issues an error if non-standard constructs are used.

For your convenience, here you can find a list of commonly reported issues.

7.1 Mapping of the library on the file system

Packages can be mapped onto individual .mo files or onto hierarchical directory structures on the file system,
according to the rules set forth in Section 13.4. of the language specification. The file encoding must be UTF-
8; the use of a BOM at the beginning of the file is deprecated and preferably avoided. If there are non-ASCII
characters in the comments or in the documentation of your library, make sure that the file is encoded as UTF-8.

If a directory-based representation is chosen, each .mo file must start with a within clause, and each directory
should contain a package.order file that lists all the classes and constants defined as separate files in that directory.

When using revision control systems such as GIT or SVN, if the library is stored in a directory structure, it is
recommended to include the top-level directory (that must have the same name as the top-level package) in the
repository itself, to avoid problems in case the repository is cloned locally on a directory that doesn't have the right
name.

The top-level directory name, or the single .mo file containing the entire package, should be named exactly as the
package (e.g. Modelica), possibly followed by a space and by the version number (e.g. Modelica 3.2.3).

7.2 Modifiers for arrays

According to the rules set forth in Section 7.2.5 of the language specification, when instantiating arrays of com-
ponents, modifier values should be arrays of the same size of the component array, unless the each prefix is intro-
duced, in which case the scalar modifier values is applied to all the elements of the array. Thus, if MyComponent
has a Real parameter p, these are all valid declarations

parameter Real g = {0, 1, 2};
MyComponent ma[3] (p = {10, 20, 30});

(continues on next page)

103

https://specification.modelica.org
https://www.modelica.org
https://specification.modelica.org/maint/3.5/packages.html#mapping-package-class-structures-to-a-hierarchical-file-system
https://specification.modelica.org/maint/3.5/inheritance-modification-and-redeclaration.html#modifiers-for-array-elements

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

MyComponent mb[3] (p = q);
MyComponent mb[3] (each p = 10);

while these are not

parameter Real r = 4
MyComponent ma[3] (p
MyComponent mb[3] (p

I~

r);
20);

In most cases, the problem is solved by simply adding the each keyword where appropriate.

7.3 Access to conditional components

According to Section 4.4.5 of the language specification, "A component declared with a condition-attribute can
only be modified and/or used in connections". When dealing, e.g., with conditional input connectors, one can use
the following patterns:

model M
parameter Boolean activateInl = true;
parameter Boolean activateIn2 = true;

Modelica.Blocks.Interfaces.ReallInput ul_in if activatelInl;
Modelica.Blocks.Interfaces.RealInput u2_in = u2 if activatelIn2;
Real u2 "internal variable corresponding to u2_in";
Real y;
protected
Modelica.Blocks.Interfaces.Reallnput ul "internal connector corresponding to ul__
—~in";
equation
y = ul + uz2;
connect (ul_in, ul) "automatically disabled if ul_in is deactivated";
if not activateInl then

ul = 0 "default value for protected connector value when ul_in is disabled";
end if;
if not activateIn2 then
u2 = 0 "default value for u2 when u2_in is disabled";
end if;
end M;

where conditional components are only used in connect equations. The following patterns instead are not legal:

model M
parameter Boolean activatelInl = true;
parameter Boolean activateIn2 = true;

Modelica.Blocks.Interfaces.RealInput ul_in if activatelInl;
Modelica.Blocks.Interfaces.Reallnput u2_in if activateIn2;
Real ul "internal variable corresponding to ul_in";
Real u2 "internal variable corresponding to u2_in";

Real y;
equation
if activateInl then
ul = ul_in "invalid: uses conditional ul_in outside connect equations";
end if;
if activateIn2 then
u2 = u2_in "invalid: uses conditional ul_in outside connect equations";
end if;
y = ul + uz;
end M;

because those components are also used in other equations. The fact that those equations are conditional and are
not activated when the corresponding conditional components are also not activated is irrelevant, according to the

104 Chapter 7. Porting Modelica libraries to OpenModelica

https://specification.modelica.org/maint/3.5/class-predefined-types-and-declarations.html#conditional-component-declaration

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

language specification.

7.4 Access to classes defined in partial packages

Consider the following example package

package TestPartialPackage
partial package PartialPackage
function £
input Real x;
output Real y;

algorithm
y 1= 2%X%;
end £;

end PartialPackage;

package RegularPackage
extends PartialPackage;
model A
Real x = time;
end A;
end RegularPackage;

model M1
package P = PartialPackage;
Real x = P.f(time);

end M1;

model M2
extends Ml (redeclare package P = RegularPackage);
end M2;

model M3
encapsulated package LocalPackage
import TestPartialPackage.PartialPackage;
extends PartialPackage;
end LocalPackage;
package P = LocalPackage;
Real x = P.f(time);
end M3;
end TestPartialPackage;

Model M1 references a class (a function, in this case) from a partial package. This is perfectly fine if one wants
to write a generic model, which is then specialized by redeclaring the package to a non-partial one, as in M2.
However, M1 cannot be compiled for simulation, since, according to Section 5.3.2 of the language specification,
the classes that are looked inside during lookup shall not be partial in a simulation model.

This problem can be fixed by accessing that class (the function f, in this case) from a non-final package that extends
the partial one, either by redeclaring the partial package to a non-partial one, as in M2, or by locally defining a
non-partial package that extends from the partial one, as in M3. The latter option is of course viable only if the
class being accessed is in itself not a partial or somehow incomplete one.

This issue is often encountered in models using Modelica.Media, that sometimes use some class definitions (e.g.
unit types) from partial packages such as Modelica.Media.Interfaces.PartialMedium. The fix in most cases is just
to use the same definition from the actual replaceable Medium package defined in the model, which will eventually
be redeclared to a non-partial one in the simulation model.

7.4. Access to classes defined in partial packages 105

https://specification.modelica.org/maint/3.5/scoping-name-lookup-and-flattening.html#composite-name-lookup

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

7.5 Equality operator in algorithms

The following code is illegal, because it uses the equality '=' operator, which is reserved for equations, instead of
the assignment operator ":=' inside an algorithm:

function £
input Real x;
input Real y = 0;
output Real z;
algorithm
zZ = X +t y;
end £f;

so0, the OpenModelica parser does not accept it. The correct code is:

function £
input Real x;
input Real y = 0;
output Real z;

algorithm
Z::X+y;
end £;

Some tools automatically and silently apply the correction to the code, please save it in its correct form to make it
usable with OpenModelica.

Also note that binding equations with '=' sign are instead required for default values of function inputs.

7.6 Public non-input non-output variables in functions

According to Section 12.2 of the language specification, only input and output formal parameters are allowed in
the function’s public variable section. Hence, the following function declaration is not valid:

function £
input Real x;
output Real y;
Real z;
algorithm
z 1= 2;
y = xtz;
end £;

and should be fixed by putting the variable z in the protected section:

function £
input Real x;
output Real y;
protected
Real z;
algorithm
z 1= 2;
y = xtz;
end £f;

106 Chapter 7. Porting Modelica libraries to OpenModelica

https://specification.modelica.org/maint/3.5/functions.html#function-as-a-specialized-class

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

7.7 Subscripting of expressions

There is a proposal of allowing expression subscripting, e.g.

model M
Real x[31;
Real yI[3];
Real z;
equation
z = (x.xy)[2];

end M;

This construct is already accepted by some Modelica tools, but is not yet included in the current Modelica speci-
fication 3.5, nor even in the current working draft of 3.6, so it is not currently supported by OpenModelica.

7.8 Incomplete specification of initial conditions

The simulation of Modelica models of dynamical systems requires the tool to determine a consistent initial solution
for the simulation to start. To do so, the system equations are augmented by adding one initial condition for each
continuous state variable (after index reduction) and one initial condition for each discrete state variable. Then,
the augmented system is solved upon initialization.

These initial conditions can be formulated by adding a start = <expression> and a fixed = true attribute to those
variables, e.g.

parameter Real x_start = 10;

parameter Real v_start 2.5;

Real x(start = x_start, fixed = true);

discrete Real v (start = v_start, fixed = true);
Integer 1i(start = 2, fixed = true);

or by adding initial equations, e.g.:

parameter Real x_start = 10;
parameter Real v_start = 2.5;
Real x;

discrete Real v;

Integer i;

Real y(start = 3.5);
initial equation

x = x_start;
v = v_start;
i = 2;

der(y) = 0;

Note that in the latter case, the start attribute on y is not used directly to set the initial value of that variable,
but only potentially used as initial guess for the solution of the initialization problem, that may require using an
iterative nonlinear solver. Also note that sets of initial equations are often added to the models taken from reusable
component libraries by selecting certain component parameters, such as initOpt or similar.

If the number of initial conditions matches the number of continuous and discrete states, then the initialization
problem is well-defined. Although this is per se not a guarantee that all tools will be able to solve it and find the
same solution, this is for sure a prerequisite for across-tool portability.

Conversely, if the number of initial conditions is less than the number of states, the tool has to add some initial
equations, using some heuristics to change the fixed attribute of some variables from false to true. Consider for
example the following model:

7.7. Subscripting of expressions 107

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

model M
Real x;
Real y(start = ;
Real z(start = 2);
equation
der(x) =y + z;
y = 2%%;
z = 10xx + 1;
end M;

|
-

This model has one state variable x, no variables with fixed = true attributes and no initial equation, so there is
one missing initial condition. One tool could choose to add the fixed = true attribute to the state variable x, fixing
it to the default value of zero of its start attribute. Or, it could decide to give more priority to variables that have
an explicitly modified start attribute, hence fix the initial value of y to 1, or the initial value of z to 2. Three
completely different simulations would ensue.

The Modelica Language Specification, Section 8.6 does not prescribe or recommend any specific choice criterion
in this case. Hence, different tools, or even different versions of the same tool, could add different initial condi-
tions, leading to completely different simulations. In order to avoid any ambiguity and achieve good portability, it
is thus recommended to make sure that the initial conditions of all simulation model are well-specified.

A model with not enough initial conditions causes the OMC to issue the following translation warning: "The initial
conditions are not fully specified". By activating the Tools | Options | Simulation | Show additional information
from the initialization process option, or the -d=initialization compiler flag, one can get an explicit list of the
additional equations that OpenModelica automatically adds to get a fully specified initialization problem, which
may be helpful to figure out which initial conditions are missing. In this case, we recommend to amend the source
code of the model by adding suitable extra initial conditions, until that warning message no longer appears.

7.9 Modelica_LinearSystems2 Library

The Modelica_LinearSystem?2 library was originally developed in Dymola with a plan of eventually making it
part of the Modelica Standard Library (thus the underscore in the library name). The library is based on several
functions, e.g. readStringMatrix(), simulateModel(), linearizeModel() that are built-in Dymola functions but are
not part of the Modelica Standard Library.

In principle, these functions could be standardized and become part of the ModelicaServices library, which collects
standardized interfaces to tool-specific functionality; then, OpenModelica could easily implement them based on
its internal functionality. However, until this effort is undertaken, the Modelica_LinearSystem?2 library cannot be
considered as a full-fledged Modelica library, but only a Dymola-specific one.

If you are interested in using this library in OpenModelica and are willing to contribute to get it supported, please
contact the development team, e.g. by opening an ticket on the issue tracker.

108 Chapter 7. Porting Modelica libraries to OpenModelica

https://specification.modelica.org/maint/3.5/equations.html#initialization-initial-equation-and-initial-algorithm

CHAPTER
EIGHT

GENERATING GRAPH REPRESENTATIONS FOR MODELS

The system of equations after symbolic transformation is represented by a graph. OpenModelica can generate
graph representations which can be displayed in the graph tool yed (http://www.yworks.com/products/yed). The
graph generation is activated with the debug flag

+d=graphml

Two different graphml- files are generated in the working directory. TaskGraph_model.graphml, showing the
strongly-connected components of the model and BipartiteGraph_CompleteDAE_model.graphml showing all
variables and equations. When loading the graphs with yEd, all nodes are in one place. Please use the various
layout algorithms to get a better overview.

¥ TaskGraph_Modelica.Electrical.Spice3 Examples.Coupledinductors.graphml - yEd - o X

File Edit View Layout Tools Grouping Windows Help
BEER2+REX 0N Q8 QR IR e i~ @ P .y

¥ BiartiteGrap. . tors.araphml = x |) TaskGraph_Mod...tors.graphml * x 4 b E §
| E:E_jij o |

- l@me
L bl

[Meighborhood | B Folder Contents | 1] Predecessors | [Successors

ﬂ" = General
Search Desaiption] « Number of Nodes 18
= | Grapn Number of Edges 14

[= Data
CriticalPath

i # CLi=(L2internal) -R3. FOR CLi
i # C2i = (L3.internal) -R5.i FOR C2.i
LLv =sineVoltage.v -RLvFOR LLv
L2.v = Clvinternal -R2.y FOR L2.v
L # L3.v = C2vinternal -R4.y FOR L3.v
- # RLv =RLR *Llintenal FORR1v
- # R2v =R2.R *L2intenal FORR2.v
- # R3.=Clvinternal /R3.R FORR3.i
- # R4y =R4R *L3internal FOR R4v
- # RS.i=C2vinternal /R5.R FOR RS
- # Torn linear System

Figure 8.1: A task-graph representation of a model in yEd

109

http://www.yworks.com/products/yed

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

J BipartiteGraph_CompleteDAE_Modelica Electrical Spice3.Examples.Coupledinductors.graphml - yEd -

[File| Edit View Layout Tools Grouping Windows Help

SEEE] LRSS CES e

B overview S| | Y ipartiteGrap._tors.graphmi * x|

%] Neighborhood | 871 Folder Contents | 5] Predecessors | [B5] Successors |

& ‘Structure View EE]
Search Descripon ~
=] | Graph ~

Cli = (1L2iinternal) -R3.i

CLi:VARIABLE(unit = "A™) "Current flowing from pin p to pin n” type: Rez
C1vinternal:STATE(Z){unit = "V" protected = true) type: Real

C€2.i = (4 3.iinternal) - R5.i

C2,i:VARIABLE(uUnit = "A™) "Current flowing from pin p to pin n” type: Rez
C2.vinternal:STATE(1)(unit = "V protected = true) type: Real

L 1.ICP.di:VARIABLE(flow="false unit = "Afs™) di/dt” type: Real

L1ICP.v + kLinductiveCouplePin L.v +k2.inductiveCouplePinL.v = 0.0

LLL*LLICP.di =L1.v +L1ICP.v

LA R R R E R RN

Liinternal:STATE(L,L1.ICP.di) (unit = "A") type: Real v

J

v 0 R

I Shape Hodes @ A
A A i =
Fi "Properties View RS
= General ~
Text 23
X 396.0
Y 556.0
Width 30.0
Height 30.0
Fill Color [#fogsse
Fill Color 2 X #—
Line Color W 000000
Line Type
£ Label
Visible
Background [X] #-—
Border & #—
Calor . #000000 =

Figure 8.2: A biparite graph representation of a model in yEd

110

Chapter 8. Generating Graph Representations for Models

CHAPTER
NINE

FMI AND TLM-BASED SIMULATION AND CO-SIMULATION OF
EXTERNAL MODELS

9.1 Functional Mock-up Interface - FMI

The new standard for model exchange and co-simulation with Functional Mockup Interface (FMI) allows export of
pre-compiled models, i.e., C-code or binary code, from a tool for import in another tool, and vice versa. The FMI
standard is Modelica independent. Import and export works both between different Modelica tools, or between
certain non-Modelica tools.

See also OMSimulator documentation.

9.1.1 FMI Export

To export the FMU use the OpenModelica command translateModelFMU(ModelName) or build-
ModelFMU(ModelName) <https://build.openmodelica.org/Documentation/OpenModelica.Scripting.
buildModelFMU.htmI>"_ from command line interface, OMShell, OMNotebook or MDT. The export FMU
command is also integrated with OMEdit. Select File > Export > FMU. Or alternatively, right click a model to
obtain the export command. The FMU package is generated in the current directory of omc. The location of the
generated FMU is indicated in the Messages Browser. You can use the cd() command to see the current location.
You can set which version of FMI to export through OMEdit settings, see section FMI Options.

To export the bouncing ball example to an FMU, use the following commands:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> translateModelFMU (BouncingBall)

"«DOCHOME» /BouncingBall. fmu"

>>> system("unzip -1 BouncingBall.fmu | egrep -v 'sources|files' | tail -n+3 |_
—grep -o '[A-Za-z._0-9/1x$' > BB.log")
0

After the command execution is complete you will see that a file BouncingBall.fmu has been created. Its contents
varies depending on the current platform. On the machine generating this documentation, the contents in Listing
9.1 are generated (along with the C source code).

Listing 9.1: BouncingBall FMU contents

binaries/

binaries/linux64/
binaries/linux64/BouncingBall_FMU.libs
binaries/linux64/BouncingBall.so
modelDescription.xml

A log file for FMU creation is also generated named ModelName_FMU.log. If there are some errors while creating
FMU they will be shown in the command line window and logged in this log file as well.

111

http://www.fmi-standard.org
https://openmodelica.org/doc/OMSimulator/master/html/
https://build.openmodelica.org/Documentation/OpenModelica.Scripting.translateModelFMU.html
https://build.openmodelica.org/Documentation/OpenModelica.Scripting.buildModelFMU.html
https://build.openmodelica.org/Documentation/OpenModelica.Scripting.buildModelFMU.html
https://build.openmodelica.org/Documentation/OpenModelica.Scripting.cd.html

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

+4 OMEdit - OpenModelica Connection Editor — O X

File Edit View Simulation Debug OMSimulator Sensitivity Optimization Tools Help

o8B Heoe \OHOTH <= Q-9 ¥

‘Lj‘tJrariC(-_;s Browser .—-® B ReferenceSystemEq X
Iiter asses v —
— |ll! AEH O |Wribable |Model |Text View |DualMassOsciIIator.ReferenceSystemEq |.'rnnt.'c!U...Iator.rno| ﬁ‘
» |E| OpenModelica 143 model ReferenceSystemEq
' 144 parameter Real x1 start = 0.0;
4 ModelicaRef _ ’
0 vo e!ca ee,rence 145 parameter Real x2 start = 0.5;
4 [:] ModelicaServices 146 -
4 ﬂ Complex 147 parameter Real cl = 0.2 "damping constant”;
» @ Modelica 148 parameter Real c2 = 0.5 "damping constant”;
- m DualMassOscillator 149 parameter Real ¢3 = 0.3 "damping constant”;
150 parameter Real k1 = 10.0 "spring constant”;
Systeml 151 parameter Real k2 = 10.0 "spring constant";
System2 152 parameter Real k3 = 20.0 "spring constant”;
M| referencesystem 153 parameter Real ml = 1.0;
m 154 parameter Real m2 = 1.0;
ReferenceSvstemEa

&4 Open Class .
Information =x1_start, fixed=true);

Syste =0.0, fixed=true) = der(x1l);
¥ New Modelica Class (vl);
“5 Order »=x2_start, fixed=true);
B save =0.0, fixed=true) = der(x2);
. (v2);
save As X1 - c2*v1 + K2*x2 + C2*V2;
Save Total
& Instantiate Model Ep;
@ Check Model Fml*v1™2 + 1/2*m2*v2~2;

@ Check All Models FK1*x17°2 + 1/2*%K2*(x2-x1)"2 + 1/2%Kk3*(-x2)"2;

¥ Simulate 2)*vl - c2*v2 + (kl+k2)*x1 - k2*x2 = 0.0;
@ Simulate with Transformational Debugger + (c2+c3)*v2 - k2*x1 + (k2+k3)*x2 = 0.0;
@ Simulate with Algorithmic Debugger stemEq;
) Simulate with Animation
S| Simulation Setup
#¥ Duplicate
¥ Delete Del
Update Bindings = XML
& Figaro
Exports the model as Functional Mockup Unit (FMU) Ln: 143, Col: 0 t Welcome | A Modeling | = Plotting [Debugging

Figure 9.1: FMI Export.

112 Chapter 9. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

By default an FMU that can be used for both Model Exchange and Co-Simulation is generated. We support FMI
1.0 & FMI 2.0 for Model Exchange FMUs and FMI 2.0 for Co-Simulation FMUs.

Currently the Co-Simulation FMU uses the forward Euler solver as default with root finding which does an
Euler step of communicationStepSize in fmi2DoStep. Events are checked for before and after the call to
fmi2GetDerivatives.

For FMI 2.0 for Co-Simulation OpenModelica can export an experimental implementation of SUNDIALS
CVODE (see') as internal integrator.

To export a Co-Simulation FMU with CVODE for the bouncing ball example use the following commands:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> setCommandLineOptions ("-—-fmiFlags=s:cvode")

true

>>> translateModelFMU (BouncingBall, version = "2.0", fmuType="cs")

"«DOCHOME»/BouncingBall. fmu"

>>> sgsystem("unzip -cqgq BouncingBall.fmu resources/BouncingBall_flags. json > |
—BouncingBall_flags. json")

0

The FMU BouncingBall.fmu will have a new file BouncingBall_flags.json in its resources directory. By manualy
changing its contant users can change the solver method without recompiling the FMU.

The BouncingBall_flags.json for this example is displayed in Listing 9.2.

Listing 9.2: BouncingBall FMI flags

{

"g"m . "eyode"

}

For this to work OpenModelica will export all needed dependencies into the FMU if and only if the flag fmiFlags
was set. To have CVODE in a SourceCode FMU the user needs to add all sources for SUNDIALS manualy and
create a build script as well.

9.1.2 CMake FMU Export

A prototype implementation of FMUs compiled with CMake instead of Makefiels is available when using compiler
flag --fimuCMakeBuild. This is useful for creating Source-Code FMUs and for cross-platform compilation. On
Windows this is currently the only way to use Docker images for cross-platform compilation.

It is possible to add runtime dependencies into the FMU using --fmuRuntimeDepends. The default value modelica
will include every external libraries mentioned by an annotation as well as its dependencies (recursive). The
system default locations are excluded.

The minimum CMake version required is v3.21.

! Sundials Webpage

9.1. Functional Mock-up Interface - FMI 113

http://computation.llnl.gov/projects/sundials-suite-nonlinear-differential-algebraic-equation-solvers

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

9.1.3 FMI Import

If you want to simulate a single, stand-alone FMU, or possibly a connection of several FMUs, the recommended
tool to do that is OMSimulator, see the OMSimulator documentation for further information.

FMI Import allows to use an FMU, generated according to the FMI for Model Exchange 2.0 standard, as a
component in a Modelica model. This can be useful if the FMU describes the behaviour of a component or
sub-system in a structured Modelica model, which is not easily turned into a pure FMI-based model that can be
handled by OMSimulator.

FMI is a computational description of a dynamic model, while a Modelica model is a declarative description;
this means that not all conceivable FMUs can be successfully imported as Modelica models. Also, the current
implementation of FMU import in OpenModelica is still somewhat experimental and not guaranteed to work in
all cases. However, if the FMU-ME you want to import was exported from a Modelica model and only represents
continuous time dynamic behaviour, it should work without problems when imported as a Modelica block.

Please also note that the current implementation of FMI Import in OpenModelica is based on a built-in wrap-
per that uses a reinif() statement in an algorithm section. This is not allowed by the Modelica Language
Specification, so it is necessary to set the compiler to accept this non-standard construct by setting the --
allowNonStandardModelica=reinitinAlgorithms compiler flag. In OMEdit, you can set this option by activating
the Enable FMU Import checkbox in the Tools | Options | Simulation | Translation Flags tab. This will generate
a warning during compilation, as there is no guarantee that the imported model using this feature can be ported
to other Modelica tools; if you want to use a model that contains imported FMUs in another Modelica tool, you
should rely on the other tool's import feature to generate the Modelica blocks corresponding to the FMUs.

After setting the --allowNonStandardModelica flag, to import the FMU package use the OpenModelica command
importFMU,

>>> list (OpenModelica.Scripting.importFMU, interfaceOnly=true)
function importFMU

input String filename "the fmu file name";

input String workdir = "<default>" "The output directory for imported FMU files.
—<default> will put the files to current working directory.";

input Integer loglevel = 3 "loglevel_nothing=0;loglevel_fatal=1;loglevel_error=2;
—loglevel_warning=3;loglevel_info=4;loglevel_verbose=5;loglevel_debug=6";

input Boolean fullPath = false "When true the full output path is returned,
—~otherwise only the file name.";

input Boolean debuglogging = false "When true the FMU's debug output is printed.

. "w.
o

input Boolean generatelInputConnectors = true "When true creates the input
—connector pins.";
input Boolean generateOutputConnectors = true "When true creates the output,

—connector pins.";

input TypeName modelName = $Code (Default) "Name of the generated model. If
—~default then the name is auto generated using FMU information.";

output String generatedFileName "Returns the full path of the generated file.";
end importFMU;

The command could be used from command line interface, OMShell, OMNotebook or MDT. The importFMU
command is also integrated with OMEdit through the File > Import > FMU dialog: the FMU package is extracted
in the directory specified by workdir, or in the current directory of omc if not specified, see Tools > Open Working
Directory.

The imported FMU is then loaded in the Libraries Browser and can be used as any other regular Modelica block.

114 Chapter 9. FMI and TLM-Based Simulation and Co-simulation of External Models

https://openmodelica.org/doc/OMSimulator/master/html/

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

9.2 Transmission Line Modeling (TLM) Based Co-Simulation

This chapter gives a short description how to get started using the TLM-Based co-simulation accessible via
OMEdit.

The TLM Based co-simulation provides the following general functionalities:
* Import and add External non-Modelica models such as Matlab/SimuLink, Adams, and BEAST models

e Import and add External Modelica models e.g. from tools such as Dymola or Wolfram SystemModeler,
etc.

 Specify startup methods and interfaces of the external model
* Build the composite models by connecting the external models
* Set the co-simulation parameters in the composite model

 Simulate the composite models using TLM based co-simulation

9.3 Composite Model Editing of External Models

The graphical composite model editor is an extension and specialization of the OpenModelica connection editor
OMEdit. A composite model is composed of several external sub-models including the interconnections between
these sub-models. External models are models which need not be in Modelica, they can be FMUs, or models
accessed by proxies for co-simulation and connected by TLM-connections. The standard way to store a composite
model is in an XML format. The XML schema standard is accessible from timModelDescription.xsd. Currently
composite models can only be used for TLM based co-simulation of external models.

9.3.1 Loading a Composite Model for Co-Simulation
To load the composite model, select File > Open Composite Model(s) from the menu and select composite-
model.xml.

OME(dit loads the composite model and show it in the Libraries Browser. Double-clicking the composite model
in the Libraries Browser will display the composite model as shown below in Figure 9.2.

9.3.2 Co-Simulating the Composite Model
There are two ways to start co-simulation:
¢ Click TLM Co-Simulation setup button (@}) from the toolbar (requires a composite model to be active

in ModelWidget)

* Right click the composite model in the Libraries Browser and choose TLM Co-Simulation setup from
the popup menu (see Figure 9.3)

The TLM Co-Simulation setup appears as shown below in Figure 9.4.

Click Simulate from the Co-simulation setup to confirm the co-simulation. Figure 9.5 will appears in which you
will be able to see the progress information of the running co-simulation.

The editor also provides the means of reading the log files generated by the simulation manager and monitor.
When the simulation ends, click Open Manager Log File or Open Monitor Log File from the co-simulation
progress bar to check the log files.

9.2. Transmission Line Modeling (TLM) Based Co-Simulation 115

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

ot OMEdit - OpenModelica Cennection Editor - [deublePendulum] — O *,
gﬁ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
= B X . pry ; =
L @000 \O0HNO - E Q395
Libraries Browser g X |n% B |‘.I'.|'riizble ‘Diagram View ‘C:!SIG:,IH_MPIU...EPendqum.m| h‘ 3D Viewer Browser g X
|FilterCIasses | < ~ @Isometric v [e
L
Libraries
L)
doublePendulum
|
|
J
v
£ >
t Welcome gﬁ Modeling ﬂ Plotting ‘» Debuaaing

Figure 9.2: Composite Model with 3D View.

116

Chapter 9. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

- O X

di OMEdit - OpenModelica Connection Editor - [doublePendulum]
- 8 X

View Simulation

&% File Edit

FMI

Export Debug

Git

Tools

Help

JeBE

Hoee “oHO

| o4 E | Viritable ‘ Diagram View ‘ C:!SIG:,fﬂ_MPIu...EPendqum.m| 5 ‘ 3D Viewer Browser

¥ hd G ¥ 9 ¥ 9 ¥ tDHh »

g x

Libraries Browser =
|Filter Classes | L4 s @ B .T—'j\ f;'-::\
Libraries
</> doublePen
{4- Fetch Interface Data
< TLM Co-Simulation Setup
Unload Del
|
Eukl e il
i
W
£ >
Opens the TLM co-simulation setup t Welcome gﬁ Modeling ﬂ Plotting ‘» Debugging

Figure 9.3: Co-simulating and Fetching Interface Data of a composite model from the Popup Menu .

117

9.3. Composite Model Editing of External Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

ot OMEdit - TLM Co-Simulation Setup - doublePendulum ? >

TLM Co-Simulation Setup - doublePendul

TLM Flugin Path: |C:,."5HF,."TLMPIugin,|'bin | Browse...
TLM Manager
Manager Process: |C:/SKF/TLMPlugin/bin/tmmanager.exe Browse...
Server Port: 11111
Monitor Port: 12111

[] Debug Mode

TLM Monitor

Monitor Process: | C:/SKF/TLMPlugin/bin/ftmmaonitor. exe Browse...

Mumber Of Steps: |

Time Step Size:

[] Debug Mode

Show TLM Co-Simulation Output Window

Simulate Cancel

Figure 9.4: TLM Co-simulation Setup.

118

Chapter 9. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

o't OMEdit - doublePendulum TLM Co-Simulation — O >

Running co-simulation using the doublePendulum composite model. Please wait for a while.

I TN

Manager Output Stop Manager | Open Manager Log File

tlm.config ~
timeEnd = 3

MaxTimeStep "<"= 0.0001000000

Writing caselIl doublePendulumZ and server name 130.Z3&.15%0.168:11111 to £file
tlm.config

Writing doublePendulumZ .mos

Writing doublePenduluml .mos

Starting COpenModelica

C: /OpenModelicabuild/ /bin/omc.exe doublePendulumZ mos

Starting COpenModelica

C: /OpenModelicasbuild/ /bin/omc.exe doublePenduluml .mos

W

Monitor Output Stop Manitor | | Open Maonitor Log File

C:/8FF/TLMPlugin/bin/tlmmonitor.exe 130.236.15%0.168:12111 C:/5EKF/TILMPlugin/HMetaModels/
CmoCmeDoublePendul umy/doublePendulum. xml

Figure 9.5: TLM Co-Simulation Progress.

9.3. Composite Model Editing of External Models 119

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

9.3.3 Plotting the Simulation Results

When the co-simulation of the composite model is completed successful, simulation results are collected and
visualized in the OMEdit plotting perspective as shown in Figure 9.6 and Figure 9.7. The Variables Browser
display variables that can be plotted. Each variable has a checkbox, checking it will plot the variable.

&t OMEdit - OpenModelica Connection Editor - [Plot: 1] - O >

IZEiIe Edit View Simulation FMI Export Debug Git Tools Help - 8 X

FeBB 98 Xioa/S

Libraries Browser g x Auto Scale | FitinView | Save | Print | Grid | Detsiled Grid Mo Grid > Variables Browser 8 X

|Filter Claszes | L4 |Fi|ter Variables
doublePendulum 1. tm.A{1, 1) [] doublePendulum1.tm. A{1,2) []

Libraries Simulation Time Unit |5 -

doublePendulum 17 Variables Ve ™
- - T
] = doublePendulum?
] = tlm
0.5 MACLD [
4 401,21 [-1
1 RS
1 Oaen -
1 Oaea -
0 Oaea -
1 [HEERNIR
Oac2i-]
Oacan-
[C1F_tie[...1) [M]
[CIF _tie..2) [N]
[IF _tie...3) [N]
1M _tie... [Nm]
I M_tie... [Nm]

I M_tie... [Nm]
0 0.5 1 1.|5 :lz 2.|5 3I L10meg..d/s]

time [s] n ["10mea..d/sl N w7

'
N
_l

t Welcome u!i Modeling ﬂ Plotting w Debugging

Figure 9.6: TLM Co-Simulation Results Plotting.

9.3.4 Preparing External Models

First step in co-simulation Modeling is to prepare the different external simulation models with TLM inter-
faces. Each external model belongs to a specific simulation tool, such as MATLAB/Simulink*, BEAST,
MSC/ADAMS, Dymola and Wolfram SystemModeler.

When the external models have all been prepared, the next step is to load external models in OMEdit by selecting
the File > Load External Model(s) from the menu.

OMEdit loads the external model and show it in the Libraries Browser as shown below in Figure 9.8.

120 Chapter 9. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

di OMEdit - OpenModelica Connection Editor - [doublePendulum.csv]

Eile Edit View Simulation FMI Export Debug Git Tools

FwBE 98 Xon &

|Filter Classes |

Help

4 . x il J el . i x
Libraries Browser = “ ’ II I Time [s]: Speed: gglsometnc - |35 | Variables Browser &

Filter Variables

Libraries

L)
doublePendulum

Simulation Time Unit | s hd

Variables | O
= és‘;' doublePendulum
= doublePendulum1
= tlm

ClAm -]
EEY !
C1A3) -]
HEERIG!
AR [
AR
CIAGD [
CIAG2 [
CIAGI [
[CIF tiel...1) [M]
[C]F tiel..2) [M]
[C]F tiel...2) [M]
I M_tie... [Mm]
I M _tie... [Nm]
I M _tie... [Nm]
[10Ormeg...d/s]

[10meq..dfs] ¥
£ >

t Welcome

&i Modeling

ﬂ Plotting ‘ Debugging

Figure 9.7: TLM Co-Simulation Visualization.

9.3. Composite Model Editing of External Models

121

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

-
gﬁ OMEdit - CpenModelica Connection Editor

File Edit View Simulation FMI Export Tools Help

lThHlﬂ 0‘\6‘\9\

Libraries Browser B X
Search Classes o
Libraries

k> OpenModelica

P
[» ﬂ ModelicaReference

[ModelicaServices

k> i Complex

= A5 Modelica

chaftl
chaft?

TXT dgbb

Figure 9.8: External Models in OMEdit.

122 Chapter 9. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

9.3.5 Creating a New Composite Model

We will use the "Double pendulum" composite model which is a multibody system that consists of three sub-
models: Two OpenModelica Shaft sub-models (Shaftl and Shaft2) and one SKF/BEAST bearing sub-model
that together build a double pendulum. The SKF/BEAST bearing sub-model is a simplified model with only
three balls to speed up the simulation. Shaftl is connected with a spherical joint to the world coordinate system.
The end of Shaftl is connected via a TLM interface to the outer ring of the BEAST bearing model. The inner ring
of the bearing model is connected via another TLM interface to Shaft2. Together they build the double pendulum
with two shafts, one spherical OpenModelica joint, and one BEAST bearing.

To create a new composite model select File > New Composite Model from the menu.

Your new composite model will appear in the in the Libraries Browser once created. To facilitate the process of
textual composite modeling and to provide users with a starting point, the Text View (see Figure 9.9) includes the
composite model XML elements and the default simulation parameters.

&t OMEdit - OpenModelica Connection Editor - [CompositeModel1%] - O >
E File Edit View Simulation FMI Export Debug Tools Help - 8 X
reBB @oee \0 B0 X5
Libraries Browser g x ‘gﬁ E ‘Wrimble |Text\ﬂew ‘ |Line: 1, Col: 0 ‘ |
|Filter Classes | @ - -
1 <?xml version='l.0' encoding='UTF-8"'?>
Libraries <!—— The root node i=s the composite-model —->
-y <Model Name="CompositeModell™:>
CompositeModell «!'—— List of connected sub-models —->
<SubModels/>
<!-— List of TLM connections -->
<Connections/>
<!-— Parameters for the simmlation -->
<SimulationParams StartTime="0" StopTime="1"/>
</Model>

¥:-101.11 ¥: 105.89 t Welcome qli Modeling g Plotting w Debugging

Figure 9.9: New composite model text view.

9.3. Composite Model Editing of External Models 123

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

9.3.6 Adding Submodels

It is possible to build the double pendulum by drag-and-drop of each simulation model component (sub-model)
from the Libraries Browser to the Diagram View. To place a component in the Diagram View of the double
pendulum model, drag each external sub-model of the double pendulum (i.e. Shaftl, Shaft2, and BEAST bearing
sub-model) from the Libraries Browser to the Diagram View.

rd OMEdit - OpenModelica Connecticn Editor =HEC ﬂ&1
File Edit View Simulation FMI Export Tools Help
B 1=15 .oee N N=FH-E- Y
Libraries Browser » MetaModel 1= @]
|Search Classes | \ 4 @E |Wri13b|e Diagram View ‘ Line: 1, Cal: 0 | |
Libraries -
> IE OpenModelica
> o ModelicaReference
> |:| ModelicaServices
> Complex
> Muodelica shaft11 dgbb1 chaftzi
shaftl
shaft2
dgbb
MetaModell
I
4 }
X: 148.54 ¥:-16.01 & welcome | oA Modeling | B Plotting |

Figure 9.10: Adding sub-models to the double pendulum composite model.

9.3.7 Fetching Submodels Interface Data
To retrieve list of TLM interface data for sub-models, do any of the following methods:
¢ Click Fetch Interface Data button (<") from the toolbar (requires a composite model to be active in

ModelWidget)

* Right click the composite model in the Library Browser and choose Fetch Interface Data from the popup
menu (see Figure 9.3).

To retrieve list of TLM interface data for a specific sub-model,

* Right click the sub-model inside the composite model and choose Fetch Interface Data from the popup
menu.

Figure 9.11 will appear in which you will be able to see the progress information of fetching the interface data.

Once the TLM interface data of the sub-models are retrieved, the interface points will appear in the diagram view
as shown below in Figure 9.12.

124 Chapter 9. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

o4& OMEdit - Fetch Interface Data - MetaModel1 (P e

Fetching interface data for MetaModell. ..

| P . Cancel Fetch Again

Output

C:3WTIMPluginiyMetaModels\ testhshaftll>goto DONE

C:%wTIMPluginiyMetaModels\ testyshaftZl>goto DONE

C:Z\TIMFPlugin\wMetaModels\testyshaftilr»echo Done StartTLMOpenModelica
Done StartTIMOpenModelica

C:\TIMFlugin\wMetaModelsytestyshaftllr»echo Done StartTLMOpenModelica
Done StartTIMOpenModelica

1

Figure 9.11: Fetching Interface Data Progress.

9.3.8 Connecting Submodels

When the sub-models and interface points have all been placed in the Diagram View, similar to Figure 9.12, the

next step is to connect the sub-models. Sub-models are connected using the Connection Line Button ('<:) from
the toolbar.

To connect two sub-models, select the Connection Line Button and place the mouse cursor over an interface and
click the left mouse button, then drag the cursor to the other sub-model interface, and click the left mouse button
again. A connection dialog box as shown below in Figure 9.13 will appear in which you will be able to specify
the connection attributes.

Continue to connect all sub-models until the composite model Diagram View looks like the one in Figure 9.14
below.

9.3.9 Changing Parameter Values of Submodels

To change a parameter value of a sub-model, do any of the following methods:
* Double-click on the sub-model you want to change its parameter
* Right click on the sub-model and choose Attributes from the popup menu

The parameter dialog of that sub-model appears as shown below in Figure 9.15 in which you will be able to specify
the sub-models attributes.

9.3. Composite Model Editing of External Models 125

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

-
di OMEdit - OpenMModelica Connection Editor

EEE)

File Edit Wiew Simulation FMI Export Tools Help
rwHB Eee \- E5-E 9 5
Libraries Browser ? X | A4 pendulum B8 |
|5E'-="":|'I Classes | v @E Writable | Diagram View | C:/TLMPlugin.. pendulum.xml | Line: 1, Col: 0 |
Libraries -
[IE OpenModelica
[0 MedelicaReference
> D ModelicaServices
[. Complex
[@ Modelica
<haftl shaftl dgbb1 shaft2
shaft2
ey dgbb
E.-"% pendulum
4 P
X: 113.03 Y: 86.64 o4& Modeling

Figure 9.12: Fetching Interface Data.

126

Chapter 9. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

-
o't OMEdit - Connection Attributes

e

Connection Attributes

From:
T

Delay:
Zf:
Zfr:

Alpha:

shaft1.dm
dgbb1.bIR. "cs1

1le-4

10000

100

0.2

o]|

Cancel

Figure 9.13: Sub-models Connection Dialog.

-
gi OMEdit - OpenModelica Connection Editor

o) B) |

Ed -1

File Edit View Simulation FMI

Export Tools Help

Eeee “oHO

Libraries Browser g X | 4

pendulum x| |

> E *» hd g »» tDT‘I »»

|Search Classes |

1
L

@E ‘ Writable | Diagram View ‘ C:/TLMPlugin/MetaModels ftestpendulum. xml ‘ Line: 1, Col: O | & ‘

Libraries

[> @ OpenMedelica

B o MeodelicaReference
[D MaodelicaServices
[. Complex

B @ Modelica

4

s

Messag

es Browser

Figure 9.14: Connecting sub-models of the Double Pendulum Composite Model.

9.3. Composite Model Editing of External Models

127

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

o% OMEdit - SubModel Attributes -

Name: shaftl

Model File: shaftl.mo

Simulation Tool OpenModelica -
Start Command: startTLMOpenModelica

|| Exact Step Flag

Ok] | Cancel

Figure 9.15: Changing Parameter Values of Sub-models Dialog.

9.3.10 Changing Parameter Values of Connections

To change a parameter value of a connection, do any of the following methods:
* Double-click on the connection you want to change its parameter
* Right click on the connection and choose Attributes from the popup menu.

The parameter dialog of that connection appears (see Figure 9.13) in which you will be able to specify the con-
nections attributes.

9.3.11 Changing Co-Simulation Parameters
To change the co-simulation parameters, do any of the following methods:
| |
e Click Simulation Parameters button (to t) from the toolbar (requires a composite model to be active in

ModelWidget)

* Right click an empty location in the Diagram View of the composite model and choose Simulation Param-
eters from the popup menu (see Figure 9.16)

The co-simulation parameter dialog of the composite model appears as shown below in Figure 9.17 in which you
will be able to specify the simulation parameters.

128 Chapter 9. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

s =~
% OMEdit - OpenModelica Connection Editor = | =

File Edit View Simulation FMI Export Tools Help

ITE » \\» E» v 9» tI}Hﬁ”

Libraries Browser g X | ot pendulum [
| search Classes | & @E Writable | Diagram View | C:/TLMP.Jum.xml | Line: 1, Col: 0 | /5
Libraries -
[P OpenModelica
B 0 ModelicaReference L
B [:] MoadelicaServices et e
k& - Complex
[@ Modelica o
M shaftl . Export as an Image
shaft2 Export to Clipboard

e = B Export to OMMNotebook .
" pendulum
Messages Browser | @& Print... Ctrl+P g X
—

v Simulation Parameters

Shows the Simulation Parar¥: -78.24 Y: 40,15 ‘:. Welcome di Madeling ﬂ Flotting |

Figure 9.16: Changing Co-Simulation Parameters from the Popup Menu.

-
o't OMEdit - Simulation Parameters - pendulum u

Simulation Parameters - pendulum

Start Time: | 0.0 |

It StopTime: |1.0

I [Save] | Cancel

Figure 9.17: Changing Co-Simulation Parameters Dialog.

9.3. Composite Model Editing of External Models 129

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

130 Chapter 9. FMI and TLM-Based Simulation and Co-simulation of External Models

CHAPTER
TEN

OMSIMULATOR

Version: v2.0.0.post480-gaf996ad

10.1 Introduction

The OMSimulator project is a FMI-based co-simulation tool that supports ordinary (i.e., non-delayed) and TLM
connections. It supports large-scale simulation and virtual prototyping using models from multiple sources utiliz-
ing the FMI standard. It is integrated into OpenModelica but also available stand-alone, i.e., without dependencies
to Modelica specific models or technology. OMSimulator provides an industrial-strength open-source FMI-based
modelling and simulation tool. Input/output ports of FMUs can be connected, ports can be grouped to buses, FMUs
can be parameterized and composed, and composite models can be exported according to the (preliminary) SSP
(System Structure and Parameterization) standard. Efficient FMI based simulation is provided for both model-
exchange and co-simulation. TLM-based tool connection is provided for a range of applications, e.g., Adams,
Simulink, Beast, Dymola, and OpenModelica. Moreover, optional TLM (Transmission Line Modelling) domain-
specific connectors are also supported, providing additional numerical stability to co-simulation. An external API
is available for use from other tools and scripting languages such as Python and Lua.

10.2 OMSimulator

OMSimulator is a command line wrapper for the OMSimulatorLib library.

10.2.1 OMSimulator Flags

A brief description of all command line flags will be displayed using OMSimulator --help:

info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:

——addParametersToCSV=<arg> Export parameters to .csv file (true,
—[false])

—-—algLoopSolver=<arg> Specifies the alg. loop solver method,
— (fixedpoint, [kinsol]) used for algebraic loops spanning over multiple
—components.

——clearAllOptions Reset all flags to default values

——deleteTempFiles=<bool> Deletes temp files as soon as they are

—no longer needed ([true], false)

——directionalDerivatives=<bool> Specifies whether directional
—~derivatives should be used to calculate the Jacobian for alg. loops or if a
—numerical approximation should be used instead ([true], false)

——dumpAlgLoops=<bool> Dump information for alg loops (true,
— [false])

——emitEvents=<bool> Specifies whether events should be,
—~emitted or not ([true], false)

——fetchAllVars=<arg> Workaround for certain FMUs that do not

—update all internal dependencies automatically

(continues on next page)

131

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

——help [-h]
——ignoreInitialUnknowns=<bool>
—modelDescription.xml (true, [false])
——inputExtrapolation=<bool>
(true, [false])
——intervals=<int> [-1]
(arg > 1)
—-—logFile=<arg>

—derivative information

—points

[-1]

—~if no log file is specified)
——logLevel=<int>
—-—maxEventIteration=<int>

—for handling a single event
—-—-maxLoopIlteration=<int>

—for solving algebraic loops between system-level components.

—loops of components are not affected.
——-mode=<arg> [-m]
—provides cs and me (cs, [me])
——numProcs=<int> [-n]
(0O=auto, Il=default)
——progressBar=<bool>
—progress in the terminal (true,
——realTime=<bool>

—to use

[false])

—time co-simulation (true, [falsel)
—-resultFile=<arg> [-r]
—~file
—--skipCSVHeader=<arg>
—header ([true], false),

—--solver=<arg>
— [cvode])
—-—solverStats=<bool>
step size;
——startTime=<double>
—-stepSize=<arg>
—~<init step,min step,max step>)
——stopTime=<double> [-t]
—-stripRoot=<bool>
—exported signals (true, [false])
—-—suppressPath=<bool>
especially useful for testing

—J.
[-s]

—messages;
——tempDir=<arg>
——timeout=<int>

—seconds for running a simulation
——tolerance=<double>

--version [-V]
——wallTime=<bool>
—result file (true, [false])

—-workingDir=<arg>
——zeroNominal=<bool>

([true],

Using this flag,

Displays the help text
Ignore the initial unknowns from the

Enables input extrapolation using,,
Specifies the number of communication,
Specifies the logfile

(stdout is used,

0 default, 1 debug,
Specifies the max.

2 debugttrace
number of iterations,

Specifies the max. number of iterations,

Internal algebraic,,
Forces a certain FMI mode iff the FMU
Specifies the max. number of processors,,
Shows a progress bar for the simulation
Experimental feature for (soft) real-
Specifies the name of the output result,
Skip exporting the scv delimiter in the

Specifies the integration method (euler,

Adds solver stats to the result file, e.
not supported for all solvers

(true, [false])
Specifies the start time
Specifies the step size (<step size> or

Specifies the stop time

Removes the root system prefix from all

Supresses path information in info_,
false)

Specifies the temp directory

Specifies the maximum allowed time in_|

(0 disables)

Specifies the relative tolerance

Displays version information
Add wall time information for to the

Specifies the working directory
FMUs with invalid

—nominal values will be accepted and the invalid nominal values will be replaced,

—with 1.0

To use flag 1ogLevel with option debug (-—1ogLevel=1) or debug+trace (——1logLevel=2) one needs to
build OMSimulator with debug configuration enabled. Refer to the OMSimulator README on GitHub for further

instructions.

132

Chapter 10. OMSimulator

https://github.com/OpenModelica/OMSimulator/blob/master/README.md

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.2.2 Examples

’OMSimulator -—timeout 180 example.lua

10.3 OMSimulatorLib

This library is the core of OMSimulator and provides a C interface that can easily be utilized to handle co-
simulation scenarios.

10.3.1 RunFile

Simulates a single FMU or SSP model.

oms_status_enu_t oms_RunFile (const char+ filename);

10.3.2 activateVariant

This API provides support to activate a multi-variant modelling from an ssp file [(e.g). SystemStructure.ssd,
VarA.ssd, VarB.ssd] from a ssp file. By default when importing a ssp file the default variant will be "System-
Structure.ssd". The users can be able to switch between other variants by using this API and make changes to that
particular variant and simulate them.

oms_status_enu_t oms_activateVariant (const char* crefA, const charx crefB);

An example of activating the number of available variants in a ssp file

oms_newModel("model") oms_addSystem("model.root", "system_wc")
oms_addSubModel("model.root.A", "A.fmu") oms_duplicateVariant("model", "varA") // varA
will be the current variant oms_duplicateVariant("varA", "varB") // varB will be the cur-
rent variant oms_activateVariant("varB", "varA") // Reactivate the variant varB to varA
oms_activateVariant("varA", "model") // Reactivate the variant varA to model

10.3.3 addBus

Adds a bus to a given component.

oms_status_enu_t oms_addBus (const charx cref);

10.3.4 addConnection

Adds a new connection between connectors A and B. The connectors need to be specified as fully qualified com-
ponent references, e.g., "model.system.component.signal".

oms_status_enu_t oms_addConnection (const charx crefA, const charx crefB, bool
—suppressUnitConversion);

The two arguments crefA and crefB get swapped automatically if necessary. The third argument suppressUnitCon-
version is optional and the default value is false which allows automatic unit conversion between connections, if
set to frue then automatic unit conversion will be disabled.

10.3. OMSimulatorLib 133

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.5 addConnector

Adds a connector to a given component.

oms_status_enu_t oms_addConnector (const charx cref, oms_causality_enu_t causality,
—oms_signal_type_enu_t type);

10.3.6 addConnectorToBus

Adds a connector to a bus.

oms_status_enu_t oms_addConnectorToBus (const char* busCref, const charx
—connectorCref) ;

10.3.7 addConnectorToTLMBus

Adds a connector to a TLM bus.

oms_status_enu_t oms_addConnectorToTLMBus (const charx busCref, const charx
—connectorCref, const char xtype);

10.3.8 addExternalModel

Adds an external model to a TLM system.

oms_status_enu_t oms_addExternalModel (const charx cref, const charx path, const
—char+ startscript);

10.3.9 addResources

Adds an external resources to an existing SSP. The external resources should be a ".ssv" or ".ssm" file

oms_status_enu_t oms_addResources (const charx cref_, const charx path)

10.3.10 addSignalsToResults

Add all variables that match the given regex to the result file.

oms_status_enu_t oms_addSignalsToResults (const char+ cref, const char* regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*"” can be used to hit
all variables.

10.3.11 addSubModel

Adds a component to a system.

oms_status_enu_t oms_addSubModel (const char+ cref, const charx fmuPath);

134 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.12 addSystem

Adds a (sub-)system to a model or system.

oms_status_enu_t oms_addSystem(const charx cref, oms_system_enu_t type);

10.3.13 addTLMBus

Adds a TLM bus.

oms_status_enu_t oms_addTLMBus (const charx cref, oms_tlm domain_t domain, const
—~int dimensions, const oms_tlm_ interpolation_t interpolation);

10.3.14 addTLMConnection

Connects two TLM connectors.

oms_status_enu_t oms_addTLMConnection (const charx crefA, const charx crefB, double
—~delay, double alpha, double linearimpedance, double angularimpedance) ;

10.3.15 compareSimulationResults

This function compares a given signal of two result files within absolute and relative tolerances.

int oms_compareSimulationResults (const charx filenameA, const charx filenameB,
—const charx var, double relTol, double absTol);

The following table describes the input values:

Input Type Description

filenameA String Name of first result file to compare.
filenameB String Name of second result file to compare.
var String Name of signal to compare.

relTol Number Relative tolerance.

absTol Number Absolute tolerance.

The following table describes the return values:

Type Description
Integer 1 if the signal is considered as equal, 0 otherwise

10.3.16 copySystem

Copies a system.

oms_status_enu_t oms_copySystem(const charx source, const charx target);

10.3. OMSimulatorLib 135

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.17 delete

Deletes a connector, component, system, or model object.

oms_status_enu_t oms_delete (const charx cref);

10.3.18 deleteConnection

Deletes the connection between connectors crefA and crefB.

oms_status_enu_t oms_deleteConnection (const char* crefA, const charx crefB);

The two arguments crefA and crefB get swapped automatically if necessary.

10.3.19 deleteConnectorFromBus

Deletes a connector from a given bus.

oms_status_enu_t oms_deleteConnectorFromBus (const charx busCref, const charx
—connectorCref) ;

10.3.20 deleteConnectorFromTLMBus

Deletes a connector from a given TLM bus.

oms_status_enu_t oms_deleteConnectorFromTLMBus (const charx busCref, const charx
—connectorCref) ;

10.3.21 deleteResources

Deletes the reference and resource file in a SSP. Deletion of ".ssv" and ".ssm" files are currently supported. The
API can be used in two ways.

1) deleting only the reference file in ".ssd".

"

2) deleting both reference and resource files in ".ssp".

To delete only the reference file in ssd, the user should provide the full qualified cref of the ".ssv" file associated
with a system or subsystem or component (e.g) "model.root:root1.ssv".

To delete both the reference and resource file in ssp, it is enough to provide only the model cref of the ".ssv" file
(e.g) "model:root1.ssv".

When deleting only the references of a ".ssv" file, if a parameter mapping file ".ssm" is binded to a ".ssv" file then
the ".ssm" file will also be deleted. It is not possible to delete the references of ".ssm" seperately as the ssm file is
binded to a ssv file.

The filename of the reference or resource file is provided by the users using colon suffix at the end of cref. (e.g)
":root.ssv"

oms_status_enu_t oms_deleteResources (const charx cref);

136 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.22 doStep

Simulates a macro step of the given composite model. The step size will be determined by the master algorithm
and is limited by the definied minimal and maximal step sizes.

oms_status_enu_t oms_doStep (const charx cref);

10.3.23 duplicateVariant

This API provides support to develop a multi-variant modelling in OMSimulator [(e.g). SystemStructure.ssd,
VarA.ssd, VarB.ssd]. When duplicating a variant, the new variant becomes the current variant and all the changes
made by the users are applied to the new variants only, and all the ssv and ssm resources associated with the
new variant will be given new name based on the variant name provided by the user. This allows the bundling of
multiple variants of a system structure definition referencing a similar set of packaged resources as a single SSP.
However there must still be one SSD file named SystemStructure.ssd at the root of the ZIP archive which will be
considered as default variant.

oms_status_enu_t oms_duplicateVariant (const charx crefA, const charx crefB);

An example of creating a multi-variant modelling is presente below

oms_newModel("model") oms_addSystem("model.root", "system_wc")
oms_addSubModel("model.root. A", "Afmu") oms_setReal("model.root.A.paraml1", "10")
oms_duplicate Variant("model", "varB") oms_addSubModel("varB.root.B" ,"B.fmu")

oms_setReal("varB.root.A.param2", "20") oms_export("varB", "variant.ssp")
The variant.ssp file will have the following structure
Variant.ssp SystemStructure.ssd varB.ssd resources

A.fmu B.fmu

10.3.24 export

Exports a composite model to a SPP file.

oms_status_enu_t oms_export (const charx cref, const charx filename);

10.3.25 exportDependencyGraphs

Export the dependency graphs of a given model to dot files.

oms_status_enu_t oms_exportDependencyGraphs (const charx cref, const charx
—initialization, const char* event, const char+ simulation);

10.3.26 exportSSMTemplate

Exports all signals that have start values of one or multiple FMUs to a SSM file that are read from modelDescrip-
tion.xml with a mapping entry. The mapping entry specifies a single mapping between a parameter in the source
and a parameter of the system or component being parameterized. The mapping entry contains two attributes
namely source and target. The source attribute will be empty and needs to be manually mapped by the users asso-
ciated with the parameter name defined in the SSV file, the target contains the name of parameter in the system or
component to be parameterized. The function can be called for a top level model or a certain FMU component. If
called for a top level model, start values of all FMUs are exported to the SSM file. If called for a component, start
values of just this FMU are exported to the SSM file.

oms_status_enu_t oms_exportSSMTemplate (const charx cref, const charx filename)

10.3. OMSimulatorLib 137

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.27 exportSSVTemplate

Exports all signals that have start values of one or multiple FMUs to a SSV file that are read from modelDescrip-
tion.xml. The function can be called for a top level model or a certain FMU component. If called for a top level
model, start values of all FMUs are exported to the SSV file. If called for a component, start values of just this
FMU are exported to the SSV file.

oms_status_enu_t oms_exportSSVTemplate (const char* cref, const charx filename)

10.3.28 exportSnapshot

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_exportSnapshot (const charx cref, charx* contents);

10.3.29 extractFMIKind

Extracts the FMI kind of a given FMU from the file system.

oms_status_enu_t oms_extractFMIKind (const charx filename, oms_fmi_kind_enu_tx*_
—kind) ;

10.3.30 faultinjection

Defines a new fault injection block.

oms_status_enu_t oms_faultInjection(const charx signal, oms_fault_type_enu_t
—faultType, double faultValue);

type Description”
oms_fault_type_bias y = y.$original + faultValue
oms_fault_type_gain y = y.$original * faultValue
oms_fault_type_const | y = faultValue

10.3.31 freeMemory

Free the memory allocated by some other API. Pass the object for which memory is allocated.

void oms_freeMemory (void* obj);

10.3.32 getBoolean

Get boolean value of given signal.

oms_status_enu_t oms_getBoolean (const char* cref, boolx value);

138 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.33 getBus

Gets the bus object.

oms_status_enu_t oms_getBus (const charx cref, oms_busconnector_tx+ busConnector);

10.3.34 getComponentType

Gets the type of the given component.

oms_status_enu_t oms_getComponentType (const charx cref, oms_component_enu_t»* type);

10.3.35 getConnections

Get list of all connections from a given component.

oms_status_enu_t oms_getConnections (const charx cref, oms_connection_t*x*x*_,
—sconnections);

10.3.36 getConnector

Gets the connector object of the given connector cref.

oms_status_enu_t oms_getConnector (const charx cref, oms_connector_t+* connector);

10.3.37 getDirectionalDerivative

This function computes the directional derivatives of an FMU.

oms_status_enu_t oms_getDirectionalDerivative (const charx cref, doublex value);

10.3.38 getElement

Get element information of a given component reference.

oms_status_enu_t oms_getElement (const charx cref, oms_element_txx element);

10.3.39 getElements

Get list of all sub-components of a given component reference.

oms_status_enu_t oms_getElements (const charx cref, oms_element_tx+x elements);

10.3. OMSimulatorLib 139

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.40 getFMUInfo

Returns FMU specific information.

oms_status_enu_t oms_getFMUInfo (const charx cref, const oms_fmu_info_t*x fmulInfo);

10.3.41 getFixedStepSize

Gets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

oms_status_enu_t oms_getFixedStepSize (const charx cref, doublex stepSize);

10.3.42 getinteger

Get integer value of given signal.

oms_status_enu_t oms_getInteger (const charx cref, intx value);

10.3.43 getModelState

Gets the model state of the given model cref.

oms_status_enu_t oms_getModelState (const charx cref, oms_modelState_enu_tx
—modelState) ;

10.3.44 getReal

Get real value.

oms_status_enu_t oms_getReal (const charx cref, doublex value);

10.3.45 getResultFile

Gets the result filename and buffer size of the given model cref.

oms_status_enu_t oms_getResultFile (const charx cref, charx+ filename, intx
—bufferSize);

10.3.46 getSolver

Gets the selected solver method of the given system.

oms_status_enu_t oms_getSolver (const charx cref, oms_solver_enu_tx solver);

140 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.47 getStartTime

Get the start time from the model.

oms_status_enu_t oms_getStartTime (const charx cref, doublex startTime);

10.3.48 getStopTime

Get the stop time from the model.

oms_status_enu_t oms_getStopTime (const charx cref, doublex stopTime);

10.3.49 getString

Get string value.

Memory is allocated for value. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_getString(const charx cref, charxx value);

10.3.50 getSubModelPath

Returns the path of a given component.

oms_status_enu_t oms_getSubModelPath (const char+ cref, char*x path);

10.3.51 getSystemType

Gets the type of the given system.

oms_status_enu_t oms_getSystemType (const charx cref, oms_system_enu_tx type);

10.3.52 getTLMBus

Gets the TLM bus objects of the given TLM bus cref.

oms_status_enu_t oms_getTLMBus (const char+ cref, oms_tlmbusconnector_tx*x
—tlmBusConnector);

10.3.53 getTLMVariableTypes

Gets the type of an TLM variable.

oms_status_enu_t oms_getTLMVariableTypes (oms_tlm_domain_t domain, const int
—~dimensions, const oms_tlm_interpolation_t interpolation, char xxxtypes, char_
—xxxdescriptions);

10.3. OMSimulatorLib 141

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.54 getTime

Get the current simulation time from the model.

oms_status_enu_t oms_getTime (const charx cref, doublex time);

10.3.55 getTolerance

Gets the tolerance of a given system or component.

oms_status_enu_t oms_getTolerance (const charx cref, doublex absoluteTolerance,
—doublex relativeTolerance);

10.3.56 getVariableStepSize

Gets the step size parameters.

oms_status_enu_t oms_getVariableStepSize (const charx cref, doublex initialStepSize,
— double* minimumStepSize, doublex maximumStepSize);

10.3.57 getVersion

Returns the library's version string.

const charx oms_getVersion();

10.3.58 importFile

Imports a composite model from a SSP file.

oms_status_enu_t oms_importFile (const charx filename, charxx cref);

10.3.59 importSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

oms_status_enu_t oms_importSnapshot (const charx cref, const charx snapshot, charxx
—newCref) ;

10.3.60 initialize

Initializes a composite model.

oms_status_enu_t oms_initialize (const charx cref);

142 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.61 instantiate

Instantiates a given composite model.

oms_status_enu_t oms_instantiate (const char* cref);

10.3.62 list

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_list (const char+ cref, char+x contents);

10.3.63 listUnconnectedConnectors

Lists all unconnected connectors of a given system.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_listUnconnectedConnectors (const charx cref, charxx contents);

10.3.64 listVariants

This API shows the number of variants available [(e.g). SystemStructure.ssd, VarA.ssd, VarB.ssd] from a ssp file.

oms_status_enu_t oms_listVariants (const char* cref);

An example for finding the number of available variants in a ssp file

oms_newModel("model") oms_addSystem("model.root", "system_wc")
oms_addSubModel("model.root. A", "A.fmu") oms_duplicate Variant("model", "varA")
oms_duplicate Variant("varA", "varB")

oms_listVariants("varB")
The API will list the available variants like below <oms: Variants>

<oms:variant name="model" /> <oms:variant name="varB" /> <oms:variant name="varA"
/>

</oms: Variants>

10.3.65 loadSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

oms_status_enu_t oms_loadSnapshot (const charx cref, const charx snapshot, charxx
—newCref) ;

10.3. OMSimulatorLib 143

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.66 newModel

Creates a new and yet empty composite model.

oms_status_enu_t oms_newModel (const char* cref);

10.3.67 newResources

Adds a new empty resources to the SSP. The resource file is a ".ssv" file where the parameter values set by the users

using "oms_setReal()", "oms_setInteger()" and "oms_setReal()" are writtern to the file. Currently only ".ssv" files
can be created.

The filename of the resource file is provided by the users using colon suffix at the end of cref. (e.g) ":root.ssv"

oms_status_enu_t oms_newResources (const char+ cref)

10.3.68 referenceResources

Switches the references of ".ssv" and ".ssm" in a SSP file. Referencing of ".ssv" and ".ssm" files are currently
supported. The API can be used in two ways.

1) Referencing only the ".ssv" file.
2) Referencing both the ".ssv" along with the ".ssm" file.

This API should be used in combination with "oms_deleteResources".To switch with a new reference, the old
reference must be deleted first using "oms_deleteResources" and then reference with new resources.

When deleting only the references of a ".ssv" file, if a parameter mapping file ".ssm" is binded to a ".ssv" file, then
the reference of ".ssm" file will also be deleted. It is not possible to delete the references of ".ssm" seperately as
the ssm file is binded to a ssv file. Hence it is not possible to switch the reference of ".ssm" file alone. So inorder
to switch the reference of ".ssm" file, the users need to bind the reference of ".ssm" file along with the ".ssv".

The filename of the reference or resource file is provided by the users using colon suffix at the end of cref (e.g)
":root.ssv", and the ".ssm" file is optional and is provided by the user as the second argument to the API.

oms_status_enu_t oms_referenceResources (const charx cref, const charx ssmFile);

10.3.69 removeSignalsFromResults

Removes all variables that match the given regex to the result file.

oms_status_enu_t oms_removeSignalsFromResults (const charx cref, const charx regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

10.3.70 rename

Renames a model, system, or component.

oms_status_enu_t oms_rename (const char+ cref, const char+ newCref);

144 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.71 replaceSubModel

Replaces an existing fmu component, with a new component provided by the user, When replacing the fmu checks
are made in all ssp concepts like in ssd, ssv and ssm, so that connections and parameter settings are not lost. It is
possible that the namings of inputs and parameters match, but the start values might have been changed, in such
cases new start values will be applied in ssd, ssv and ssm. In case if the Types of inputs and outputs and parameters
differed, then the variables are updated according to the new changes and the connections will be removed with
warning messages to user. In case when replacing a fmu, if the fmu contains parameter mapping associated with
the ssv file, then only the ssm file entries are updated and the start values in the ssv files will not be changed.

oms_status_enu_t oms_replaceSubModel (const charx cref, const charx fmuPath);

It is possible to import an partially developed fmu (i.e contains only modeldescription.xml
without any binaries) in OMSimulator, and later can be replaced with a fully develped fmu.
An example to use the API, oms_addSubModel("model.root.A", "../resources/replaceA.fmu")
oms_export("model”, "test.ssp") oms_import("test.ssp") oms_replaceSubModel("model.root.A",
"../resources/replaceA_extended.fmu")

10.3.72 reset

Reset the composite model after a simulation run.

The FMUs go into the same state as after instantiation.

oms_status_enu_t oms_reset (const charx cref);

10.3.73 setActivationRatio

Experimental feature for setting the activation ratio of FMUSs for experimenting with multi-rate master algorithms.

oms_status_enu_t experimental_setActivationRatio(const charx cref, int k);

10.3.74 setBoolean

Sets the value of a given boolean signal.

oms_status_enu_t oms_setBoolean (const charx cref, bool value);

10.3.75 setBusGeometry

oms_status_enu_t oms_setBusGeometry (const charx bus, const ssd_connector_geometry__
—t* geometry);

10.3.76 setCommandLineOption

Sets special flags.

oms_status_enu_t oms_setCommandLineOption (const charx cmd);

Available flags:

10.3. OMSimulatorLib 145

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:
—-—addParametersToCSV=<arg> Export parameters to .csv file (true,
— [false])
—-—algLoopSolver=<arg> Specifies the alg. loop solver method,,

— (fixedpoint, [kinsol]) used for algebraic loops spanning over multiple
—components.

—-—-clearAllOptions Reset all flags to default values

——deleteTempFiles=<bool> Deletes temp files as soon as they are
—no longer needed ([true], false)

——directionalDerivatives=<bool> Specifies whether directional,
—~derivatives should be used to calculate the Jacobian for alg. loops or if a_
—numerical approximation should be used instead ([true], false)

——dumpAlgLoops=<bool> Dump information for alg loops (true,
—[false])

——emitEvents=<bool> Specifies whether events should be
—emitted or not ([true], false)

——fetchAllVars=<arg> Workaround for certain FMUs that do not
—update all internal dependencies automatically

——help [-h] Displays the help text

——ignoreInitialUnknowns=<bool> Ignore the initial unknowns from the_
—modelDescription.xml (true, [false])

——inputExtrapolation=<bool> Enables input extrapolation using,
—derivative information (true, [false])

——intervals=<int> [-1] Specifies the number of communication,
—points (arg > 1)

——logFile=<arg> [-1] Specifies the logfile (stdout is used,
—~if no log file is specified)

——logLevel=<int> 0 default, 1 debug, 2 debug+trace

——maxEventIteration=<int> Specifies the max. number of iterations,

—for handling a single event

—--maxLoopIlteration=<int> Specifies the max. number of iterations_
—for solving algebraic loops between system-level components. Internal algebraic,
—~loops of components are not affected.

——mode=<arg> [-m] Forces a certain FMI mode iff the FMU,,
—provides cs and me (cs, [me])

——numProcs=<int> [-n] Specifies the max. number of processors,
—~to use (0U=auto, Il=default)

——progressBar=<bool> Shows a progress bar for the simulation,,
—progress in the terminal (true, [false])

—-realTime=<bool> Experimental feature for (soft) real-
—time co-simulation (true, [false])

—-resultFile=<arg> [-r] Specifies the name of the output result,
—file

—--skipCSVHeader=<arg> Skip exporting the scv delimiter in the,
—header ([true], false),

--solver=<arg> Specifies the integration method (euler,
— [cvode])

——-solverStats=<bool> Adds solver stats to the result file, e.
—~g. step size; not supported for all solvers (true, [false])

——startTime=<double> [-s] Specifies the start time

—-—stepSize=<arg> Specifies the step size (<step size> or
—<init step,min step,max step>)

—-stopTime=<double> [-t] Specifies the stop time

—-stripRoot=<bool> Removes the root system prefix from all
—exported signals (true, [false])

——-suppressPath=<bool> Supresses path information in info
—messages; especially useful for testing ([true], false)

—-—tempDir=<arg> Specifies the temp directory

——timeout=<int> Specifies the maximum allowed time in,

—seconds for running a simulation (0 disables)
——tolerance=<double> Specifies the relative tolerance

(continues on next page)

146 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

——version [—-V] Displays version information

—--wallTime=<bool> Add wall time information for to the
—result file (true, [falsel])

—--workingDir=<arg> Specifies the working directory

——zeroNominal=<bool> Using this flag, FMUs with invalid_,

—nominal values will be accepted and the invalid nominal values will be replaced
—with 1.0

()

10.3.77 setConnectionGeometry

oms_status_enu_t oms_setConnectionGeometry (const charx crefA, const charx crefB,
—const ssd_connection_geometry_t* geometry);

10.3.78 setConnectorGeometry

Set geometry information to a given connector.

oms_status_enu_t oms_setConnectorGeometry (const char+ cref, const ssd_connector_
—geometry_tx geometry);

10.3.79 setElementGeometry

Set geometry information to a given component.

oms_status_enu_t oms_setElementGeometry (const charx cref, const ssd_element_
—geometry_tx geometry);

10.3.80 setFixedStepSize

Sets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the

integrator step size in model exchange systems.

oms_status_enu_t oms_setFixedStepSize (const charx cref, double stepSize);

10.3.81 setinteger

Sets the value of a given integer signal.

oms_status_enu_t oms_setInteger (const charx cref, int value);

10.3.82 setLogFile

Redirects logging output to file or std streams. The warning/error counters are reset.

nn

filename="" to redirect to std streams and proper filename to redirect to file.

oms_status_enu_t oms_setLogFile (const charx filename);

10.3. OMSimulatorLib

147

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.83 setLoggingCallback

Sets a callback function for the logging system.

void oms_setLoggingCallback (void (*cb) (oms_message_type_enu_t type, const charx
—message)) ;

10.3.84 setLogginginterval

Set the logging interval of the simulation.

oms_status_enu_t oms_setLoggingInterval (const char* cref, double logginglInterval);

10.3.85 setLogginglLevel

Enables/Disables debug logging (logDebug and logTrace).
0 default, 1 default+debug, 2 default+debug+trace

void oms_setLoggingLevel (int logLevel);

10.3.86 setMaxLogFileSize

Sets maximum log file size in MB. If the file exceeds this limit, the logging will continue on stdout.

void oms_setMaxLogFileSize (const unsigned long size);

10.3.87 setReal

Sets the value of a given real signal.

oms_status_enu_t oms_setReal (const char+ cref, double value);

This function can be called in different model states:

* Before instantiation: setReal can be used to set start values or to define initial unknowns (e.g. parameters,
states). The values are not immediately applied to the simulation unit, since it isn't actually instantiated.

» After instantiation and before initialization: Same as before instantiation, but the values are applied imme-
diately to the simulation unit.

* After initialization: Can be used to force external inputs, which might cause discrete changes of continuous
signals.

10.3.88 setReallnputDerivative

Sets the first order derivative of a real input signal.

This can only be used for CS-FMU real input signals.

oms_status_enu_t oms_setReallnputDerivative (const charx cref, double value);

148 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.89 setResultFile

Set the result file of the simulation.

—bufferSize);

oms_status_enu_t oms_setResultFile (const charx cref, const charx filename, int

The creation of a result file is omitted if the filename is an empty string.

10.3.90 setSolver

Sets the solver method for the given system.

oms_status_enu_t oms_setSolver (const char+ cref, oms_solver_enu_t solver);

10.3.91 setStartTime

Set the start time of the simulation.

oms_status_enu_t oms_setStartTime (const char+ cref, double startTime);

10.3.92 setStopTime

Set the stop time of the simulation.

oms_status_enu_t oms_setStopTime (const charx cref, double stopTime);

10.3.93 setString

Sets the value of a given string signal.

oms_status_enu_t oms_setString(const charx cref, const charx value);

10.3.94 setTLMBusGeometry

oms_status_enu_t oms_setTLMBusGeometry (const charx bus, const ssd_connector_
—geometry_tx geometry);

10.3.95 setTLMConnectionParameters

Simulates a composite model in its own thread.

—crefB, const oms_tlm_connection_parameters_t+ parameters);

oms_status_enu_t oms_setTLMConnectionParameters (const charx crefA, const charx

10.3. OMSimulatorLib

149

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.96 setTLMPositionAndOrientation

Sets initial position and orientation for a TLM 3D interface.

oms_status_enu_t oms_setTLMPositionAndOrientation (cref, x1, x2, x3, All, Al2, Al3,
—~A21, A22, A23, A31, A32, A33);

10.3.97 setTLMSocketData

Sets data for TLM socket communication.

oms_status_enu_t oms_setTLMSocketData (const charx cref, const charx address, int
—managerPort, int monitorPort);

10.3.98 setTempDirectory

Set new temp directory.

oms_status_enu_t oms_setTempDirectory (const char* newTempDir);

10.3.99 setTolerance

Sets the tolerance for a given model or system.

oms_status_enu_t oms_setTolerance (const charx cref, double absoluteTolerance,
—double relativeTolerance);

Default values are /e-4 for both relative and absolute tolerances.

A tolerance specified for a model is automatically applied to its root system, i.e. both calls do exactly the same:

oms_setTolerance ("model", absoluteTolerance, relativeTolerance);
oms_setTolerance ("model.root", absoluteTolerance, relativeTolerance);

Component, e.g. FMUs, pick up the tolerances from there system. That means it is not possible to define different
tolerances for FMUs in the same system right now.

In a strongly coupled system (oms_system_sc), the relative tolerance is used for CVODE and the absolute tolerance
is used to solve algebraic loops.

In a weakly coupled system (oms_system_wc), both the relative and absolute tolerances are used for the adaptive
step master algorithms and the absolute tolerance is used to solve algebraic loops.

10.3.100 setUnit

Sets the unit of a given signal.

oms_status_enu_t oms_setUnit (const char+ cref, const charx value);

150 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.3.101 setVariableStepSize

Sets the step size parameters for methods with stepsize control.

oms_status_enu_t oms_getVariableStepSize (const charx cref, doublex initialStepSize,
— doublex minimumStepSize, doubler maximumStepSize);

10.3.102 setWorkingDirectory

Set a new working directory.

oms_status_enu_t oms_setWorkingDirectory (const char+ newWorkingDir) ;

10.3.103 simulate

Simulates a composite model.

oms_status_enu_t oms_simulate (const charx cref);

10.3.104 simulate_realtime

Experimental feature for (soft) real-time simulation.

oms_status_enu_t experimental_simulate_realtime (const charx ident);

10.3.105 stepUntil

Simulates a composite model until a given time value.

oms_status_enu_t oms_stepUntil (const charx cref, double stopTime);

10.3.106 terminate

Terminates a given composite model.

’oms_status_enu_t oms_terminate (const char* cref);

10.4 OMSimulatorLua

This is a shared library that provides a Lua interface for the OMSimulatorLib library.

oms_setTempDirectory ("./temp/")
oms_newModel ("model™)
oms_addSystem ("model.root", oms_system_sc)

—-— instantiate FMUs
oms_addSubModel ("model.root.systeml", "FMUs/Systeml.fmu")
oms_addSubModel ("model.root.system2", "FMUs/System2.fmu")

—— add connections
oms_addConnection ("model.root.systeml.y", "model.root.system2.u")
oms_addConnection ("model.root.system2.y", "model.root.systeml.u")

(continues on next page)

10.4. OMSimulatorLua 151

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

—-— simulation settings

oms_setResultFile ("model", "results.mat")
oms_setStopTime ("model", 0.1)
oms_setFixedStepSize ("model.root", le-4)

oms_instantiate ("model")
oms_setReal ("model.root.systeml.x_start", 2.5)

oms_initialize ("model™)
oms_simulate ("model™")
oms_terminate ("model")
oms_delete ("model™)

10.4.1 activateVariant

This API provides support to activate a multi-variant modelling from an ssp file [(e.g). SystemStructure.ssd,
VarA.ssd, VarB.ssd] from a ssp file. By default when importing a ssp file the default variant will be "System-
Structure.ssd". The users can be able to switch between other variants by using this API and make changes to that
particular variant and simulate them.

status = oms_activateVariant (crefA, crefB)

An example of activating the number of available variants in a ssp file

oms_newModel("model") oms_addSystem("model.root", "system_wc")
oms_addSubModel("model.root.A", "A.fmu") oms_duplicateVariant("model", "varA") // varA
will be the current variant oms_duplicateVariant("varA", "varB") // varB will be the cur-
rent variant oms_activateVariant("varB", "varA") // Reactivate the variant varB to varA
oms_activateVariant("varA", "model") // Reactivate the variant varA to model

10.4.2 addBus

Adds a bus to a given component.

status = oms_addBus (cref)

10.4.3 addConnection

Adds a new connection between connectors A and B. The connectors need to be specified as fully qualified com-
ponent references, e.g., "model.system.component.signal”.

status = oms_addConnection (crefA, crefB, suppressUnitConversion)

The two arguments crefA and crefB get swapped automatically if necessary. The third argument suppressUnitCon-
version is optional and the default value is false which allows automatic unit conversion between connections, if
set to frue then automatic unit conversion will be disabled.

152 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.4 addConnector

Adds a connector to a given component.

status = oms_addConnector (cref, causality, type)
The second argument "causality", should be any of the following,

oms_causality_input
oms_causality_output
oms_causality_parameter
oms_causality_bidir
oms_causality_undefined

The third argument "type", should be any of the following,

oms_signal_type_real
oms_signal_type_integer
oms_signal_type_boolean
oms_signal_type_string
oms_signal_type_enum
oms_signal_type_bus

10.4.5 addConnectorToBus

Adds a connector to a bus.

status = oms_addConnectorToBus (busCref, connectorCref)

10.4.6 addConnectorToTLMBus

Adds a connector to a TLM bus.

status = oms_addConnectorToTLMBus (busCref, connectorCref, type)

10.4.7 addExternalModel

Adds an external model to a TLM system.

status = oms_addExternalModel (cref, path, startscript)

10.4.8 addResources

Adds an external resources to an existing SSP. The external resources should be a ".ssv" or ".ssm" file

status = oms_addResources (cref, path)

—-— Example
oms_importFile ("addExternalResourcesl.ssp")
—-— add list of external resources from filesystem to ssp

oms_addResources ("addExternalResources", "../../resources/externalRoot.ssv")
oms_addResources ("addExternalResources:externalSystem.ssv", "../../resources/
—externalSysteml.ssv")

oms_addResources ("addExternalResources", "../../resources/externalGain.ssv")
—-— export the ssp with new resources

oms_export ("addExternalResources", "addExternalResourcesl.ssp")

10.4. OMSimulatorLua

153

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.9 addSignalsToResults

Add all variables that match the given regex to the result file.

status = oms_addSignalsToResults (cref, regex)

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

10.4.10 addSubModel

Adds a component to a system.

status = oms_addSubModel (cref, fmuPath)

10.4.11 addSystem

Adds a (sub-)system to a model or system.

status = oms_addSystem(cref, type)

10.4.12 addTLMBus

Adds a TLM bus.

status = oms_addTLMBus (cref, domain, dimensions, interpolation)
The second argument "domain", should be any of the following,

oms_tlm_domain_input
oms_tlm_domain_output
oms_tlm domain_mechanical
oms_tlm domain_rotational
oms_tlm _domain_hydraulic
oms_tlm domain_electric

The fourth argument "interpolation", should be any of the following,

oms_tlm_no_interpolation
oms_tlm_coarse_grained

oms_tlm_fine_grained

10.4.13 addTLMConnection

Connects two TLM connectors.

status = oms_addTLMConnection(crefA, crefB, delay, alpha, linearimpedance,
—angularimpedance)

154 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.14 compareSimulationResults

This function compares a given signal of two result files within absolute and relative tolerances.

oms_compareSimulationResults (filenameA, filenameB, var, relTol, absTol)

The following table describes the input values:

Input Type Description

filenameA String Name of first result file to compare.
filenameB String Name of second result file to compare.
var String Name of signal to compare.

relTol Number Relative tolerance.

absTol Number Absolute tolerance.

The following table describes the return values:

Type Description
Integer 1 if the signal is considered as equal, O otherwise

10.4.15 copySystem

Copies a system.

status = oms_copySystem(source, target)

10.4.16 delete

Deletes a connector, component, system, or model object.

status = oms_delete (cref)

10.4.17 deleteConnection

Deletes the connection between connectors crefA and crefB.

status = oms_deleteConnection (crefA, crefB)

The two arguments crefA and crefB get swapped automatically if necessary.

10.4.18 deleteConnectorFromBus

Deletes a connector from a given bus.

status = oms_deleteConnectorFromBus (busCref, connectorCref)

10.4. OMSimulatorLua 155

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.19 deleteConnectorFromTLMBus

Deletes a connector from a given TLM bus.

status = oms_deleteConnectorFromTLMBus (busCref, connectorCref)

10.4.20 deleteResources

Deletes the reference and resource file in a SSP. Deletion of ".ssv" and ".ssm" files are currently supported. The
API can be used in two ways.

1) deleting only the reference file in ".ssd".

"

2) deleting both reference and resource files in ".ssp".

To delete only the reference file in ssd, the user should provide the full qualified cref of the ".ssv" file associated
with a system or subsystem or component (e.g) "model.root:rootl.ssv".

To delete both the reference and resource file in ssp, it is enough to provide only the model cref of the ".ssv" file
(e.g) "model:rootl.ssv".

When deleting only the references of a ".ssv" file, if a parameter mapping file ".ssm" is binded to a ".ssv" file then
the ".ssm" file will also be deleted. It is not possible to delete the references of ".ssm" seperately as the ssm file is
binded to a ssv file.

The filename of the reference or resource file is provided by the users using colon suffix at the end of cref. (e.g)
":root.ssv"

status = oms_deleteResources (cref)

—-— Example

oms_importFile ("deleteResourcesl.ssp")

—-— delete only the references in ".ssd" file
oms_deleteResources ("deleteResources.root :root.ssv")
—— delete both references and resources
oms_deleteResources ("deleteResources:root.ssv")
oms_export ("deleteResourcesl.ssp")

10.4.21 duplicateVariant

This API provides support to develop a multi-variant modelling in OMSimulator [(e.g). SystemStructure.ssd,
VarA.ssd, VarB.ssd]. When duplicating a variant, the new variant becomes the current variant and all the changes
made by the users are applied to the new variants only, and all the ssv and ssm resources associated with the
new variant will be given new name based on the variant name provided by the user. This allows the bundling of
multiple variants of a system structure definition referencing a similar set of packaged resources as a single SSP.
However there must still be one SSD file named SystemStructure.ssd at the root of the ZIP archive which will be
considered as default variant.

status = oms_duplicateVariant (crefA, crefB)

An example of creating a multi-variant modelling is presente below

oms_newModel("model") oms_addSystem("model.root", "system_wc")
oms_addSubModel("model.root. A", "Afmu") oms_setReal("model.root.A.paraml", "10")
oms_duplicateVariant("model", "varB") oms_addSubModel("varB.root.B" ,"B.fmu")

oms_setReal("varB.root.A.param2", "20") oms_export("varB", "variant.ssp")
The variant.ssp file will have the following structure
Variant.ssp SystemStructure.ssd varB.ssd resources

A.fmu B.fmu

156 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.22 export

Exports a composite model to a SPP file.

status = oms_export (cref, filename)

10.4.23 exportDependencyGraphs

Export the dependency graphs of a given model to dot files.

status = oms_exportDependencyGraphs (cref, initialization, event, simulation)

10.4.24 exportSSMTemplate

Exports all signals that have start values of one or multiple FMUs to a SSM file that are read from modelDescrip-
tion.xml with a mapping entry. The mapping entry specifies a single mapping between a parameter in the source
and a parameter of the system or component being parameterized. The mapping entry contains two attributes
namely source and target. The source attribute will be empty and needs to be manually mapped by the users asso-
ciated with the parameter name defined in the SSV file, the target contains the name of parameter in the system or
component to be parameterized. The function can be called for a top level model or a certain FMU component. If
called for a top level model, start values of all FMUs are exported to the SSM file. If called for a component, start
values of just this FMU are exported to the SSM file.

status = oms_exportSSMTemplate (cref, filename)

10.4.25 exportSSVTemplate

Exports all signals that have start values of one or multiple FMUs to a SSV file that are read from modelDescrip-
tion.xml. The function can be called for a top level model or a certain FMU component. If called for a top level
model, start values of all FMUs are exported to the SSV file. If called for a component, start values of just this
FMU are exported to the SSV file.

status = oms_exportSSVTemplate (cref, filename)

10.4.26 exportSnapshot

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

contents, status = oms_exportSnapshot (cref)

10.4.27 faultinjection

Defines a new fault injection block.

status = oms_faultInjection(cref, type, value)

type Description”
oms_fault_type_bias y = y.$original + faultValue
oms_fault_type_gain y = y.$original * faultValue
oms_fault_type_const | y = faultValue

10.4. OMSimulatorLua 157

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.28 freeMemory

Free the memory allocated by some other API. Pass the object for which memory is allocated.

This function is neither needed nor available from the Lua interface.

10.4.29 getBoolean

Get boolean value of given signal.

value, status = oms_getBoolean (cref)

10.4.30 getDirectionalDerivative

This function computes the directional derivatives of an FMU.

value, status = oms_getDirectionalDerivative (cref)

10.4.31 getFixedStepSize

Gets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

stepSize, status = oms_setFixedStepSize (cref)

10.4.32 getinteger

Get integer value of given signal.

value, status = oms_getInteger (cref)

10.4.33 getModelState

Gets the model state of the given model cref.

modelState, status = oms_getModelState (cref)

10.4.34 getReal

Get real value.

value, status = oms_getReal (cref)

158 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.35 getSolver

Gets the selected solver method of the given system.

solver, status = oms_getSolver (cref)

10.4.36 getStartTime

Get the start time from the model.

startTime, status = oms_getStartTime (cref)

10.4.37 getStopTime

Get the stop time from the model.

stopTime, status = oms_getStopTime (cref)

10.4.38 getString

Get string value.

Memory is allocated for value. The caller is responsible to free it using the C-API. The Lua and Python bindings

take care of the memory and the caller doesn't need to call free.

value, status = oms_getString(cref)

10.4.39 getSystemType

Gets the type of the given system.

type, status = oms_getSystemType (cref)

10.4.40 getTime

Get the current simulation time from the model.

time, status = oms_getTime (cref)

10.4.41 getTolerance

Gets the tolerance of a given system or component.

absoluteTolerance, relativeTolerance, status

oms_getTolerance (cref)

10.4. OMSimulatorLua

159

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.42 getVariableStepSize

Gets the step size parameters.

initialStepSize, minimumStepSize, maximumStepSize, status =
—getVariableStepSize (cref)

oms__

10.4.43 getVersion

Returns the library's version string.

version = oms_getVersion ()

10.4.44 importFile

Imports a composite model from a SSP file.

cref, status = oms_importFile (filename)

10.4.45 importSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must

not be instantiated.

newCref, status = oms_importSnapshot (cref, snapshot)

10.4.46 initialize

Initializes a composite model.

status = oms_initialize (cref)

10.4.47 instantiate

Instantiates a given composite model.

status = oms_instantiate (cref)

10.4.48 list

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings

take care of the memory and the caller doesn't need to call free.

contents, status = oms_list (cref)

160

Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.49 listUnconnectedConnectors

Lists all unconnected connectors of a given system.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

contents, status = oms_listUnconnectedConnectors (cref)

10.4.50 listVariants

This API shows the number of variants available [(e.g). SystemStructure.ssd, VarA.ssd, VarB.ssd] from a ssp file.

status = oms_listVariants (cref)

An example for finding the number of available variants in a ssp file

oms_newModel("model") oms_addSystem("model.root", "system_wc")
oms_addSubModel("model.root.A", "A.fmu") oms_duplicate Variant("model", "varA")
oms_duplicateVariant("varA", "varB")

oms_listVariants("varB")
The API will list the available variants like below <oms: Variants>

<oms:variant name="model" /> <oms:variant name="varB" /> <oms:variant name="varA"
/>

</oms: Variants>

10.4.51 loadSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

newCref, status = oms_loadSnapshot (cref, snapshot)

10.4.52 newModel

Creates a new and yet empty composite model.

status = oms_newModel (cref)

10.4.53 newResources

Adds a new empty resources to the SSP. The resource file is a ".ssv" file where the parameter values set by the users

using "oms_setReal()", "oms_setInteger()" and "oms_setReal()" are writtern to the file. Currently only ".ssv" files
can be created.

The filename of the resource file is provided by the users using colon suffix at the end of cref. (e.g) ":root.ssv"

status = oms_newResources (cref)

—-— Example
oms_newModel ("newResources")

oms_addSystem ("newResources.root", oms_system_wc)
oms_addConnector ("newResources.root.Inputl", oms_causality_input, oms_signal_type_
—real)

(continues on next page)

10.4. OMSimulatorLua 161

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

oms_addConnector ("newResources.root.Input2", oms_causality_input, oms_signal_type_
—real)

—-— add Top level new resources, the filename is provided using the colon suffix
—":root.ssv"

oms_newResources ("newResources.root:root.ssv")

oms_setReal ("newResources.root.Inputl", 10)

—-— export the ssp with new resources

oms_export ("newResources", "newResources.ssp")

10.4.54 referenceResources

Switches the references of ".ssv" and ".ssm" in a SSP file. Referencing of ".ssv" and ".ssm" files are currently
supported. The API can be used in two ways.

1) Referencing only the ".ssv" file.
2) Referencing both the ".ssv" along with the ".ssm" file.

This API should be used in combination with "oms_deleteResources".To switch with a new reference, the old
reference must be deleted first using "oms_deleteResources" and then reference with new resources.

When deleting only the references of a ".ssv" file, if a parameter mapping file ".ssm" is binded to a ".ssv" file, then
the reference of ".ssm" file will also be deleted. It is not possible to delete the references of ".ssm" seperately as
the ssm file is binded to a ssv file. Hence it is not possible to switch the reference of ".ssm" file alone. So inorder
to switch the reference of ".ssm" file, the users need to bind the reference of ".ssm" file along with the ".ssv".

The filename of the reference or resource file is provided by the users using colon suffix at the end of cref (e.g)
":root.ssv", and the ".ssm" file is optional and is provided by the user as the second argument to the APIL.

status = oms_referenceResources (cref, ssmFile)

—— Example

oms_importFile ("referenceResourcesl.ssp")

—— delete only the references in ".ssd" file

oms_deleteResources ("referenceResourcesl.root:root.ssv")

—-— usage-1 switch with new references, only ssv file

oms_referenceResources ("referenceResourcesl.root:Configl.ssv")

-— usage-2 switch with new references, both ssv and ssm file
oms_referenceResources ("referenceResourcesl.root:Configl.ssv", "Configl.ssm")
oms_export ("referenceResourcesl.ssp")

10.4.55 removeSignalsFromResults

Removes all variables that match the given regex to the result file.

status = oms_removeSignalsFromResults (cref, regex)

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

162 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.56 rename

Renames a model, system, or component.

status = oms_rename (cref, newCref)

10.4.57 replaceSubModel

Replaces an existing fmu component, with a new component provided by the user, When replacing the fmu checks
are made in all ssp concepts like in ssd, ssv and ssm, so that connections and parameter settings are not lost. It is
possible that the namings of inputs and parameters match, but the start values might have been changed, in such
cases new start values will be applied in ssd, ssv and ssm. In case if the Types of inputs and outputs and parameters
differed, then the variables are updated according to the new changes and the connections will be removed with
warning messages to user. In case when replacing a fmu, if the fmu contains parameter mapping associated with

the ssv file, then only the ssm file entries are updated and the start values in the ssv files will not be changed.

status = oms_replaceSubModel (cref, fmuPath)

It is possible to import an partially developed fmu (i.e contains only modeldescription.xml
without any binaries) in OMSimulator, and later can be replaced with a fully develped fmu.
An example to use the API, oms_addSubModel("model.root.A", "../resources/replaceA.fmu")
oms_export("model”, "test.ssp") oms_import("test.ssp") oms_replaceSubModel("model.root.A",

"../lresources/replaceA_extended.fmu")

10.4.58 reset

Reset the composite model after a simulation run.

The FMUs go into the same state as after instantiation.

status = oms_reset (cref)

10.4.59 setActivationRatio

Experimental feature for setting the activation ratio of FMUs for experimenting with multi-rate master algorithms.

status = experimental_setActivationRatio (cref,

10.4.60 setBoolean

Sets the value of a given boolean signal.

status = oms_setBoolean (cref, value)

10.4.61 setCommandLineOption

Sets special flags.

status = oms_setCommandLineOption (cmd)

Auvailable flags:

10.4. OMSimulatorLua

163

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:
—-—addParametersToCSV=<arg> Export parameters to .csv file (true,
— [false])
—-—algLoopSolver=<arg> Specifies the alg. loop solver method,,

— (fixedpoint, [kinsol]) used for algebraic loops spanning over multiple
—components.

—-—-clearAllOptions Reset all flags to default values

——deleteTempFiles=<bool> Deletes temp files as soon as they are
—no longer needed ([true], false)

——directionalDerivatives=<bool> Specifies whether directional,
—~derivatives should be used to calculate the Jacobian for alg. loops or if a_
—numerical approximation should be used instead ([true], false)

——dumpAlgLoops=<bool> Dump information for alg loops (true,
—[false])

——emitEvents=<bool> Specifies whether events should be
—emitted or not ([true], false)

——fetchAllVars=<arg> Workaround for certain FMUs that do not
—update all internal dependencies automatically

——help [-h] Displays the help text

——ignoreInitialUnknowns=<bool> Ignore the initial unknowns from the_
—modelDescription.xml (true, [false])

——inputExtrapolation=<bool> Enables input extrapolation using,
—derivative information (true, [false])

——intervals=<int> [-1] Specifies the number of communication,
—points (arg > 1)

——logFile=<arg> [-1] Specifies the logfile (stdout is used,
—~if no log file is specified)

——logLevel=<int> 0 default, 1 debug, 2 debug+trace

——maxEventIteration=<int> Specifies the max. number of iterations,

—for handling a single event

—--maxLoopIlteration=<int> Specifies the max. number of iterations_
—for solving algebraic loops between system-level components. Internal algebraic,
—~loops of components are not affected.

——mode=<arg> [-m] Forces a certain FMI mode iff the FMU,,
—provides cs and me (cs, [me])

——numProcs=<int> [-n] Specifies the max. number of processors,
—~to use (0U=auto, Il=default)

——progressBar=<bool> Shows a progress bar for the simulation,,
—progress in the terminal (true, [false])

—-realTime=<bool> Experimental feature for (soft) real-
—time co-simulation (true, [false])

—-resultFile=<arg> [-r] Specifies the name of the output result,
—file

—--skipCSVHeader=<arg> Skip exporting the scv delimiter in the,
—header ([true], false),

--solver=<arg> Specifies the integration method (euler,
— [cvode])

——-solverStats=<bool> Adds solver stats to the result file, e.
—~g. step size; not supported for all solvers (true, [false])

——startTime=<double> [-s] Specifies the start time

—-—stepSize=<arg> Specifies the step size (<step size> or
—<init step,min step,max step>)

—-stopTime=<double> [-t] Specifies the stop time

—-stripRoot=<bool> Removes the root system prefix from all
—exported signals (true, [false])

——-suppressPath=<bool> Supresses path information in info
—messages; especially useful for testing ([true], false)

—-—tempDir=<arg> Specifies the temp directory

——timeout=<int> Specifies the maximum allowed time in,

—seconds for running a simulation (0 disables)
——tolerance=<double> Specifies the relative tolerance

(continues on next page)

164 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

—with 1.0

——version [—-V] Displays version information

—--wallTime=<bool> Add wall time information for to the
—result file (true, [falsel])

—--workingDir=<arg> Specifies the working directory

——zeroNominal=<bool> Using this flag,

FMUs with invalid,_,
—nominal values will be accepted and the invalid nominal values will be replaced,,

10.4.62 setFixedStepSize

Sets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the

integrator step size in model exchange systems.

status = oms_setFixedStepSize (cref, stepSize)

10.4.63 setinteger

Sets the value of a given integer signal.

status = oms_setInteger (cref, value)

10.4.64 setLogFile

Redirects logging output to file or std streams. The warning/error counters are reset.

filename=

to redirect to std streams and proper filename to redirect to file.

status = oms_setLogFile (filename)

10.4.65 setLogginglinterval

Set the logging interval of the simulation.

status = oms_setLoggingInterval (cref, loggingInterval)

10.4.66 setLogginglLevel

Enables/Disables debug logging (logDebug and logTrace).
0 default, 1 default+debug, 2 default+debug+trace

oms_setLoggingLevel (logLevel)

10.4. OMSimulatorLua

165

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.67 setMaxLogFileSize

Sets maximum log file size in MB. If the file exceeds this limit, the logging will continue on stdout.

oms_setMaxLogFileSize (size)

10.4.68 setReal

Sets the value of a given real signal.

status = oms_setReal (cref, value)

This function can be called in different model states:

 Before instantiation: setReal can be used to set start values or to define initial unknowns (e.g. parameters,
states). The values are not immediately applied to the simulation unit, since it isn't actually instantiated.

» After instantiation and before initialization: Same as before instantiation, but the values are applied imme-

diately to the simulation unit.

 After initialization: Can be used to force external inputs, which might cause discrete changes of continuous

signals.

10.4.69 setReallnputDerivative

Sets the first order derivative of a real input signal.

This can only be used for CS-FMU real input signals.

status =

oms_setRealInputDerivative (cref, wvalue)

10.4.70 setResultFile

Set the result file of the simulation.

status =
status =

oms_setResultFile (cref,
oms_setResultFile (cref,

filename)
filename,

bufferSize)

The creation of a result file is omitted if the filename is an empty string.

10.4.71 setSolver

Sets the solver method for the given system.

status = oms_setSolver (cref, solver)
solver Type Description
oms_solver_sc_explicit_euler sc-system Explicit euler with fixed step size
oms_solver_sc_cvode sc-system CVODE with adaptive stepsize
oms_solver_wc_ma wc-system default master algorithm with fixed step size
oms_solver_wc_mav wc-system master algorithm with adaptive stepsize
oms_solver_wc_mav2 wc-system master algorithm with adaptive stepsize (double-step)

166

Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.72 setStartiTime

Set the start time of the simulation.

status = oms_setStartTime (cref, startTime)

10.4.73 setStopTime

Set the stop time of the simulation.

status = oms_setStopTime (cref, stopTime)

10.4.74 setString

Sets the value of a given string signal.

status = oms_setString(cref, value)

10.4.75 setTLMPositionAndOrientation

Sets initial position and orientation for a TLM 3D interface.

status = oms_setTLMPositionAndOrientation(cref, x1, x2, x3, All, Al2, Al3, A21,
—~A22, A23, A31, A32, A33)

10.4.76 setTLMSocketData

Sets data for TLM socket communication.

status = oms_setTLMSocketData (cref, address, managerPort, monitorPort)

10.4.77 setTempDirectory

Set new temp directory.

status = oms_setTempDirectory (newTempDir)

10.4.78 setTolerance

Sets the tolerance for a given model or system.

status = oms_setTolerance (const char* cref, double tolerance)
status = oms_setTolerance (const charx cref, double absoluteTolerance, double,
—~relativeTolerance)

Default values are /e-4 for both relative and absolute tolerances.

A tolerance specified for a model is automatically applied to its root system, i.e. both calls do exactly the same:

oms_setTolerance ("model", absoluteTolerance, relativeTolerance);
oms_setTolerance ("model.root", absoluteTolerance, relativeTolerance);

10.4. OMSimulatorLua 167

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

Component, e.g. FMUs, pick up the tolerances from there system. That means it is not possible to define different
tolerances for FMUs in the same system right now.

In a strongly coupled system (oms_system_sc), the relative tolerance is used for CVODE and the absolute tolerance
is used to solve algebraic loops.

In a weakly coupled system (oms_system_wc), both the relative and absolute tolerances are used for the adaptive
step master algorithms and the absolute tolerance is used to solve algebraic loops.

10.4.79 setUnit

Sets the unit of a given signal.

status = oms_setUnit (cref, value)

10.4.80 setVariableStepSize

Sets the step size parameters for methods with stepsize control.

status = oms_getVariableStepSize (cref, initialStepSize, minimumStepSize,
—maximumStepSize)

10.4.81 setWorkingDirectory

Set a new working directory.

status = oms_setWorkingDirectory (newWorkingDir)

10.4.82 simulate

Simulates a composite model.

status = oms_simulate (cref)

10.4.83 simulate realtime

Experimental feature for (soft) real-time simulation.

status = experimental_simulate_realtime (ident)

10.4.84 stepUntil

Simulates a composite model until a given time value.

status = oms_stepUntil (cref, stopTime)

168 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.4.85 terminate

Terminates a given composite model.

status = oms_terminate (cref)

10.5 OMSimulatorPython

This is a shared library that provides a Python interface for the OMSimulatorLib library.

Installation using pip is recommended:

> pip3 install OMSimulator --upgrade

from OMSimulator import OMSimulator

oms = OMSimulator ()

oms.setTempDirectory ("./temp/")

oms .newModel ("model")

oms .addSystem ("model.root", oms.system_sc)

instantiate FMUs
oms.addSubModel ("model.root.systeml", "FMUs/Systeml.fmu")
oms .addSubModel ("model.root.system2", "FMUs/System2.fmu")

add connections
oms.addConnection ("model.root.systeml.y", "model.root.system2.u")
oms.addConnection ("model.root.system2.y", "model.root.systeml.u")

simulation settings

oms.setResultFile ("model", "results.mat")
oms.setStopTime ("model", 0.1)
oms.setFixedStepSize ("model.root", le-4)

oms.instantiate ("model")
oms.setReal ("model.root.systeml.x_start", 2.5)

oms.initialize ("model")
oms.simulate ("model™)
oms.terminate ("model")
oms.delete ("model™)

The python package also provides a more object oriented API. The following example is equivalent to the previous
one:

import OMSimulator as oms

oms.setTempDirectory ('./temp/")
model = oms.newModel ("model")
root = model.addSystem('root', oms.Types.System.SC)

instantiate FMUs
root.addSubModel ('systeml', 'FMUs/Systeml.fmu')
root.addSubModel ('system2', 'FMUs/System2.fmu')

add connections
root.addConnection('systeml.y', 'system2.u')

root.addConnection('system2.y', 'systeml.u')

simulation settings

(continues on next page)

10.5. OMSimulatorPython 169

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

model.resultFile = 'results.mat'
model.stopTime = 0.1
model. fixedStepSize = le-4

model.instantiate ()
model.setReal ('root.systeml.x_start', 2.5)
#or system.setReal ('systeml.x_start', 2.5)

model.initialize ()
model.simulate ()
model.terminate ()
model.delete ()

10.5.1 activateVariant

This API provides support to activate a multi-variant modelling from an ssp file [(e.g). SystemStructure.ssd,
VarA.ssd, VarB.ssd] from a ssp file. By default when importing a ssp file the default variant will be "System-
Structure.ssd". The users can be able to switch between other variants by using this API and make changes to that
particular variant and simulate them.

status = oms.activateVariant (crefA, crefB)

An example of activating the number of available variants in a ssp file

oms_newModel("model") oms_addSystem("model.root", "system_wc")
oms_addSubModel("model.root.A", "A.fmu") oms_duplicateVariant("model", "varA") // varA
will be the current variant oms_duplicateVariant("varA", "varB") // varB will be the cur-
rent variant oms_activateVariant("varB", "varA") // Reactivate the variant varB to varA
oms_activateVariant("varA", "model") // Reactivate the variant varA to model

10.5.2 addBus

Adds a bus to a given component.

status = oms.addBus (cref)

10.5.3 addConnection

Adds a new connection between connectors A and B. The connectors need to be specified as fully qualified com-
ponent references, e.g., "model.system.component.signal".

status = oms.addConnection (crefA, crefB, suppressUnitConversion)

The two arguments crefA and crefB get swapped automatically if necessary. The third argument suppressUnitCon-
version is optional and the default value is false which allows automatic unit conversion between connections, if
set to true then automatic unit conversion will be disabled.

170 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.4 addConnector

Adds a connector to a given component.

status = oms.addConnector (cref, causality, type)
The second argument "causality", should be any of the following,

oms.input
oms.output
oms.parameter
oms.bidir
oms.undefined

The third argument "type", should be any of the following,

oms.signal_type_real
oms.signal_type_integer
oms.signal_type_boolean
oms.signal_type_string
oms.signal_type_enum
oms.signal_type_bus

10.5.5 addConnectorToBus

Adds a connector to a bus.

status = oms.addConnectorToBus (busCref, connectorCref)

10.5.6 addConnectorToTLMBus

Adds a connector to a TLM bus.

status = oms.addConnectorToTLMBus (busCref, connectorCref, type)

10.5.7 addExternalModel

Adds an external model to a TLM system.

status = oms.addExternalModel (cref, path, startscript)

10.5.8 addResources

Adds an external resources to an existing SSP. The external resources should be a ".ssv" or ".ssm" file

status = oms.addResources (cref, path)
Example

from OMSimulator import OMSimulator
oms = OMSimulator ()

oms.importFile ("addExternalResourcesl.ssp")
add list of external resources from filesystem to ssp

oms .addResources ("addExternalResources", ../../resources/externalRoot.ssv")
oms .addResources ("addExternalResources:external System.ssv", "../../resources/
—externalSysteml.ssv")

oms .addResources ("addExternalResources",

./../resources/externalGain.ssv")

(continues on next page)

10.5. OMSimulatorPython 171

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

export the ssp with new resources
oms_export ("addExternalResources", "addExternalResourcesl.ssp")

10.5.9 addSignalsToResults

Add all variables that match the given regex to the result file.

status = oms.addSignalsToResults (cref, regex)

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

10.5.10 addSubModel

Adds a component to a system.

status = oms.addSubModel (cref, fmuPath)

10.5.11 addSystem

Adds a (sub-)system to a model or system.

status = oms.addSystem(cref, type)

10.5.12 addTLMBus

Adds a TLM bus.

status = oms.addTLMBus (cref, domain, dimensions, interpolation)
The second argument "domain", should be any of the following,

oms.tlm_domain_input
oms.tlm_domain_output
oms.tlm_domain_mechanical
oms.tlm domain_rotational
oms.tlm_domain_hydraulic
oms.tlm_domain_electric

The fourth argument "interpolation", should be any of the following,
oms.default

oms.coarsegrained
oms. finegrained

172 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.13 addTLMConnection

Connects two TLM connectors.

status = oms.addTLMConnection (crefA, crefB, delay, alpha, linearimpedance,
—angularimpedance)

10.5.14 compareSimulationResults

This function compares a given signal of two result files within absolute and relative tolerances.

oms.compareSimulationResults (filenameA, filenameB, var, relTol, absTol)

The following table describes the input values:

Input Type Description

filenameA String Name of first result file to compare.
filenameB String Name of second result file to compare.
var String Name of signal to compare.

relTol Number Relative tolerance.

absTol Number Absolute tolerance.

The following table describes the return values:

Type Description
Integer 1 if the signal is considered as equal, 0 otherwise

10.5.15 copySystem

Copies a system.

status = oms.copySystem(source, target)

10.5.16 delete

Deletes a connector, component, system, or model object.

status = oms.delete (cref)

10.5.17 deleteConnection

Deletes the connection between connectors crefA and crefB.

status = oms.deleteConnection(crefA, crefB)

The two arguments crefA and crefB get swapped automatically if necessary.

10.5. OMSimulatorPython 173

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.18 deleteConnectorFromBus

Deletes a connector from a given bus.

status = oms.deleteConnectorFromBus (busCref, connectorCref)

10.5.19 deleteConnectorFromTLMBus

Deletes a connector from a given TLM bus.

status = oms.deleteConnectorFromTLMBus (busCref, connectorCref)

10.5.20 deleteResources

Deletes the reference and resource file in a SSP. Deletion of ".ssv" and ".ssm" files are currently supported. The
API can be used in two ways.

1) deleting only the reference file in ".ssd".

"

2) deleting both reference and resource files in ".ssp".

To delete only the reference file in ssd, the user should provide the full qualified cref of the ".ssv" file associated
with a system or subsystem or component (e.g) "model.root:rootl.ssv".

To delete both the reference and resource file in ssp, it is enough to provide only the model cref of the ".ssv" file
(e.g) "model:root1.ssv".

When deleting only the references of a ".ssv" file, if a parameter mapping file ".ssm" is binded to a ".ssv" file then
the ".ssm" file will also be deleted. It is not possible to delete the references of ".ssm" seperately as the ssm file is
binded to a ssv file.

The filename of the reference or resource file is provided by the users using colon suffix at the end of cref. (e.g)
":root.ssv"

status = oms.deleteResources (cref))

Example

from OMSimulator import OMSimulator

oms = OMSimulator ()

oms.importFile ("deleteResourcesl.ssp")

delete only the references in ".ssd" file
oms.deleteResources ("deleteResources.root :root.ssv")
delete both references and resources
oms.deleteResources ("deleteResources:root.ssv")

oms .export ("deleteResourcesl.ssp")

10.5.21 doStep

Simulates a macro step of the given composite model. The step size will be determined by the master algorithm
and is limited by the definied minimal and maximal step sizes.

status = oms.doStep(cref)

174 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.22 duplicateVariant

This API provides support to develop a multi-variant modelling in OMSimulator [(e.g). SystemStructure.ssd,
VarA.ssd, VarB.ssd]. When duplicating a variant, the new variant becomes the current variant and all the changes
made by the users are applied to the new variants only, and all the ssv and ssm resources associated with the
new variant will be given new name based on the variant name provided by the user. This allows the bundling of
multiple variants of a system structure definition referencing a similar set of packaged resources as a single SSP.
However there must still be one SSD file named SystemStructure.ssd at the root of the ZIP archive which will be
considered as default variant.

status = oms.duplicateVariant (crefhA, crefB)

An example of creating a multi-variant modelling is presente below

oms_newModel("model") oms_addSystem("model.root", "system_wc")
oms_addSubModel("model.root.A", "Afmu") oms_setReal("model.root.A.paraml1", "10")
oms_duplicateVariant("model", "varB") oms_addSubModel("varB.root.B" ,"B.fmu")

oms_setReal("varB.root.A.param2", "20") oms_export("varB", "variant.ssp")
The variant.ssp file will have the following structure
Variant.ssp SystemStructure.ssd varB.ssd resources

A.fmu B.fmu

10.5.23 export

Exports a composite model to a SPP file.

status = oms.export (cref, filename)

10.5.24 exportDependencyGraphs

Export the dependency graphs of a given model to dot files.

status = oms.exportDependencyGraphs (cref, initialization, event, simulation)

10.5.25 exportSSMTemplate

Exports all signals that have start values of one or multiple FMUs to a SSM file that are read from modelDescrip-
tion.xml with a mapping entry. The mapping entry specifies a single mapping between a parameter in the source
and a parameter of the system or component being parameterized. The mapping entry contains two attributes
namely source and target. The source attribute will be empty and needs to be manually mapped by the users asso-
ciated with the parameter name defined in the SSV file, the target contains the name of parameter in the system or
component to be parameterized. The function can be called for a top level model or a certain FMU component. If
called for a top level model, start values of all FMUs are exported to the SSM file. If called for a component, start
values of just this FMU are exported to the SSM file.

status = oms.exportSSMTemplate (cref, filename)

10.5. OMSimulatorPython 175

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.26 exportSSVTemplate

Exports all signals that have start values of one or multiple FMUs to a SSV file that are read fro

m modelDescrip-

tion.xml. The function can be called for a top level model or a certain FMU component. If called for a top level
model, start values of all FMUs are exported to the SSV file. If called for a component, start values of just this

FMU are exported to the SSV file.

status = oms.exportSSVTemplate (cref, filename)

10.5.27 exportSnapshot

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings

take care of the memory and the caller doesn't need to call free.

contents, status = oms.exportSnapshot (cref)

10.5.28 faultinjection

Defines a new fault injection block.

status = oms.faultInjection(cref, type, value)

type Description”

oms_fault_type_bias y = y.$original + faultValue

oms_fault_type_gain y = y.$original * faultValue

oms_fault_type_const y = faultValue

10.5.29 freeMemory

Free the memory allocated by some other API. Pass the object for which memory is allocated.

oms . freeMemory (ob7j)

10.5.30 getBoolean

Get boolean value of given signal.

value, status = oms.getBoolean (cref)

10.5.31 getDirectionalDerivative

This function computes the directional derivatives of an FMU.

value, status = oms.getDirectionalDerivative (cref)

176 Chapter 10

. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.32 getFixedStepSize

Gets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the

integrator step size in model exchange systems.

stepSize, status = oms.getFixedStepSize (cref)

10.5.33 getinteger

Get integer value of given signal.

value, status = oms.getInteger (cref)

10.5.34 getReal

Get real value.

value, status = oms.getReal (cref)

10.5.35 getResultFile

Gets the result filename and buffer size of the given model cref.

filename, bufferSize, status = oms.getResultFile (cref)

10.5.36 getSolver

Gets the selected solver method of the given system.

solver, status = oms.getSolver (cref)

10.5.37 getStartTime

Get the start time from the model.

startTime, status = oms.getStartTime (cref)

10.5.38 getStopTime

Get the stop time from the model.

stopTime, status = oms.getStopTime (cref)

10.5. OMSimulatorPython

177

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.39 getString

Get string value.

Memory is allocated for value. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

value, status = oms.getString(cref)

10.5.40 getSubModelPath

Returns the path of a given component.

path, status = oms.getSubModelPath (cref)

10.5.41 getSystemType

Gets the type of the given system.

type, status = oms.getSystemType (cref)

10.5.42 getTime

Get the current simulation time from the model.

time, status = oms.getTime (cref)

10.5.43 getTolerance

Gets the tolerance of a given system or component.

absoluteTolerance, relativeTolerance, status = oms.getTolerance (cref)

10.5.44 getVariableStepSize

Gets the step size parameters.

initialStepSize, minimumStepSize, maximumStepSize, status = oms.
—getVariableStepSize (cref)

10.5.45 getVersion

Returns the library's version string.

oms = OMSimulator ()
oms.getVersion ()

178 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.46 importFile

Imports a composite model from a SSP file.

cref, status = oms.importFile (filename)

10.5.47 importSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

newCref, status = oms.importSnapshot (cref, snapshot)

10.5.48 initialize

Initializes a composite model.

status = oms.initialize (cref)

10.5.49 instantiate

Instantiates a given composite model.

status = oms.instantiate (cref)

10.5.50 list

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

contents, status = oms.list (cref)

10.5.51 listUnconnectedConnectors

Lists all unconnected connectors of a given system.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

contents, status = oms.listUnconnectedConnectors (cref)

10.5.52 listVariants

This API shows the number of variants available [(e.g). SystemStructure.ssd, VarA.ssd, VarB.ssd] from a ssp file.

status = oms.listVariants (cref)

An example for finding the number of available variants in a ssp file

oms_newModel("model") oms_addSystem("model.root", "system_wc")
oms_addSubModel("model.root. A", "A.fmu") oms_duplicate Variant("model", "varA")
oms_duplicate Variant("varA", "varB")

10.5. OMSimulatorPython 179

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

oms_listVariants("varB")
The API will list the available variants like below <oms: Variants>

<oms:variant name="model" /> <oms:variant name="varB" /> <oms:variant name="varA"
/>

</oms: Variants>

10.5.53 loadSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

newCref, status = oms.loadSnapshot (cref, snapshot)

10.5.54 newModel

Creates a new and yet empty composite model.

status = oms.newModel (cref)

10.5.55 newResources

Adds a new empty resources to the SSP. The resource file is a ".ssv" file where the parameter values set by the users

using "oms_setReal()", "oms_setInteger()" and "oms_setReal()" are writtern to the file. Currently only ".ssv" files
can be created.

The filename of the resource file is provided by the users using colon suffix at the end of cref. (e.g) ":root.ssv"

status = oms.newResources (cref)

Example

from OMSimulator import OMSimulator
oms = OMSimulator ()

oms .newModel ("newResources")

oms.addSystem("newResources.root", oms_system_wc)
oms.addConnector ("newResources.root.Inputl", oms.input, oms_signal_type_real)
oms.addConnector ("newResources.root.Input2", oms.input, oms_signal_type_real)

add Top level resources, the filename is provided using the colon suffix ":root.
—ssv"”

oms .newResources ("newResources.root :root.ssv")

oms.setReal ("newResources.root.Inputl", 10)

export the ssp with new resources

oms.export ("newResources", "newResources.ssp")

10.5.56 referenceResources

Switches the references of ".ssv" and ".ssm" in a SSP file. Referencing of ".ssv" and ".ssm" files are currently
supported. The API can be used in two ways.

1) Referencing only the ".ssv" file.
2) Referencing both the ".ssv" along with the ".ssm" file.

This API should be used in combination with "oms_deleteResources".To switch with a new reference, the old
reference must be deleted first using "oms_deleteResources" and then reference with new resources.

180 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

When deleting only the references of a ".ssv" file, if a parameter mapping file ".ssm" is binded to a ".ssv" file, then
the reference of ".ssm" file will also be deleted. It is not possible to delete the references of ".ssm" seperately as
the ssm file is binded to a ssv file. Hence it is not possible to switch the reference of ".ssm" file alone. So inorder

to switch the reference of ".ssm" file, the users need to bind the reference of ".ssm" file along with the ".ssv".

The filename of the reference or resource file is provided by the users using colon suffix at the end of cref (e.g)
":root.ssv", and the ".ssm" file is optional and is provided by the user as the second argument to the API.

status = oms.referenceResources (cref, ssmFile)

Example

from OMSimulator import OMSimulator

oms = OMSimulator ()

oms.importFile ("referenceResourcesl.ssp")

delete only the references in ".ssd" file

oms.deleteResources ("referenceResourcesl.root:root.ssv")

usage-1 switch with new references, only ssv file

oms.referenceResources ("referenceResourcesl.root:Configl.ssv")

usage—-2 switch with new references, both ssv and ssm file
oms.referenceResources ("referenceResourcesl.root:Configl.ssv", "Configl.ssm")

10.5.57 removeSignalsFromResults

Removes all variables that match the given regex to the result file.

status = oms.removeSignalsFromResults (cref, regex)

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

10.5.58 rename

Renames a model, system, or component.

status = oms.rename (cref, newCref)

10.5.59 replaceSubModel

Replaces an existing fmu component, with a new component provided by the user, When replacing the fmu checks
are made in all ssp concepts like in ssd, ssv and ssm, so that connections and parameter settings are not lost. It is
possible that the namings of inputs and parameters match, but the start values might have been changed, in such
cases new start values will be applied in ssd, ssv and ssm. In case if the Types of inputs and outputs and parameters
differed, then the variables are updated according to the new changes and the connections will be removed with
warning messages to user. In case when replacing a fmu, if the fmu contains parameter mapping associated with
the ssv file, then only the ssm file entries are updated and the start values in the ssv files will not be changed.

status = oms.replaceSubModel (cref, fmuPath)

It is possible to import an partially developed fmu (i.e contains only modeldescription.xml
without any binaries) in OMSimulator, and later can be replaced with a fully develped fmu.
An example to use the API, oms_addSubModel("model.root.A", "../resources/replaceA.fmu")
oms_export("model”, "test.ssp") oms_import("test.ssp") oms_replaceSubModel("model.root.A",
"../resources/replaceA_extended.fmu")

10.5. OMSimulatorPython 181

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.60 reset

Reset the composite model after a simulation run.

The FMUs go into the same state as after instantiation.

status = oms.reset (cref)

10.5.61 setBoolean

Sets the value of a given boolean signal.

status = oms.setBoolean(cref, value)

10.5.62 setCommandLineOption

Sets special flags.

status = oms.setCommandLineOption (cmd)
Available flags:
info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:
——addParametersToCSV=<arg> Export parameters to .csv file (true,
— [false])
—--alglLoopSolver=<arg> Specifies the alg. loop solver method

— (fixedpoint, [kinsol]) used for algebraic loops spanning over multiple
—components.

——-clearAllOptions Reset all flags to default values
——deleteTempFiles=<bool> Deletes temp files as soon as they are
—no longer needed ([true], false)

——-directionalDerivatives=<bool> Specifies whether directional,
—derivatives should be used to calculate the Jacobian for alg. loops or if a_

—numerical approximation should be used instead ([true], false)

——dumpAlgLoops=<bool> Dump information for alg loops (true,
—[false])

——emitEvents=<bool> Specifies whether events should be
—emitted or not ([true], false)

——fetchAllVars=<arg> Workaround for certain FMUs that do not
—update all internal dependencies automatically

——help [-h] Displays the help text

——ignoreInitialUnknowns=<bool> Ignore the initial unknowns from the_
—modelDescription.xml (true, [falsel])

——inputExtrapolation=<bool> Enables input extrapolation using
—derivative information (true, [false])

——intervals=<int> [-1] Specifies the number of communication,
—points (arg > 1)

——logFile=<arg> [-1] Specifies the logfile (stdout is used,
—~3if no log file is specified)

——logLevel=<int> 0 default, 1 debug, 2 debugttrace

——maxEventIteration=<int> Specifies the max. number of iterations_

—for handling a single event

—-maxLoopIlteration=<int> Specifies the max. number of iterations_
—for solving algebraic loops between system-level components. Internal algebraic,
—loops of components are not affected.

——mode=<arg> [-m] Forces a certain FMI mode iff the FMU,,
—provides cs and me (cs, [me])

——numProcs=<int> [-n] Specifies the max. number of processors,,
—~to use (0U=auto, I=default)

(continues on next page)

182 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

—-—progressBar=<bool> Shows a progress bar for the simulation,,
—progress in the terminal (true, [false])

—-realTime=<bool> Experimental feature for (soft) real-
—time co-simulation (true, [false])

—--resultFile=<arg> [-r] Specifies the name of the output result

—--skipCSVHeader=<arg> Skip exporting the scv delimiter in the
—header ([true], false),

--solver=<arg> Specifies the integration method (euler,
— [cvode])

——-solverStats=<bool> Adds solver stats to the result file, e.
—~g. step size; not supported for all solvers (true, [false])

——startTime=<double> [-s] Specifies the start time

—-—stepSize=<arg> Specifies the step size (<step size> or
—<init step,min step,max step>)

—-stopTime=<double> [-t] Specifies the stop time

——-stripRoot=<bool> Removes the root system prefix from all
—exported signals (true, [false])

—-—suppressPath=<bool> Supresses path information in info_,
—messages; especially useful for testing ([true], false)

——tempDir=<arg> Specifies the temp directory

——timeout=<int> Specifies the maximum allowed time in_,
—seconds for running a simulation (0 disables)

—-—tolerance=<double> Specifies the relative tolerance

—--version [-V] Displays version information

—--wallTime=<bool> Add wall time information for to the
—result file (true, [false])

—--workingDir=<arg> Specifies the working directory

——zeroNominal=<bool> Using this flag, FMUs with invalid

—nominal values will be accepted and the invalid nominal values will be replaced,,
—with 1.0

10.5.63 setFixedStepSize

Sets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

status = oms.setFixedStepSize (cref, stepSize)

10.5.64 setinteger

Sets the value of a given integer signal.

status = oms.setInteger (cref, value)

10.5.65 setLogFile

Redirects logging output to file or std streams. The warning/error counters are reset.

nn

filename="" to redirect to std streams and proper filename to redirect to file.

status = oms.setLogFile (filename)

10.5. OMSimulatorPython 183

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.66 setLogginginterval

Set the logging interval of the simulation.

status = oms.setLoggingInterval (cref, loggingInterval)

10.5.67 setLogginglLevel

Enables/Disables debug logging (logDebug and logTrace).
0 default, 1 default+debug, 2 default+debug+trace

oms.setLoggingLevel (logLevel)

10.5.68 setMaxLogFileSize

Sets maximum log file size in MB. If the file exceeds this limit, the logging will continue on stdout.

oms.setMaxLogFileSize (size)

10.5.69 setReal

Sets the value of a given real signal.

status = oms.setReal (cref, wvalue)

This function can be called in different model states:

* Before instantiation: setReal can be used to set start values or to define initial unknowns (e.g. parameters,
states). The values are not immediately applied to the simulation unit, since it isn't actually instantiated.

 After instantiation and before initialization: Same as before instantiation, but the values are applied imme-

diately to the simulation unit.

 After initialization: Can be used to force external inputs, which might cause discrete changes of continuous

signals.

10.5.70 setReallnputDerivative

Sets the first order derivative of a real input signal.

This can only be used for CS-FMU real input signals.

status = oms.setReallnputDerivative (cref, value)

10.5.71 setResultFile

Set the result file of the simulation.

status = oms.setResultFile(cref, filename)
status = oms.setResultFile(cref, filename, bufferSize)

The creation of a result file is omitted if the filename is an empty string.

184 Chapter 10

. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.5.72 setSolver

Sets the solver method for the given system.

status = oms.setSolver (cref, solver)
solver Type Description
oms.solver_sc_explicit_euler sc-system Explicit euler with fixed step size
oms.solver_sc_cvode sc-system CVODE with adaptive stepsize
oms.solver_wc_ma wc-system default master algorithm with fixed step size
oms.solver_wc_mav wc-system master algorithm with adaptive stepsize
oms.solver_wc_mav2 wc-system master algorithm with adaptive stepsize (double-step)

10.5.73 setStariTime

Set the start time of the simulation.

status = oms.setStartTime (cref, startTime)

10.5.74 setStopTime

Set the stop time of the simulation.

status = oms.setStopTime (cref, stopTime)

10.5.75 setString

Sets the value of a given string signal.

status = oms.setString(cref, value)

10.5.76 setTempDirectory

Set new temp directory.

status = oms.setTempDirectory (newTempDir)

10.5.77 setTolerance

Sets the tolerance for a given model or system.

status = oms.setTolerance (const char* cref, double tolerance)
status = oms.setTolerance (const charx cref, double absoluteTolerance, double
—relativeTolerance)

Default values are /e-4 for both relative and absolute tolerances.

A tolerance specified for a model is automatically applied to its root system, i.e. both calls do exactly the same:

oms_setTolerance ("model", absoluteTolerance, relativeTolerance);
oms_setTolerance ("model.root", absoluteTolerance, relativeTolerance);

10.5. OMSimulatorPython 185

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

Component, e.g. FMUs, pick up the tolerances from there system. That means it is not possible to define different
tolerances for FMUs in the same system right now.

In a strongly coupled system (oms_system_sc), the relative tolerance is used for CVODE and the absolute tolerance
is used to solve algebraic loops.

In a weakly coupled system (oms_system_wc), both the relative and absolute tolerances are used for the adaptive
step master algorithms and the absolute tolerance is used to solve algebraic loops.

10.5.78 setUnit

Sets the unit of a given signal.

status = oms.setUnit (cref, value)

10.5.79 setVariableStepSize

Sets the step size parameters for methods with stepsize control.

status = oms.getVariableStepSize(cref, initialStepSize, minimumStepSize,
—maximumStepSize)

10.5.80 setWorkingDirectory

Set a new working directory.

status = oms.setWorkingDirectory (newWorkingDir)

10.5.81 simulate

Simulates a composite model.

status = oms.simulate (cref)

10.5.82 stepUntil

Simulates a composite model until a given time value.

status = oms.stepUntil (cref, stopTime)

10.5.83 terminate

Terminates a given composite model.

status = oms.terminate (cref)

186 Chapter 10. OMSimulator

20

21

22

23

24

25

26

27

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

Example: Pi

This example uses a simple Modelica model and FMI-based batch simulation to approximate the value of pi.

A Modelica model is used to calculate two uniform distributed pseudo-random numbers between 0 and 1 based
on a seed value and evaluates if the resulting coordinate is inside the unit circle or not.

model Circle
parameter Integer globalSeed = 30020 "global seed to initialize random number
—generator";

parameter Integer localSeed = 614657 "local seed to initialize random number
—generator";
Real x;
Real y;
Boolean inside = xxx + y*xy < 1.0;
protected
Integer statel28[4];
algorithm
when initial () then
statel28 := Modelica.Math.Random.Generators.Xorshiftl28plus.
—initialState(localSeed, globalSeed);
(x, statel28) := Modelica.Math.Random.Generators.Xorshiftl28plus.
—random (statel28);
(y, statel28) := Modelica.Math.Random.Generators.Xorshiftl28plus.

—random (statel28);

end when;

annotation (uses (Modelica (version="4.0.0")));
end Circle;

The model is then exported using the FMI interface and the generated FMU can then be used to run a million
simulations in just a few seconds.

Listing 10.1: Batch simulation of the simple Cirlce model with differ-
ent seed values. All OMSimulator-related comands are highlighted for
convenience.

import math
import matplotlib.pyplot as plt
import OMSimulator as oms

redirect logging to file and limit the file size to 65MB
oms.setLogFile ('pi.log', 65)

model = oms.newModel ('pi'")
root = model.addSystem('root', oms.Types.System.SC)
root .addSubModel ('circle', 'Circle.fmu')

model.resultFile = '' # no result file
model.instantiate ()

results = list ()
inside = 0

MIN = 100
MAX = 1000000
for i in range (0, MAX+1):
if 1 > 0:
model.reset ()
model .setInteger ('root.circle.globalSeed', 1i)
model.initialize ()
if model.getBoolean ("root.circle.inside"):
inside = inside + 1
if 1 >= MIN:

(continues on next page)

10.5. OMSimulatorPython 187

28

29

30

31

33

34

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

results.append(4.0+inside/1i)
model .terminate ()
model.delete ()

plt.plot ([MIN, MAX], [math.pi, math.pi], 'r--', range (MIN, MAX+1l), results)
plt.xscale('log')

plt.ylabel ('Approximation of pi')

plt.savefig('pi.png'")

The following figure shows the approximation of pi in relation to the number of samples.

3.20 ~

3.18

w w w
= = =
rJ - oh
i i i

u

|

1

|

Approximation of pi

W

=

o
I

3.08 +

10? 10° 104 10° 108
Figure 10.1: Results of the above batch simulation which approximates the value of pi

10.6 OpenModelicaScripting

This is a shared library that provides a OpenModelica Scripting interface for the OMSimulatorLib library.

loadOMSimulator () ;

oms_setTempDirectory ("./temp/");

oms_newModel ("model") ;

oms_addSystem ("model.root", OpenModelica.Scripting.oms_system.oms_system_sc);

// instantiate FMUs
oms_addSubModel ("model.root.systeml", "FMUs/Systeml.fmu");
oms_addSubModel ("model .root.system2", "FMUs/System2.fmu");

// add connections

(continues on next page)

188 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

oms_addConnection ("model.root.systeml.y", "model.root.system2.u");
oms_addConnection ("model.root.system2.y", "model.root.systeml.u");

// simulation settings

oms_setResultFile ("model", "results.mat");
oms_setStopTime ("model", 0.1);
oms_setFixedStepSize ("model.root", le-4);

oms_instantiate ("model");
oms_setReal ("model.root.systeml.x_start", 2.5);

oms_initialize ("model");
oms_simulate ("model™);
oms_terminate ("model") ;
oms_delete ("model") ;
unloadOMSimulator () ;

10.6.1 addBus

Adds a bus to a given component.

status := oms_addBus (cref);

10.6.2 addConnection

Adds a new connection between connectors A and B. The connectors need to be specified as fully qualified com-
ponent references, e.g., "model.system.component.signal".

status := oms_addConnection (crefA, crefB, suppressUnitConversion);

The two arguments crefA and crefB get swapped automatically if necessary. The third argument suppressUnitCon-
version is optional and the default value is false which allows automatic unit conversion between connections, if
set to true then automatic unit conversion will be disabled.

10.6.3 addConnector

Adds a connector to a given component.

status := oms_addConnector (cref, causality, type);
The second argument "causality", should be any of the following,

"OpenModelica.Scripting.oms_causality.oms_causality_input"
"OpenModelica.Scripting.oms_causality.oms_causality_output"
"OpenModelica.Scripting.oms_causality.oms_causality_parameter"
"OpenModelica.Scripting.oms_causality.oms_causality_bidir"
"OpenModelica.Scripting.oms_causality.oms_causality_undefined"

The third argument type, should be any of the following,

"OpenModelica.Scripting.oms_signal_type.oms_signal_type_real"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_integer"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_boolean"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_string”
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_enum"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_bus"

10.6. OpenModelicaScripting 189

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.4 addConnectorToBus

Adds a connector to a bus.

status := oms_addConnectorToBus (busCref, connectorCref);

10.6.5 addConnectorToTLMBus

Adds a connector to a TLM bus.

status := oms_addConnectorToTLMBus (busCref, connectorCref, type);

10.6.6 addExternalModel

Adds an external model to a TLM system.

status := oms_addExternalModel (cref, path, startscript);

10.6.7 addSignalsToResults

Add all variables that match the given regex to the result file.

status := oms_addSignalsToResults (cref, regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

10.6.8 addSubModel

Adds a component to a system.

status := oms_addSubModel (cref, fmuPath);

10.6.9 addSystem

Adds a (sub-)system to a model or system.

status := oms_addSystem(cref, type);
The second argument type, should be any of the following,

"OpenModelica.Scripting.oms_system.oms_system_none"
"OpenModelica.Scripting.oms_system.oms_system_tlm"
"OpenModelica.Scripting.oms_system.oms_system_sc"
"OpenModelica.Scripting.oms_system.oms_system_wc"

190 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.10 addTLMBus

Adds a TLM bus.

status := oms_addTLMBus (cref, domain, dimensions, interpolation);
The second argument "domain", should be any of the following,

"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_input"
"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_output"
"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_mechanical"
"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_rotational"
"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_hydraulic"
"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_electric"

The fourth argument "interpolation", should be any of the following,
"OpenModelica.Scripting.oms_tlm_interpolation.oms_tlm_no_interpolation"

"OpenModelica.Scripting.oms_tlm_interpolation.oms_tlm_coarse_grained"
"OpenModelica.Scripting.oms_tlm_interpolation.oms_tlm_fine_grained"

10.6.11 addTLMConnection

Connects two TLM connectors.

status := oms_addTLMConnection (crefA, crefB, delay, alpha, linearimpedance,
—angularimpedance) ;

10.6.12 compareSimulationResults

This function compares a given signal of two result files within absolute and relative tolerances.

status := oms_compareSimulationResults (filenameA, filenameB, wvar, relTol, absTol);

The following table describes the input values:

Input Type Description

filenameA String Name of first result file to compare.
filenameB String Name of second result file to compare.
var String Name of signal to compare.

relTol Number Relative tolerance.

absTol Number Absolute tolerance.

The following table describes the return values:

Type Description
Integer 1 if the signal is considered as equal, O otherwise

10.6. OpenModelicaScripting 191

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.13 copySystem

Copies a system.

status := oms_copySystem(source, target);

10.6.14 delete

Deletes a connector, component, system, or model object.

status := oms_delete (cref);

10.6.15 deleteConnection

Deletes the connection between connectors crefA and crefB.

status := oms_deleteConnection (crefA, crefB);

The two arguments crefA and crefB get swapped automatically if necessary.

10.6.16 deleteConnectorFromBus

Deletes a connector from a given bus.

status := oms_deleteConnectorFromBus (busCref, connectorCref);

10.6.17 deleteConnectorFromTLMBus

Deletes a connector from a given TLM bus.

status := oms_deleteConnectorFromTLMBus (busCref, connectorCref);

10.6.18 export

Exports a composite model to a SPP file.

status := oms_export (cref, filename);

10.6.19 exportDependencyGraphs

Export the dependency graphs of a given model to dot files.

status := oms_exportDependencyGraphs (cref, initialization, event, simulation);

192 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.20 exportSnapshot

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

(contents, status) := oms_exportSnapshot (cref);

10.6.21 extractFMIKind

Extracts the FMI kind of a given FMU from the file system.

(kind, status) := oms_extractFMIKind (filename) ;

10.6.22 faultinjection

Defines a new fault injection block.

status := oms_faultInjection(cref, type, value);
The second argument type, can be any of the following described below

"OpenModelica.Scripting.oms_fault_type.oms_fault_type_bias"
"OpenModelica.Scripting.oms_fault_type.oms_fault_type_gain"
"OpenModelica.Scripting.oms_fault_type.oms_fault_type_const"

type Description”
oms_fault_type_bias y = y.$original + faultValue
oms_fault_type_gain y = y.$original * faultValue
oms_fault_type_const | y = faultValue

10.6.23 freeMemory

Free the memory allocated by some other API. Pass the object for which memory is allocated.

This function is not needed for OpenModelicaScripting Interface

10.6.24 getBoolean

Get boolean value of given signal.

(value, status) := oms_getBoolean (cref);

10.6.25 getFixedStepSize

Gets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

(stepSize, status) := oms_setFixedStepSize (cref);

10.6. OpenModelicaScripting 193

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.26 getinteger

Get integer value of given signal.

(value, status) := oms_getInteger (cref);

10.6.27 getModelState

Gets the model state of the given model cref.

(modelState, status) := oms_getModelState (cref);

10.6.28 getReal

Get real value.

(value, status) := oms_getReal (cref);

10.6.29 getSolver

Gets the selected solver method of the given system.

(solver, status) := oms_getSolver (cref);

10.6.30 getStartTime

Get the start time from the model.

(startTime, status) := oms_getStartTime (cref);

10.6.31 getStopTime

Get the stop time from the model.

(stopTime, status) := oms_getStopTime (cref);

10.6.32 getSubModelPath

Returns the path of a given component.

(path, status) := oms_getSubModelPath (cref);

194 Chapter 10

. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.33 getSystemType

Gets the type of the given system.

(type, status) := oms_getSystemType (cref);

10.6.34 getTime

Get the current simulation time from the model.

(time, status) := oms_getTime (cref);

10.6.35 getTolerance

Gets the tolerance of a given system or component.

(absoluteTolerance, relativeTolerance, status) := oms_getTolerance (cref);

10.6.36 getVariableStepSize

Gets the step size parameters.

(initialStepSize, minimumStepSize, maximumStepSize, status) := oms_
—getVariableStepSize (cref);

10.6.37 getVersion

Returns the library's version string.

version := oms_getVersion();

10.6.38 importFile

Imports a composite model from a SSP file.

(cref, status) := oms_importFile (filename);

10.6.39 importSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

status := oms_importSnapshot (cref, snapshot);

10.6. OpenModelicaScripting 195

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.40 initialize

Initializes a composite model.

status := oms_initialize(cref);

10.6.41 instantiate

Instantiates a given composite model.

status := oms_instantiate (cref);

10.6.42 list

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings

take care of the memory and the caller doesn't need to call free.

(contents, status) := oms_list (cref);

10.6.43 listUnconnectedConnectors

Lists all unconnected connectors of a given system.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings

take care of the memory and the caller doesn't need to call free.

(contents, status) := oms_listUnconnectedConnectors (cref);

10.6.44 loadSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must

not be instantiated.

status := oms_loadSnapshot (cref, snapshot);

10.6.45 newModel

Creates a new and yet empty composite model.

status := oms_newModel (cref);

10.6.46 removeSignalsFromResults

Removes all variables that match the given regex to the result file.

status := oms_removeSignalsFromResults (cref, regex);

The second argument, i.e. regex, is considered as a regular expression (C++11).

all variables.

".*#"and "(.)*" can be used to hit

196

Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.47 rename

Renames a model, system, or component.

status := oms_rename (cref, newCref);

10.6.48 reset

Reset the composite model after a simulation run.

The FMUs go into the same state as after instantiation.

status := oms_reset (cref);

10.6.49 setBoolean

Sets the value of a given boolean signal.

status := oms_setBoolean (cref, value);

10.6.50 setCommandLineOption

Sets special flags.

status := oms_setCommandLineOption (cmd) ;
Available flags:
info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:
——addParametersToCSV=<arg> Export parameters to .csv file (true,
—[false])

——alglLoopSolver=<arg>
— (fixedpoint, [kinsol])
—components.

—-clearAllOptions

——deleteTempFiles=<bool>
—no longer needed ([true], false)

——directionalDerivatives=<bool>
—derivatives should be used to calculate the Jacobian for alg.
—numerical approximation should be used instead

——dumpAlgLoops=<bool>
— [false])

——emitEvents=<bool>
—emitted or not ([true], false)

——fetchAllVars=<arg>

Specifies the alg. loop solver method,

used for algebraic loops spanning over multiple

Reset all flags to default values
Deletes temp files as soon as they are_

Specifies whether directional,
loops or if a
([true], false)

Dump information for alg loops (true,
Specifies whether events should be,

Workaround for certain FMUs that do not

—update all internal dependencies automatically

——help [-h]
——ignoreInitialUnknowns=<bool>

—modelDescription.xml (true, [false])
——inputExtrapolation=<bool>

—derivative information (true, [false])

——intervals=<int> [-1]

(arg > 1)

—-—logFile=<arg> [-1]

—1if no log file is specified)
—-logLevel=<int>
—-—-maxEventIteration=<int>

—for handling a single event

—points

Displays the help text
Ignore the initial unknowns from the

Enables input extrapolation using,,
Specifies the number of communication
(stdout is used,

Specifies the logfile

2 debugttrace
number of iterations,,

0 default, 1 debug,
Specifies the max.

(continues on next page)

10.6. OpenModelicaScripting

197

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

—-maxLoopIlteration=<int> Specifies the max. number of iterations,
—for solving algebraic loops between system-level components. Internal algebraic,
—loops of components are not affected.

—--mode=<arg> [-m] Forces a certain FMI mode iff the FMU
—provides cs and me (cs, [me])

——-numProcs=<int> [-n] Specifies the max. number of processors,,
—~to use (0O=auto, I=default)

—-—-progressBar=<bool> Shows a progress bar for the simulation
—progress in the terminal (true, [false])

——realTime=<bool> Experimental feature for (soft) real-
—time co-simulation (true, [falsel)

—-resultFile=<arg> [-r] Specifies the name of the output result,
—~file

—-skipCSVHeader=<arg> Skip exporting the scv delimiter in the
—header ([true], false),

--solver=<arg> Specifies the integration method (euler,
— [cvode])

—-—-solverStats=<bool> Adds solver stats to the result file, e.
—g. step size; not supported for all solvers (true, [false])

——startTime=<double> [-s] Specifies the start time

——-stepSize=<arg> Specifies the step size (<step size> or
—~<init step,min step,max step>)

——-stopTime=<double> [-t] Specifies the stop time

—-stripRoot=<bool> Removes the root system prefix from all
—exported signals (true, [false])

——suppressPath=<bool> Supresses path information in info_,
—messages; especially useful for testing ([true], false)

—-—tempDir=<arg> Specifies the temp directory

——timeout=<int> Specifies the maximum allowed time in_|
—seconds for running a simulation (0 disables)

—-—tolerance=<double> Specifies the relative tolerance

--version [-V] Displays version information

—-wallTime=<bool> Add wall time information for to the
—result file (true, [false])

—--workingDir=<arg> Specifies the working directory

——-zeroNominal=<bool> Using this flag, FMUs with invalid

—nominal values will be accepted and the invalid nominal values will be replaced,
—with 1.0

10.6.51 setFixedStepSize

Sets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

status := oms_setFixedStepSize(cref, stepSize);

10.6.52 setinteger

Sets the value of a given integer signal.

status := oms_setInteger (cref, value);

198 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.53 setLogFile

Redirects logging output to file or std streams. The warning/error counters are reset.

nn

filename="" to redirect to std streams and proper filename to redirect to file.

status := oms_setLogFile (filename);

10.6.54 setLogginglinterval

Set the logging interval of the simulation.

status := oms_setLoggingInterval (cref, loggingInterval);

10.6.55 setLogginglLevel

Enables/Disables debug logging (logDebug and logTrace).
0 default, 1 default+debug, 2 default+debug+trace

oms_setLoggingLevel (logLevel) ;

10.6.56 setReal

Sets the value of a given real signal.

status := oms_setReal (cref, value);

This function can be called in different model states:

» Before instantiation: setReal can be used to set start values or to define initial unknowns (e.g. parameters,
states). The values are not immediately applied to the simulation unit, since it isn't actually instantiated.

 After instantiation and before initialization: Same as before instantiation, but the values are applied imme-
diately to the simulation unit.

¢ After initialization: Can be used to force external inputs, which might cause discrete changes of continuous
signals.

10.6.57 setReallnputDerivative

Sets the first order derivative of a real input signal.

This can only be used for CS-FMU real input signals.

status := oms_setReallInputDerivative (cref, wvalue);

10.6.58 setResultFile

Set the result file of the simulation.

status := oms_setResultFile(cref, filename);
status := oms_setResultFile(cref, filename, bufferSize);

The creation of a result file is omitted if the filename is an empty string.

10.6. OpenModelicaScripting 199

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.59 setSolver

Sets the solver method for the given system.

status :=

The second argument

"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.

oms_setSolver (cref,

Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.

"solver"

oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.

solver);

should be any of the following,

oms_solver_none"
oms_solver_sc_min"
oms_solver_sc_explicit_euler"
oms_solver_sc_cvode"
oms_solver_sc_max"
oms_solver_wc_min"
oms_solver_wc_ma"
oms_solver_wc_mav"
oms_solver_wc_assc"
oms_solver_wc_mav2"
oms_solver_wc_max"

10.6.60 setStartTime

Set the start time of the simulation.

status :=

oms_setStartTime (cref,

startTime) ;

10.6.61 setStopTime

Set the stop time of the simulation.

status :=

oms_setStopTime (cref,

stopTime) ;

10.6.62 setTLMPositionAndOrientation

Sets initial position and orientation for a TLM 3D interface.

status := oms_setTLMPositionAndOrientation(cref,
—A22, A23, A31, A32, A33);

x1, x2, %3, All, Al2, Al3,

A21

[

10.6.63 setTLMSocketData

Sets data for TLM socket communication.

status := oms_setTLMSocketData (cref, address, managerPort, monitorPort);

200

Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.64 setTempDirectory

Set new temp directory.

status := oms_setTempDirectory (newTempDir) ;

10.6.65 setTolerance

Sets the tolerance for a given model or system.

status := oms_setTolerance (const charx cref, double tolerance);
status := oms_setTolerance (const charx cref, double absoluteTolerance, double
—relativeTolerance);

Default values are /e-4 for both relative and absolute tolerances.

A tolerance specified for a model is automatically applied to its root system, i.e. both calls do exactly the same:

oms_setTolerance ("model", absoluteTolerance, relativeTolerance);
oms_setTolerance ("model .root", absoluteTolerance, relativeTolerance);

Component, e.g. FMUs, pick up the tolerances from there system. That means it is not possible to define different
tolerances for FMUs in the same system right now.

In a strongly coupled system (oms_system_sc), the relative tolerance is used for CVODE and the absolute tolerance
is used to solve algebraic loops.

In a weakly coupled system (oms_system_wc), both the relative and absolute tolerances are used for the adaptive
step master algorithms and the absolute tolerance is used to solve algebraic loops.

10.6.66 setVariableStepSize

Sets the step size parameters for methods with stepsize control.

status := oms_getVariableStepSize (cref, initialStepSize, minimumStepSize,
—maximumStepSize);

10.6.67 setWorkingDirectory

Set a new working directory.

status := oms_setWorkingDirectory (newWorkingDir);

10.6.68 simulate

Simulates a composite model.

status := oms_simulate (cref);

10.6. OpenModelicaScripting 201

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.6.69 stepUntil

Simulates a composite model until a given time value.

status := oms_stepUntil (cref, stopTime);

10.6.70 terminate

Terminates a given composite model.

status := oms_terminate (cref);

10.7 Graphical Modelling

OMSimulator has an optional dependency to OpenModelica in order to utilize the graphical modelling editor
OMEdit. This feature requires to install the full OpenModelica tool suite, which includes OMSimulator. The
independent stand-alone version doesn't provide any graphical modelling editor.

Composite models are imported and exported in the System Structure Description (SSD) format, which is part of
the System Structure and Parameterization (SSP) standard.

See also FMI documentation and SSP documentation.

& OMEdit - OpenModelica Connection Editor - a X
File Edit View Simulation Debug SSP Sensitivity Optimization Iools Help
F-@BE -

Libraries Browser 8 x

iter Classes T2 9 < : . . :

& e ' OMEdit - OpenModelica Connection Editor

Ubraries
> [E OpenModelica |
> @ ModelicaReterence Recent Files Latest News
> [Complex > 4 September 4, 2021: OpenM
> 72 Modelica

released!
& July 12, 2021: OpenModelica 1.18, ta released
& 4 Join the Modelica Conference 2021

8 March 23, 2021: OpenModelica 1.17.0 released!

& February 26, 2021: OpenModelica 1.16.5 released

€ February 22, 2021: OpenModelica 1.16.4 released

€ HUBC,

Open Calls
€ December 21, 2020: OpenModelica 1.16.2 released!
€ November 17, 2020: OpenModelica 1.16.1 released!

€ November 9. An OpenModelica overview article has been published in the MIC Journa

Clear Recent Files Reload For more detais visit our website www.openmodelica.org
Create New Modelica Class Open Model/Library File(s)
Messages Browser 8 x
Al Notfications Warnings Errors

[1] 10:50:44 Scripting Notification

Automatically loaded package Complex 4.0.0 due to uses annotation.

[2] 10:50:44 Scripting Notification

Automatically loaded package ModelicaServices 4.0.0 due to uses annotation.

@ welcome R Modeling @B Plotting @ Debugging

Figure 10.2: OMEdit MainWindow and Browsers.

202 Chapter 10. OMSimulator

https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/fmitlm.html
https://ssp-standard.org/

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.7.1 New SSP Model

A new and empty SSP model can be created from File->New->SSP menu item.

& OMEdit - OpenModelica Connection Editor - a X
File Edit View Simulation Debug SSP Sensitivity Optimization Tools Help

S, New Modelica Class _ Ctrl+N

@ Open Model/Library File(s) Ctr+0 [NewSSPModel
Open/Convert Modelica File(s) With Encoding] . .
Load Library - - OpenModelica Connection Editor
Load Encrypted Library
Open Result File(s) Ctrl+Shift+O
Open Transformations File Latest News
+
* New Composite Model ® b4 September 4, 2021: OpenModelica 1.18.0 released
@ Open Composite Model(s)
Load External Model(s) & July 12, 2021: OpenModelica 1 tal releasec
Open Directory & 4 Join the Modelica Conference
B s Crls & March 23, 2021: OpenModelica 1.17.0 released
B saveas
Save Total
Import »
Export »
ST R € December 21, 2020: OpenModelica 1.16.2 released!
RS N & Noven r 17, penModelica 1.16.1 ased!
Clear Recent Files € November 9. An O delica overview article has been published in the MIC Journa
& Print.. Ctrl+P
Quit Ctri+Q
Clear Recent Files Reload www.openmodelica.org
Create New Modelica Class Open Model/Library File(s)
Messages Browser 8 x
Al MNoffications Warnings Errors
[1] 10:50:44 Scripting Notification
Automatically loaded package Complex 4.0.0 due to uses annotation.
[2] 10:50:44 Scripting Notification
Automatically loaded package ModelicaServices 4.0.0 due to uses annotation.
Creates a new SSP Model € welcome o Modeling Plotting @ Debugging

Figure 10.3: OMEdit: New SSP Model

That will open a dialog to enter the names of the model and the root system and to choose the root systems type.
There are three types available:

e TLM - Transmission Line Modeling System

e Weakly Coupled - Connected Co-Simulation FMUs System

« Strongly Coupled - Connected Model-Exchange FMUs System

% OMEdit - New SSP Model ? X

New SSP Model |

Nome: [

Root System

Nome: [Root il

Type Weakly Coupled - Connected Co-Simulation FMUs System ~ |

Figure 10.4: OMEdit: New SSP Model Dialog

10.7.2 Add System

When a new model is created a root system is always generated. If you need to have another system in your root
system you can add it with SSP->Add System.

For example only a weakly coupled system (Co-Simulation) can integrate strongly coupled system (Model Ex-
change). Therefore, the weakly coupled system must be selected from the Libraries Browser and the respective
menu item can be selected:

That will pop-up a dialog to enter the names of the new system.

10.7. Graphical Modelling 203

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

& OMEdit - OpenModelica Connection Editor — a X
file Edit View Simulation Debug SSP Sensitivity Optimization Tools Help

EAd 11] HOeee ¥ H-Sy999 &- & MN»pI5a

Libraries Browser 8 X o4 Model* B o4 Root™ [x]
[t e 142 42 © [A B [woave [pagamver] [a]

Libraries.

> [B] openModelica

> @ ModelicaReference
> [C) Modelicaservices
> B Complex

>) Modelica

~ [M] Modet
Root

«

Messages Browser
Al Notfications Warnings Errors
[1] 10:50:44 Scripting Notification
Automatically loaded package Complex 4.0.0 due to uses annotation.

[2] 10:50:44 Scripting Notification
Automatically loaded package ModelicaServices 4.0.0 due to uses annotation.

@ welcome & Modeling B Plotting @ Debugging
Figure 10.5: OMEdit: Newly created empty root system of SSP model
0% OMEdit - OpenModelica Connection Editor - =) X

File Edit View Simulation Debug SSP Sensitivity Optimization Tools Help

Ead 2]]) S - (S>PHP ¥ F BN e

Libraries Browser 8 x| Add/Editicon Model* o o4 Root*
Fiter Classes Z4Z & W Deletelcon ramV\ew‘ ‘h‘
Libraries »¥ Add Connector
> [P] openModelica He AddBus
> @ ModelicaReference He Add TLM Bus
> [C) Modelicaservices |
> @ Complex "% Add SubMode!
> 72 Modelica
~ [M] Modet
WC| Root
« >
Messages Browser G2
Al MNotfications ~ Warnings Errors
[1] 10:50:44 Scripting Notification
Automatically loaded package Complex 4.0.0 due to uses annotation.
10:50:44 Scripting Notification
Automatically loaded package ModelicaServices 4.0.0 due to uses annotation.
Adds the System e, FMI or TLM x:-217,v: 102 @ Welcome o Modeling Plotting @ Debugging

Figure 10.6: OMEdit: Add System

% OMEdit - Add System ? X

Add System

—

Type Strongly Coupled - Connected Model-Exchange FMUS System

Cancel

Figure 10.7: OMEdit: Add System Dialog

204 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

10.7.3 Add SubModel

A sub-model is typically an FMU, but it also can be result file. In order to import a sub-model, the respective
system must be selected and the action can be selected from the menu bar:

o OMEdit - OpenModelica Connection Editor

- o X
Eile Edit View Simulation Debug SSP Sensitivity Optimization Tools Help
o N o
r-eBA B aossen b (YD Dd - @ BE M2
Libraries Browser 8 x| Add/Editicon Model™ oA Root a
e Geses 450 W oocelon [ai]
Libraries p Add Connector
> [B] openModelica He Add Bus
> @ ModelicaReference H= Add TLM Bus
> [[) ModelicaServices e S ASTERGE
Complex]
>) Modelica
~ [M] Modet
Wc| Root
Messages Browser 8 x
Al MNotfications ~ Warnings Errors
[1]10:
Aute 0.0 due tc
[2] 10: Notification
utor kage ModelicaServices 4.0.0 due to uses annotation.

Adds the SubModel i.e, FMU or Table x:247,v:100 @ Welome & Modeling Plotting @ Debugging

Figure 10.8: OMEdit: Add SubModel

The file browser will open to select an FMU (.fmu) or result file (.csv) as a subsmodel. Then a dialog opens to
choose the name of the new sub-model.

% OMEdit - Add SubModel ? X

Add SubModel

Path: [D:/DualMassOscillator.System1.fmu Browse.

Name: [DualMassOscilator_System1]

Figure 10.9: OMEdit: Add SubModel Dialog

10.7.4 Simulate

Select the simulate button (symbol with green arrow) or select Simulation->Simulate from the menu in OMEdit
to simulate the SSP model.

10.7.5 Dual Mass Oscillator Example

The dual mass oscillator example from our testsuite is a simple example one can recreate using components

from the Modelica Standard Library. After splitting the model into two models and exporting each as an Model-
Exchange and Co-Simulation FMU.

10.7. Graphical Modelling 205

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

o OMEdit - OpenModelica Connection Editor

File Edit View Simulation Debug SSP Sensitivity Optimization Iools

- [a] X
Help
kad 1-1-] Heee X H-SI99d &- # BE Y53 <
Libraries Browser 8 x| A& Model™ o Root™
Z42 9 i oA B wntabe | Dagrom view |
Uibraries ‘
> [P] openModelica
> @ ModelicaReference
> (] Modelicaservices
> Complex
> P Modelica
v Model
v [WC| Root
> [p] DuatMassOscitlator: System1
Messages Browser 8 x
Al Notfications ~ Warnings Errors
[1] 10:50:44 Scripting Notificatior
Automatically loaded package Complex 4.0.0 due to uses annotation.
[2] 10:50:44 Scripting Notification
Automatically loaded package ModelicaServices 4.0.0 due to uses annotation.
X:-150,v:-58 @ Welcome o Modeling &3 Plotting @, Debugging
Figure 10.10: OMEdit: Root system with added FMU.
springDamperl springDamper_coupling springDamper2
massl mass2
3 D D 2
] —)
X aQ
= =3
m=m1 kg m=m2 kg
| > | > |
c=cl N/m c=c2 N/m c=c3 N/m
d=d1 N.s/m d=d2 N.s/m d=d3 N.s/m
spnr\gDarr’\ferl _— force . F :
L] . move f sprngan‘per,’\coumeg s> springDamper2
1. e el — L — g
positionSensor swa reesenser o —| N
= . = m
— >— . am
—
speedSensor vy v
- >—
E v
—
accSensor - a] -
a /’ '
I

Figure 10.11: Dual mass oscillator Modelica model (diagramm view) and FMUs

206

Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

% OMEdit - OpenModelica Connection Editor - a X
File Edit View Simulation Debug SSP Sensitivity Optimization Tools Help

F-eBE Hoee ¥ H- S>999 & - & HME 35 'a
Browser 8 x

Libr & Root [x]

of Simulate | Model
S A B [wmhle ‘ Diagram View ‘ D:/Model.ssp
s \
> [P] openModelica
> @ ModelicaReference
> [[J ModelicaServices
Complex
> 72 Modelica

~ [M] Model
v [WC| Root
> [4] DuaiMassoscillator_system2
> [DualMassOscillator_System1

ME & CS 2.0 'ME & CS 2.0

Messages Browser

Al Notfications ~ Warnings Errors Model 3

Simulation of Model s finished.

ipts/OMSimulatorserver.py —-model=C:/U: Andre/App Local/T: penlodelica/OMEdiL//Model. 55p —-endpoint-pub=tcp://

Simulates the Modelica class x:211,v:103 @ Welcome o Modeling &8 Plotting @ Debugging

Figure 10.12: OMEdit: Simulate Dual Mass Oscillator SSP model

10.8 SSP Support

Composite models are imported and exported in the System Structure Description (SSD) format, which is part of
the System Structure and Parameterization (SSP) standard.

Bus connections are saved as annotations to the SSD file. Bus connectors are only allowed in weakly coupled and
strongly coupled systems. Bus connections can exist in any system type. Bus connectors are used to hide SSD
connectors and bus connections are used to hide existing SSD connections in the graphical user interface. It is not
required that all connectors referenced in a bus are connected. One bus may be connected to multiple other buses,
and also to SSD connectors.

The example below contains a root system with two subsystems, WC1 and WC2. Bus connector WC1 .bus1 is
connected to WC2 .bus?2. Bus connector WC2 .bus?2 is also connected to SSD connector WC1.C3.

<?xml version="1.0" encoding="UTF-8"?>
<ssd:SystemStructureDescription name="Test" version="Draft20180219">
<ssd:System name="Root">
<ssd:Elements>
<ssd:System name="WC2">
<ssd:Connectors>
<ssd:Connector name="C1" kind="input" type="Real"/>
<ssd:Connector name="C2" kind="output" type="Real"/>
</ssd:Connectors>
<ssd:Annotations>
<ssc:Annotation type="org.openmodelica">
<oms :Bus name="bus2">
<oms:Signals>
<oms:Signal name="C1"/>
<oms:Signal name="C2"/>
</oms:Signals>
</oms :Bus>
</ssc:Annotation>
</ssd:Annotations>
</ssd:System>
<ssd:System name="WC1">
<ssd:Connectors>

(continues on next page)

10.8. SSP Support 207

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

(continued from previous page)

<ssd:Connector name="C1" kind="output" type="Real"/>
<ssd:Connector name="C2" kind="input" type="Real"/>
<ssd:Connector name="C3" kind="input" type="Real"/>
</ssd:Connectors>
<ssd:Annotations>
<ssc:Annotation type="org.openmodelica">
<oms :Bus name="busl">
<oms:Signals>
<oms:Signal name="C1"/>
<oms:Signal name="C2"/>
</oms:Signals>
</oms :Bus>
</ssc:Annotation>
</ssd:Annotations>
</ssd:System>
</ssd:Elements>
<ssd:Connections>
<ssd:Connection startElement="WC2" startConnector="C1"
endElement="WC1l" endConnector="Cl1"/>
<ssd:Connection startElement="WC2" startConnector="C2"
endElement="WC1l" endConnector="C2"/>
<ssd:Connection startElement="WC2" startConnector="C2"
endElement="WC1l" endConnector="C3"/>
</ssd:Connections>
<ssd:Annotations>
<ssc:Annotation type="org.openmodelica">
<oms :Connections>
<oms:Connection startElement="WCl" startConnector="busl"
endElement="WC2" endConnector="bus2"/>
<oms:Connection startElement="WC2" startConnector="bus2"
endElement="WC1" endConnector="C3"/>
</oms:Connections>
</ssc:Annotation>
</ssd:Annotations>
</ssd:System>
</ssd:SystemStructureDescription>

TLM systems are only allowed on top-level. SSD annotations are used to specify the system type inside the
ssd:SimulationInformation tag, as shown in the example below. Attributes ip, managerport and
monitorport defines the socket communication, used both to exchange data with external tools and with inter-
nal simulation threads.

<?xml version="1.0"?>
<ssd:System name="tlm">
<ssd:SimulationInformation>
<ssd:Annotations>
<ssd:Annotation type="org.openmodelica">
<oms :TlmMaster ip="127.0.1.1" managerport="11111" monitorport="11121"/>
</ssd:Annotation>
</ssd:Annotations>
</ssd:SimulationInformation>
<ssd:Elements>
<ssd:System name="weaklycoupled">
<ssd:SimulationInformation>
<ssd:FixedStepMaster description="oms-ma" stepSize="le-1" />
</ssd:SimulationInformation>
</ssd:System>
</ssd:Elements>
</ssd:System>

TLM connections are implemented without regular SSD connections. TLM connections are only allowed in TLM
systems. TLM connectors are only allowed in weakly coupled or strongly coupled systems. Both connectors and

208 Chapter 10. OMSimulator

OpenModelica User’s Guide, Release v1.21.0-dev-386-g47499e64ec

connections are implemented as SSD annotations in the System tag.

The example below shows a TLM system containing two weakly coupled systems, wcl and wc2. System wcl
contains two TLM connectors, one of type 1D signal and one of type 1D mechanical. System wc2 contains only a
1D signal type connector. The two 1D signal connectors are connected to each other in the TLM top-level system.

<?xml version="1.0"?>
<ssd:System name="tlm">
<ssd:Elements>
<ssd:System name="wc2">
<ssd:Connectors>
<ssd:Connector name="y" kind="input" type="Real" />
</ssd:Connectors>
<ssd:Annotations>
<ssd:Annotation type="org.openmodelica">
<oms :Bus name="bus2" type="tlm" domain="signal"
dimension="1" interpolation="none">
<oms:Signals>
<oms:Signal name="y" tlmType="value" />
</oms:Signals>
</oms :Bus>
</ssd:Annotation>
</ssd:Annotations>
</ssd:System>
<ssd:System nam