

 Navigation

 	
 index

 	
 next |

 	OpenModelica User's Guide v1.9.4 documentation

OpenModelica User's Guide

Version: v1.9.4 [https://github.com/OpenModelica/OpenModelica/releases/tag/v1.9.4] (diff [https://github.com/OpenModelica/OpenModelica/compare/v1.9.3...v1.9.4], doc diff) [https://github.com/OpenModelica/OpenModelica-doc/compare/v1.9.3...v1.9.4]

	Introduction
	System Overview

	Interactive Session with Examples

	Summary of Commands for the Interactive Session Handler

	Running the compiler from command line

	OMEdit – OpenModelica Connection Editor
	Starting OMEdit

	MainWindow & Browsers

	Perspectives

	Modeling a Model

	Simulating a Model

	Plotting the Simulation Results

	Re-simulating a Model

	How to Create User Defined Shapes – Icons

	Global head section in documentation

	Settings

	Debugger

	2D Plotting
	Example

	Plot Command Interface

	Debugging
	The Equation-based Debugger

	The Algorithmic Debugger

	OMNotebook with DrModelica and DrControl
	Interactive Notebooks with Literate Programming

	DrModelica Tutoring System – an Application of OMNotebook

	DrControl Tutorial for Teaching Control Theory

	OpenModelica Notebook Commands

	References

	Functional Mock-up Interface - FMI
	FMI Export

	FMI Import

	Optimization with OpenModelica
	Builtin Dynamic Optimization with OpenModelica and IpOpt

	Compiling the Modelica code

	An Example

	Different Options for the Optimizer IPOPT

	Dynamic Optimization with OpenModelica and CasADi

	Parameter Sweep Optimization using OMOptim

	MDT – The OpenModelica Development Tooling Eclipse Plugin
	Introduction

	Installation

	Getting Started

	MDT Debugger for Algorithmic Modelica
	The Eclipse-based Debugger for Algorithmic Modelica

	Modelica Performance Analyzer
	Genenerated JSON for the Example

	Using the Profiler from OMEdit

	Modelica3D
	Installing Modelica3D

	Running Modelica3D

	Simulation in Web Browser

	Interoperability – C and Python
	Calling External C functions

	Calling external Python Code from a Modelica model

	Calling OpenModelica from Python Code

	OpenModelica Python Interface and PySimulator
	OMPython – OpenModelica Python Interface

	PySimulator

	Scripting API
	OpenModelica Modelica Scripting Commands

	OpenModelica API Calls

	Examples

	OpenModelica Compiler Flags
	Options

	Debug flags

	Flags for Optimization Modules

	Small Overview of Simulation Flags
	OpenModelica (C-runtime) Simulation Flags

	Integration Methods

	Frequently Asked Questions (FAQ)
	OpenModelica General

	OMNotebook

	OMDev - OpenModelica Development Environment

	Major OpenModelica Releases

	Contributors to OpenModelica

Indices and tables

	Index

	Search Page

Copyright

Open Source Modelica Consortium

Copyright © 1998-CurrentYear, Open Source Modelica Consortium
(OSMC), c/o Linköpings universitet, Department of Computer and
Information Science, SE-58183 Linköping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR
THIS OSMC PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR
DISTRIBUTION OF THIS PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE
OSMC PUBLIC LICENSE OR THE GPL VERSION 3, ACCORDING TO RECIPIENTS
CHOICE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium)
Public License (OSMC-PL) are obtained from OSMC, either from the above
address, from the URLs: https://www.openmodelica.org or
http://www.ida.liu.se/projects/OpenModelica, and in the OpenModelica
distribution. GNU version 3 is obtained from:
http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE,
EXCEPT AS EXPRESSLY SET FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY
LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: https://www.openmodelica.org

Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica
Association, https://www.Modelica.org

Mathematica® is a registered trademark of Wolfram Research Inc,
http://www.wolfram.com

This users guide provides documentation and examples on how to use the
OpenModelica system, both for the Modelica beginners and advanced users.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Introduction

The [image: OpenModelica logotype] [https://openmodelica.org] system described in this document has both short-term
and long-term goals:

	
	The short-term goal is to develop an efficient interactive

	computational environment for the Modelica language, as well as a
rather complete implementation of the language. It turns out that
with support of appropriate tools and libraries, Modelica is very
well suited as a computational language for development and
execution of both low level and high level numerical algorithms,
e.g. for control system design, solving nonlinear equation
systems, or to develop optimization algorithms that are applied
to complex applications.

	
	The longer-term goal is to have a complete reference implementation

	of the Modelica language, including simulation of equation based
models and additional facilities in the programming environment,
as well as convenient facilities for research and experimentation
in language design or other research activities. However, our
goal is not to reach the level of performance and quality
provided by current commercial Modelica environments that can
handle large models requiring advanced analysis and optimization
by the Modelica compiler.

The long-term research related goals and issues of the OpenModelica
open source implementation of a Modelica environment include but are not
limited to the following:

	
	Development of a complete formal specification of Modelica,

	including both static and dynamic semantics. Such a specification
can be used to assist current and future Modelica implementers by
providing a semantic reference, as a kind of reference
implementation.

	
	Language design, e.g. to further extend the scope of the

	language, e.g. for use in diagnosis, structural analysis, system
identification, etc., as well as modeling problems that require
extensions such as partial differential equations, enlarged scope
for discrete modeling and simulation, etc.

	
	Language design to improve abstract properties such as

	expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

	
	Improved implementation techniques, e.g. to enhance the performance

	of compiled Modelica code by generating code for parallel
hardware.

	
	Improved debugging support for equation based languages such as

	Modelica, to make them even easier to use.

	
	Easy-to-use specialized high-level (graphical) user interfaces

	for certain application domains.

	
	Visualization and animation techniques for interpretation and

	presentation of results.

	
	Application usage and model library development by researchers in

	various application areas.

The OpenModelica environment provides a test bench for language design
ideas that, if successful, can be submitted to the Modelica Association
for consideration regarding possible inclusion in the official Modelica
standard.

The current version of the OpenModelica environment allows most of the
expression, algorithm, and function parts of Modelica to be executed
interactively, as well as equation models and Modelica functions to be
compiled into efficient C code. The generated C code is combined with a
library of utility functions, a run-time library, and a numerical DAE
solver.

System Overview

The OpenModelica environment consists of several interconnected
subsystems, as depicted in Figure 1.

Figure 1 The architecture of the OpenModelica environment.
Arrows denote data and control flow.
The interactive session handler receives commands and shows results from evaluating commands and expressions that are translated and executed.
Several subsystems provide different forms of browsing and textual editing of Modelica code.
The debugger currently provides debugging of an extended algorithmic subset of Modelica.

The following subsystems are currently integrated in the OpenModelica
environment:

	
	An interactive session handler, that parses and interprets commands

	and Modelica expressions for evaluation, simulation, plotting,
etc. The session handler also contains simple history facilities,
and completion of file names and certain identifiers in commands.

	
	A Modelica compiler subsystem, translating Modelica to C code, with

	a symbol table containing definitions of classes, functions, and
variables. Such definitions can be predefined, user-defined, or
obtained from libraries. The compiler also includes a Modelica
interpreter for interactive usage and constant expression
evaluation. The subsystem also includes facilities for building
simulation executables linked with selected numerical ODE or DAE
solvers.

	
	An execution and run-time module. This module currently executes

	compiled binary code from translated expressions and functions,
as well as simulation code from equation based models, linked
with numerical solvers. In the near future event handling
facilities will be included for the discrete and hybrid parts of
the Modelica language.

	
	Eclipse plugin editor/browser. The Eclipse plugin called MDT

	(Modelica Development Tooling) provides file and class hierarchy
browsing and text editing capabilities, rather analogous to
previously described Emacs editor/browser. Some syntax
highlighting facilities are also included. The Eclipse framework
has the advantage of making it easier to add future extensions
such as refactoring and cross referencing support.

	
	OMNotebook DrModelica model editor. This subsystem provides a

	lightweight notebook editor, compared to the more advanced
Mathematica notebooks available in MathModelica. This basic
functionality still allows essentially the whole DrModelica
tutorial to be handled. Hierarchical text documents with chapters
and sections can be represented and edited, including basic
formatting. Cells can contain ordinary text or Modelica models
and expressions, which can be evaluated and simulated. However,
no mathematical typesetting facilities are yet available in the
cells of this notebook editor.

	
	Graphical model editor/browser OMEdit. This is a graphical

	connection editor, for component based model design by connecting
instances of Modelica classes, and browsing Modelica model
libraries for reading and picking component models. The graphical
model editor also includes a textual editor for editing model
class definitions, and a window for interactive Modelica command
evaluation.

	
	Optimization subsystem OMOptim. This is an optimization subsystem

	for OpenModelica, currently for design optimization choosing an
optimal set of design parameters for a model. The current version
has a graphical user interface, provides genetic optimization
algorithms and Pareto front optimization, works integrated with
the simulators and automatically accesses variables and design
parameters from the Modelica model.

	
	Dynamic Optimization subsystem. This is dynamic optimization using

	collocation methods, for Modelica models extended with
optimization specifications with goal functions and additional
constraints. This subsystem is integrated with in the
OpenModelica compiler.

	
	Modelica equation model debugger. The equation model debugger shows

	the location of an error in the model equation source code. It
keeps track of the symbolic transformations done by the compiler
on the way from equations to low-level generated C code, and also
explains which transformations have been done.

	
	Modelica algorithmic code debugger. The algorithmic code Modelica

	debugger provides debugging for an extended algorithmic subset of
Modelica, excluding equation-based models and some other
features, but including some meta-programming and model
transformation extensions to Modelica. This is a conventional
full-feature debugger, using Eclipse for displaying the source
code during stepping, setting breakpoints, etc. Various
back-trace and inspection commands are available. The debugger
also includes a data-view browser for browsing hierarchical data
such as tree- or list structures in extended Modelica.

Interactive Session with Examples

The following is an interactive session using the interactive session
handler in the OpenModelica environment, called OMShell – the
OpenModelica Shell). Most of these examples are also available in the
OMNotebook with DrModelica and DrControl UsersGuideExamples.onb as well as the testmodels in:

>>> getInstallationDirectoryPath() + "/share/doc/omc/testmodels/"
"«OPENMODELICAHOME»/share/doc/omc/testmodels/"

The following commands were run using OpenModelica version:

>>> getVersion()
"v1.9.4"

Starting the Interactive Session

The Windows version which at installation is made available in the start
menu as OpenModelica->OpenModelica Shell which responds with an
interaction window:

We enter an assignment of a vector expression, created by the range
construction expression 1:12, to be stored in the variable x. The value
of the expression is returned.

>>> x := 1:12
{1,2,3,4,5,6,7,8,9,10,11,12}

Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one
can make load classes and execute commands.
Here we give a few example sessions.

Example Session 1

To get help on using OMShell and OpenModelica, type "help()" and press
enter.

>>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}
>>> instantiateModel(A)
""
"[<interactive>:1:9-1:23:writable] Error: Type mismatch in binding t = 1.5, expected subtype of Integer, got type Real.
Error: Error occurred while flattening model A
"

Example Session 2

To get help on using OMShell and OpenModelica, type "help()" and press
enter.

model C
 Integer a;
 Real b;
equation
 der(a) = b;
 der(b) = 12.0;
end C;

>>> instantiateModel(C)
""

Error

[<interactive>:5:3-5:13:writable] Error: Argument 'a' to der has illegal type Integer, must be a subtype of Real.

Error: Error occurred while flattening model C

Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu
File->Load Model, or by explicitly giving the command:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/bubblesort.mo")
true

The function bubblesort is called below to sort the vector x in
descending order. The sorted result is returned together with its type.
Note that the result vector is of type Real[:], instantiated as
Real[12], since this is the declared type of the function result. The
input Integer vector was automatically converted to a Real vector
according to the Modelica type coercion rules. The function is
automatically compiled when called if this has not been done before.

>>> bubblesort(x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>>> bubblesort({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

Trying the system and cd Commands

It is also possible to give operating system commands via the system
utility function. A command is provided as a string argument. The
example below shows the system utility applied to the UNIX command cat,
which here outputs the contents of the file bubblesort.mo to the output
stream when running omc from the command-line.

>>> system("cat '"+getInstallationDirectoryPath()+"/share/doc/omc/testmodels/bubblesort.mo' > bubblesort.mo")
0

function bubblesort
 input Real[:] x;
 output Real[size(x,1)] y;
protected
 Real t;
algorithm
 y := x;
 for i in 1:size(x,1) loop
 for j in 1:size(x,1) loop
 if y[i] > y[j] then
 t := y[i];
 y[i] := y[j];
 y[j] := t;
 end if;
 end for;
 end for;
end bubblesort;

Note: The output emitted into stdout by system commands is put into
log-files when running the CORBA-based clients, not into the visible GUI
windows. Thus the text emitted by the above cat command would not be
returned, which is why it is redirected to another file.

A better way to read the content of files would be the readFile command:

>>> readFile("bubblesort.mo")
function bubblesort
 input Real[:] x;
 output Real[size(x,1)] y;
protected
 Real t;
algorithm
 y := x;
 for i in 1:size(x,1) loop
 for j in 1:size(x,1) loop
 if y[i] > y[j] then
 t := y[i];
 y[i] := y[j];
 y[j] := t;
 end if;
 end for;
 end for;
end bubblesort;

The system command only returns a success code (0 = success).

>>> system("dir")
0
>>> system("Non-existing command")
127

Another built-in command is cd, the change current directory command.
The resulting current directory is returned as a string.

>>> dir:=cd()
"«DOCHOME»"
>>> cd("source")
"«DOCHOME»/source"
>>> cd(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/")
"«OPENMODELICAHOME»/share/doc/omc/testmodels"
>>> cd(dir)
"«DOCHOME»"

Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also
can be done through the File->Load Modelica Library menu item:

>>> loadModel(Modelica)
true

We also load a file containing the dcmotor model:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/dcmotor.mo")
true

It is simulated:

>>> simulate(dcmotor, startTime=0.0, stopTime=10.0)
record SimulationResult
 resultFile = "«DOCHOME»/dcmotor_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'dcmotor', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 0.406573424,
 timeBackend = 0.009192899000000001,
 timeSimCode = 0.051209165,
 timeTemplates = 0.008362023,
 timeCompile = 0.22192312,
 timeSimulation = 0.009025428,
 timeTotal = 0.7063938160000001
end SimulationResult;

Warning

[«OPENMODELICAHOME»/lib/omlibrary/Modelica 3.2.1/Electrical/Analog/Basic.mo:838:5-839:35:writable] Warning: Parameter emf1.k has no value, and is fixed during initialization (fixed=true), using available start value (start=1.0) as default value.

Warning: The initial conditions are not fully specified. Use +d=initialization for more information.

We list the source code of the model:

>>> list(dcmotor)
model dcmotor
 Modelica.Electrical.Analog.Basic.Resistor resistor1(R = 10);
 //Observe the difference between MSL 2.2 and 3.1 regarding the default values, in 3.1 there are no default values set, only start values
 Modelica.Electrical.Analog.Basic.Inductor inductor1(L = 0.2);
 Modelica.Electrical.Analog.Basic.Ground ground1;
 Modelica.Mechanics.Rotational.Components.Inertia load(J = 1);
 // Modelica version 3.1
 // Modelica.Mechanics.Rotational.Inertia load(J = 1); // Modelica version 2.2
 Modelica.Electrical.Analog.Basic.EMF emf1;
 Modelica.Blocks.Sources.Step step1;
 Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltage1;
equation
//connect(step1.outport, signalVoltage1.inPort);
 connect(step1.y, signalVoltage1.v);
 connect(signalVoltage1.p, resistor1.p);
 connect(resistor1.n, inductor1.p);
 connect(inductor1.n, emf1.p);
// connect(emf1.flange_b, load.flange_a); //Modelica version 2.2
 connect(emf1.flange, load.flange_a);
// Modelica version 3.1
 connect(signalVoltage1.n, ground1.p);
 connect(ground1.p, emf1.n);
end dcmotor;

We test code instantiation of the model to flat code:

>>> instantiateModel(dcmotor)
class dcmotor
 Real resistor1.v(quantity = "ElectricPotential", unit = "V") "Voltage drop between the two pins (= p.v - n.v)";
 Real resistor1.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from pin p to pin n";
 Real resistor1.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real resistor1.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real resistor1.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real resistor1.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 parameter Boolean resistor1.useHeatPort = false "=true, if HeatPort is enabled";
 parameter Real resistor1.T(quantity = "ThermodynamicTemperature", unit = "K", displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = resistor1.T_ref "Fixed device temperature if useHeatPort = false";
 Real resistor1.LossPower(quantity = "Power", unit = "W") "Loss power leaving component via HeatPort";
 Real resistor1.T_heatPort(quantity = "ThermodynamicTemperature", unit = "K", displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) "Temperature of HeatPort";
 parameter Real resistor1.R(quantity = "Resistance", unit = "Ohm", start = 1.0) = 10.0 "Resistance at temperature T_ref";
 parameter Real resistor1.T_ref(quantity = "ThermodynamicTemperature", unit = "K", displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = 300.15 "Reference temperature";
 parameter Real resistor1.alpha(quantity = "LinearTemperatureCoefficient", unit = "1/K") = 0.0 "Temperature coefficient of resistance (R_actual = R*(1 + alpha*(T_heatPort - T_ref))";
 Real resistor1.R_actual(quantity = "Resistance", unit = "Ohm") "Actual resistance = R*(1 + alpha*(T_heatPort - T_ref))";
 Real inductor1.v(quantity = "ElectricPotential", unit = "V") "Voltage drop between the two pins (= p.v - n.v)";
 Real inductor1.i(quantity = "ElectricCurrent", unit = "A", start = 0.0) "Current flowing from pin p to pin n";
 Real inductor1.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real inductor1.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real inductor1.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real inductor1.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 parameter Real inductor1.L(quantity = "Inductance", unit = "H", start = 1.0) = 0.2 "Inductance";
 Real ground1.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real ground1.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real load.flange_a.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Absolute rotation angle of flange";
 Real load.flange_a.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";
 Real load.flange_b.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Absolute rotation angle of flange";
 Real load.flange_b.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";
 parameter Real load.J(quantity = "MomentOfInertia", unit = "kg.m2", min = 0.0, start = 1.0) = 1.0 "Moment of inertia";
 parameter enumeration(never, avoid, default, prefer, always) load.stateSelect = StateSelect.default "Priority to use phi and w as states";
 Real load.phi(quantity = "Angle", unit = "rad", displayUnit = "deg", stateSelect = StateSelect.default) "Absolute rotation angle of component";
 Real load.w(quantity = "AngularVelocity", unit = "rad/s", stateSelect = StateSelect.default) "Absolute angular velocity of component (= der(phi))";
 Real load.a(quantity = "AngularAcceleration", unit = "rad/s2") "Absolute angular acceleration of component (= der(w))";
 parameter Boolean emf1.useSupport = false "= true, if support flange enabled, otherwise implicitly grounded";
 parameter Real emf1.k(quantity = "ElectricalTorqueConstant", unit = "N.m/A", start = 1.0) "Transformation coefficient";
 Real emf1.v(quantity = "ElectricPotential", unit = "V") "Voltage drop between the two pins";
 Real emf1.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from positive to negative pin";
 Real emf1.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Angle of shaft flange with respect to support (= flange.phi - support.phi)";
 Real emf1.w(quantity = "AngularVelocity", unit = "rad/s") "Angular velocity of flange relative to support";
 Real emf1.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real emf1.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real emf1.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real emf1.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real emf1.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Absolute rotation angle of flange";
 Real emf1.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";
 protected Real emf1.internalSupport.tau(quantity = "Torque", unit = "N.m") = -emf1.flange.tau "External support torque (must be computed via torque balance in model where InternalSupport is used; = flange.tau)";
 protected Real emf1.internalSupport.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "External support angle (= flange.phi)";
 protected Real emf1.internalSupport.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Absolute rotation angle of flange";
 protected Real emf1.internalSupport.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";
 protected parameter Real emf1.fixed.phi0(quantity = "Angle", unit = "rad", displayUnit = "deg") = 0.0 "Fixed offset angle of housing";
 protected Real emf1.fixed.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Absolute rotation angle of flange";
 protected Real emf1.fixed.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";
 Real step1.y "Connector of Real output signal";
 parameter Real step1.offset = 0.0 "Offset of output signal y";
 parameter Real step1.startTime(quantity = "Time", unit = "s") = 0.0 "Output y = offset for time < startTime";
 parameter Real step1.height = 1.0 "Height of step";
 Real signalVoltage1.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real signalVoltage1.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real signalVoltage1.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real signalVoltage1.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real signalVoltage1.v(unit = "V") "Voltage between pin p and n (= p.v - n.v) as input signal";
 Real signalVoltage1.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from pin p to pin n";
equation
 assert(1.0 + resistor1.alpha * (resistor1.T_heatPort - resistor1.T_ref) >= 1e-15, "Temperature outside scope of model!");
 resistor1.R_actual = resistor1.R * (1.0 + resistor1.alpha * (resistor1.T_heatPort - resistor1.T_ref));
 resistor1.v = resistor1.R_actual * resistor1.i;
 resistor1.LossPower = resistor1.v * resistor1.i;
 resistor1.v = resistor1.p.v - resistor1.n.v;
 0.0 = resistor1.p.i + resistor1.n.i;
 resistor1.i = resistor1.p.i;
 resistor1.T_heatPort = resistor1.T;
 inductor1.L * der(inductor1.i) = inductor1.v;
 inductor1.v = inductor1.p.v - inductor1.n.v;
 0.0 = inductor1.p.i + inductor1.n.i;
 inductor1.i = inductor1.p.i;
 ground1.p.v = 0.0;
 load.phi = load.flange_a.phi;
 load.phi = load.flange_b.phi;
 load.w = der(load.phi);
 load.a = der(load.w);
 load.J * load.a = load.flange_a.tau + load.flange_b.tau;
 emf1.internalSupport.flange.tau = emf1.internalSupport.tau;
 emf1.internalSupport.flange.phi = emf1.internalSupport.phi;
 emf1.fixed.flange.phi = emf1.fixed.phi0;
 emf1.v = emf1.p.v - emf1.n.v;
 0.0 = emf1.p.i + emf1.n.i;
 emf1.i = emf1.p.i;
 emf1.phi = emf1.flange.phi - emf1.internalSupport.phi;
 emf1.w = der(emf1.phi);
 emf1.k * emf1.w = emf1.v;
 emf1.flange.tau = (-emf1.k) * emf1.i;
 step1.y = step1.offset + (if time < step1.startTime then 0.0 else step1.height);
 signalVoltage1.v = signalVoltage1.p.v - signalVoltage1.n.v;
 0.0 = signalVoltage1.p.i + signalVoltage1.n.i;
 signalVoltage1.i = signalVoltage1.p.i;
 signalVoltage1.p.i + resistor1.p.i = 0.0;
 resistor1.n.i + inductor1.p.i = 0.0;
 emf1.p.i + inductor1.n.i = 0.0;
 signalVoltage1.n.i + ground1.p.i + emf1.n.i = 0.0;
 load.flange_a.tau + emf1.flange.tau = 0.0;
 load.flange_b.tau = 0.0;
 emf1.internalSupport.flange.tau + emf1.fixed.flange.tau = 0.0;
 emf1.fixed.flange.phi = emf1.internalSupport.flange.phi;
 signalVoltage1.v = step1.y;
 resistor1.p.v = signalVoltage1.p.v;
 inductor1.p.v = resistor1.n.v;
 emf1.p.v = inductor1.n.v;
 emf1.flange.phi = load.flange_a.phi;
 emf1.n.v = ground1.p.v;
 emf1.n.v = signalVoltage1.n.v;
end dcmotor;

We plot part of the simulated result:

Figure 2 Rotation and rotational velocity of the DC motor

The val() function

The val(variableName,time) scription function can be used to
retrieve the interpolated value of a simulation result variable at a
certain point in the simulation time, see usage in the BouncingBall
simulation below.

BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations
and if-expressions (the Modelica keywords have been bold-faced by hand
for better readability):

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.mo")
true

>>> list(BouncingBall)
model BouncingBall
 parameter Real e = 0.7 "coefficient of restitution";
 parameter Real g = 9.81 "gravity acceleration";
 Real h(start = 1) "height of ball";
 Real v "velocity of ball";
 Boolean flying(start = true) "true, if ball is flying";
 Boolean impact;
 Real v_new;
 Integer foo;
equation
 impact = h <= 0.0;
 foo = if impact then 1 else 2;
 der(v) = if flying then -g else 0;
 der(h) = v;
 when {h <= 0.0 and v <= 0.0, impact} then
 v_new = if edge(impact) then -e * pre(v) else 0;
 flying = v_new > 0;
 reinit(v, v_new);
 end when;
end BouncingBall;

Instead of just giving a simulate and plot command, we perform a
runScript command on a .mos (Modelica script) file sim_BouncingBall.mos
that contains these commands:

>>> writeFile("sim_BouncingBall.mos", "
 loadFile(getInstallationDirectoryPath() + \"/share/doc/omc/testmodels/BouncingBall.mo\");
 simulate(BouncingBall, stopTime=3.0);
 /* plot({h,flying}); */
")
true
>>> runScript("sim_BouncingBall.mos")
"true
record SimulationResult
 resultFile = \"«DOCHOME»/BouncingBall_res.mat\",
 simulationOptions = \"startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'BouncingBall', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''\",
 messages = \"\",
 timeFrontend = 0.005510158,
 timeBackend = 0.003075922,
 timeSimCode = 0.05094514100000001,
 timeTemplates = 0.005677764,
 timeCompile = 0.239597631,
 timeSimulation = 0.009962583000000001,
 timeTotal = 0.314846479
end SimulationResult;
"

Warning

Warning: The initial conditions are not fully specified. Use +d=initialization for more information.

model Switch
 Real v;
 Real i;
 Real i1;
 Real itot;
 Boolean open;
equation
 itot = i + i1;
 if open then
 v = 0;
 else
 i = 0;
 end if;
 1 - i1 = 0;
 1 - v - i = 0;
 open = time >= 0.5;
end Switch;

>>> simulate(Switch, startTime=0, stopTime=1)
record SimulationResult
 resultFile = "«DOCHOME»/Switch_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'Switch', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 0.006301618,
 timeBackend = 0.01209808,
 timeSimCode = 0.06054149600000001,
 timeTemplates = 0.004183748,
 timeCompile = 0.221612197,
 timeSimulation = 0.007839414000000001,
 timeTotal = 0.312656441
end SimulationResult;

Retrieve the value of itot at time=0 using the
val(variableName, time) function:

>>> val(itot,0)
1.0

Plot itot and open:

Figure 3 Plot when the switch opens

We note that the variable open switches from false (0) to true (1),
causing itot to increase from 1.0 to 2.0.

Clear All Models

Now, first clear all loaded libraries and models:

>>> clear()
true

List the loaded models – nothing left:

>>> list()
""

VanDerPol Model and Parametric Plot

We load another model, the VanDerPol model (or via the menu File->Load
Model):

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/VanDerPol.mo")
true

It is simulated:

>>> simulate(VanDerPol, stopTime=80)
record SimulationResult
 resultFile = "«DOCHOME»/VanDerPol_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 80.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'VanDerPol', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 0.005854934,
 timeBackend = 0.002013317,
 timeSimCode = 0.052925954,
 timeTemplates = 0.00337878,
 timeCompile = 0.202131777,
 timeSimulation = 0.011455654,
 timeTotal = 0.277857093
end SimulationResult;

Warning

Warning: The initial conditions are not fully specified. Use +d=initialization for more information.

It is plotted:

>>> plotParametric("x","y")

Figure 4 VanDerPol plotParametric(x,y)

Perform code instantiation to flat form of the VanDerPol model:

>>> instantiateModel(VanDerPol)
class VanDerPol "Van der Pol oscillator model"
 Real x(start = 1.0);
 Real y(start = 1.0);
 parameter Real lambda = 0.3;
equation
 der(x) = y;
 der(y) = lambda * (1.0 - x ^ 2.0) * y - x;
end VanDerPol;

Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used
within quoted (single quote) identifiers, see for example the variable
name to the right in the plot below:

[image: _images/bb-japanese.png]

Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation
at each line into OMShell requires copy-paste as one operation from
another document):

>>> k := 0;
>>> for i in 1:1000 loop
 k := k + i;
end for;
>>> k
500500

A nested loop summing reals and integers:

>>> g := 0.0;
>>> h := 5;
>>> for i in {23.0,77.12,88.23} loop
 for j in i:0.5:(i+1) loop
 g := g + j;
 g := g + h / 2;
 end for;
 h := h + g;
end for;

By putting two (or more) variables or assignment statements separated by
semicolon(s), ending with a variable, one can observe more than one
variable value:

>>> h; g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>>> i:="";
>>> lst := {"Here ", "are ","some ","strings."};
>>> s := "";
>>> for i in lst loop
 s := s + i;
end for;
>>> s
"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>>> s:="";
>>> i:=1;
>>> while i<=10 loop
 s:="abc "+s;
 i:=i+1;
end while;
>>> s
"abc abc abc abc abc abc abc abc abc abc "

A simple if-statement. By putting the variable last, after the
semicolon, its value is returned after evaluation:

>>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with elseif:

>>> if false then
 a := 5;
elseif a > 50 then
 b:= "test"; a:= 100;
else
 a:=34;
end if;

Take a look at the variables a and b:

>>> a;b
100
"test"

Variables, Functions, and Types of Variables

Assign a vector to a variable:

>>> a:=1:5
{1,2,3,4,5}

Type in a function:

function mySqr
 input Real x;
 output Real y;
algorithm
 y:=x*x;
end mySqr;

Call the function:

>>> b:=mySqr(2)
4.0

Look at the value of variable a:

>>> a
{1,2,3,4,5}

Look at the type of a:

>>> typeOf(a)
"Integer[5]"

Retrieve the type of b:

>>> typeOf(b)
"Real"

What is the type of mySqr? Cannot currently be handled.

>>> typeOf(mySqr)

List the available variables:

>>> listVariables()
{b,a,s,lst,i,h,g,k,currentSimulationResult}

Clear again:

>>> clear()
true

Getting Information about Error Cause

Call the function getErrorString() in order to get more information
about the error cause after a simulation failure:

>>> getErrorString()
""

Alternative Simulation Output Formats

There are several output format possibilities, with mat being the
default. plt and mat are the only formats that allow you to use the
val() or plot() functions after a simulation. Compared to the speed of
plt, mat is roughly 5 times for small files, and scales better for
larger files due to being a binary format. The csv format is roughly
twice as fast as plt on data-heavy simulations. The plt format allocates
all output data in RAM during simulation, which means that simulations
may fail due applications only being able to address 4GB of memory on
32-bit platforms. Empty does no output at all and should be by far the
fastest. The csv and plt formats are suitable when using an external
scripts or tools like gnuplot to generate plots or process data. The mat
format can be post-processed in MATLAB [http://www.mathworks.com/products/matlab]
or Octave [http://www.gnu.org/software/octave/].

>>> simulate(... , outputFormat="mat")
>>> simulate(... , outputFormat="csv")
>>> simulate(... , outputFormat="plt")
>>> simulate(... , outputFormat="empty")

It is also possible to specify which variables should be present in the
result-file. This is done by using POSIX Extended Regular Expressions [http://en.wikipedia.org/wiki/Regular_expression].
The given expression must match the full variable name
(^ and $ symbols are automatically added to the given regular
expression).

// Default, match everything

>>> simulate(... , variableFilter=".*")

// match indices of variable myVar that only contain the numbers using
combinations

// of the letters 1 through 3

>>> simulate(... , variableFilter="myVar\\\[[1-3]*\\\]")

// match x or y or z

>>> simulate(... , variableFilter="x|y|z")

Using External Functions

See Chapter Interoperability – C and Python for more information about calling functions in other
programming languages.

Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a
new OpenModelica feature that automatically partitions the system of
equations and schedules the parts for execution on different cores using
shared-memory OpenMP based execution. The speedup obtained is dependent
on the model structure, whether the system of equations can be
partitioned well. This version in the current OpenModelica release is an
experimental version without load balancing. The following command, not
yet available from the OpenModelica GUI, will run a parallel simulation
on a model:

>>> omc +d=openmp model.mo

Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not
compatible. It is possible to keep multiple versions of the same library
stored in the directory given by calling getModelicaPath(). By calling
loadModel(Modelica,{"3.2"}), OpenModelica will search for a directory
called "Modelica 3.2" or a file called "Modelica 3.2.mo". It is possible
to give several library versions to search for, giving preference for a
pre-release version of a library if it is installed. If the searched
version is "default", the priority is: no version name (Modelica), main
release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1)
and unordered versions (Modelica Special Release).

The loadModel command will also look at the uses annotation of the
top-level class after it has been loaded. Given the following package,
Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST
automatically.

package Modelica
 annotation(uses(Complex(version="1.0"),
 ModelicaServices(version="1.1")));
end Modelica;

>>> clear()
true

Packages will also be loaded if a model has a uses-annotation:

model M
 annotation(uses(Modelica(version="3.2.1")));
end M;

>>> instantiateModel(M)
class M
end M;

Note

Notification: Automatically loaded package Modelica 3.2.1 due to uses annotation.

Notification: Automatically loaded package Complex 3.2.1 due to uses annotation.

Notification: Automatically loaded package ModelicaServices 3.2.1 due to uses annotation.

Packages will also be loaded by looking at the first identifier in the path:

>>> instantiateModel(Modelica.Electrical.Analog.Basic.Ground)
class Modelica.Electrical.Analog.Basic.Ground "Ground node"
 Real p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
equation
 p.v = 0.0;
 p.i = 0.0;
end Modelica.Electrical.Analog.Basic.Ground;

Note

Notification: Automatically loaded package Complex 3.2.1 due to uses annotation.

Notification: Automatically loaded package ModelicaServices 3.2.1 due to uses annotation.

Notification: Automatically loaded package Modelica default due to uses annotation.

Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application
programming interface) is described which returns information about
models and/or allows manipulation of models. Calls to these functions
can be done interactively as below, but more typically by program
clients to the OpenModelica Compiler (OMC) server. Current examples of
such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the
OMEdit graphic model editor, etc. This API is untyped for performance
reasons, i.e., no type checking and minimal error checking is done on
the calls. The results of a call is returned as a text string in
Modelica syntax form, which the client has to parse. An example parser
in C++ is available in the OMNotebook source code, whereas another
example parser in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall
model. The full documentation on this API is available in the system
documentation. First we load and list the model again to show its
structure:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.mo");
>>> list(BouncingBall)
model BouncingBall
 parameter Real e = 0.7 "coefficient of restitution";
 parameter Real g = 9.81 "gravity acceleration";
 Real h(start = 1) "height of ball";
 Real v "velocity of ball";
 Boolean flying(start = true) "true, if ball is flying";
 Boolean impact;
 Real v_new;
 Integer foo;
equation
 impact = h <= 0.0;
 foo = if impact then 1 else 2;
 der(v) = if flying then -g else 0;
 der(h) = v;
 when {h <= 0.0 and v <= 0.0, impact} then
 v_new = if edge(impact) then -e * pre(v) else 0;
 flying = v_new > 0;
 reinit(v, v_new);
 end when;
end BouncingBall;

Different kinds of calls with returned results:

>>> getClassRestriction(BouncingBall)
"model"
>>> getClassInformation(BouncingBall)
("model","",false,false,false,"«OPENMODELICAHOME»/share/doc/omc/testmodels/BouncingBall.mo",false,1,1,23,17,{},false,false,"","")
>>> isFunction(BouncingBall)
false
>>> existClass(BouncingBall)
true
>>> getComponents(BouncingBall)
{{Real,e,"coefficient of restitution", "public", false, false, false, false, "parameter", "none", "unspecified",{}},{Real,g,"gravity acceleration", "public", false, false, false, false, "parameter", "none", "unspecified",{}},{Real,h,"height of ball", "public", false, false, false, false, "unspecified", "none", "unspecified",{}},{Real,v,"velocity of ball", "public", false, false, false, false, "unspecified", "none", "unspecified",{}},{Boolean,flying,"true, if ball is flying", "public", false, false, false, false, "unspecified", "none", "unspecified",{}},{Boolean,impact,"", "public", false, false, false, false, "unspecified", "none", "unspecified",{}},{Real,v_new,"", "public", false, false, false, false, "unspecified", "none", "unspecified",{}},{Integer,foo,"", "public", false, false, false, false, "unspecified", "none", "unspecified",{}}}
>>> getConnectionCount(BouncingBall)
0
>>> getInheritanceCount(BouncingBall)
0
>>> getComponentModifierValue(BouncingBall,e)
0.7
>>> getComponentModifierNames(BouncingBall,"e")
{}
>>> getClassRestriction(BouncingBall)
"model"
>>> getVersion() // Version of the currently running OMC
"v1.9.4"

Quit OpenModelica

Leave and quit OpenModelica:

>>> quit()

Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according
to several optional parameters.

dumpXMLDAE(modelname[,asInSimulationCode=<Boolean>]
[,filePrefix=<String>] [,storeInTemp=<Boolean>] [,addMathMLCode
=<Boolean>])

This command dumps the mathematical representation of a model using an
XML representation, with optional parameters. In particular,
asInSimulationCode defines where to stop in the translation process
(before dumping the model), the other options are relative to the file
storage: filePrefix for specifying a different name and storeInTemp to
use the temporary directory. The optional parameter addMathMLCode gives
the possibility to don't print the MathML code within the xml file, to
make it more readable. Usage is trivial, just:
addMathMLCode=true/false (default value is false).

Dump Matlab Representation

The command export dumps an XML representation of a model, according to
several optional parameters.

exportDAEtoMatlab(modelname);

This command dumps the mathematical representation of a model using a
Matlab representation. Example:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.mo")
true
>>> exportDAEtoMatlab(BouncingBall)
"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Incidence Matrix
% ====================================
% number of rows: 6
IM={{3,6},{1,{'if', 'true','==' {3},{},}},{{'if', 'true','==' {4},{},}},{5},{2,{'if', 'edge(impact)' {3},{5},}},{4,2}};
VL = {'foo','v_new','impact','flying','v','h'};

EqStr = {'impact = h <= 0.0;','foo = if impact then 1 else 2;','der(v) = if flying then -g else 0.0;','der(h) = v;','when {h <= 0.0 and v <= 0.0, impact} then v_new = if edge(impact) then (-e) * pre(v) else 0.0; end when;','when {h <= 0.0 and v <= 0.0, impact} then flying = v_new > 0.0; end when;'};

OldEqStr={'class BouncingBall',' parameter Real e = 0.7 "coefficient of restitution";',' parameter Real g = 9.81 "gravity acceleration";',' Real h(start = 1.0) "height of ball";',' Real v "velocity of ball";',' Boolean flying(start = true) "true, if ball is flying";',' Boolean impact;',' Real v_new;',' Integer foo;','equation',' impact = h <= 0.0;',' foo = if impact then 1 else 2;',' der(v) = if flying then -g else 0.0;',' der(h) = v;',' when {h <= 0.0 and v <= 0.0, impact} then',' v_new = if edge(impact) then (-e) * pre(v) else 0.0;',' flying = v_new > 0.0;',' reinit(v, v_new);',' end when;','end BouncingBall;',''};

Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in
the interactive session hander.

simulate(modelname) Translate a model named modelname and simulate
it.

simulate(modelname[,startTime=<Real>][,stopTime=<Real>][,numberOfIntervals

=<Integer>][,outputInterval=<Real>][,method=<String>]

[,tolerance=<Real>][,fixedStepSize=<Real>]

[,outputFormat=<String>]) Translate and simulate a model, with
optional start time, stop time, and optional number of simulation
intervals or steps for which the simulation results will be computed.
More intervals will give higher time resolution, but occupy more space
and take longer to compute. The default number of intervals is 500. It
is possible to choose solving method, default is “dassl”, “euler” and
“rungekutta” are also available. Output format “mat” is default. “plt”
and “mat” (MATLAB) are the only ones that work with the val() command,
“csv” (comma separated values) and “empty” (no output) are also
available (see section Alternative Simulation Output Formats).

plot(vars) Plot the variables given as a vector or a scalar, e.g.
plot({x1,x2}) or plot(x1).

plotParametric(var1, var2) Plot var2 relative to var1 from the
most recently simulated model, e.g. plotParametric(x,y).

cd() Return the current directory.

cd(dir) Change directory to the directory given as string.

clear() Clear all loaded definitions.

clearVariables() Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model,
according to several optional parameters.

exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateModel(modelname)Performs code instantiation of a
model/class and return a string containing the flat class definition.

list() Return a string containing all loaded class definitions.

list(modelname) Return a string containing the class definition of
the named class.

listVariables() Return a vector of the names of the currently defined
variables.

loadModel(classname) Load model or package of name classname from
the path indicated by the environment variable OPENMODELICALIBRARY.

loadFile(str) Load Modelica file (.mo) with name given as string
argument str.

readFile(str) Load file given as string str and return a string
containing the file content.

runScript(str) Execute script file with file name given as string
argument str.

system(str) Execute str as a system(shell) command in the
operating system; return integer success value. Output into stdout from
a shell command is put into the console window.

timing(expr) Evaluate expression expr and return the number of
seconds (elapsed time) the evaluation took.

typeOf(variable) Return the type of the variable as a string.

saveModel(str,modelname) Save the model/class with name
modelname in the file given by the string argument str.

val(variable,timePoint) Return the (interpolated) value of the
variable at time timePoint.

help() Print this helptext (returned as a string).

quit() Leave and quit the OpenModelica environment

Running the compiler from command line

The OpenModelica compiler can also be used from command line, in Windows
cmd.exe.

Example Session 1 – obtaining information about command line
parameters

C:\dev> C:\OpenModelica1.9.2 \bin\omc -h

OpenModelica Compiler 1.9.2

Copyright © 2015 Open Source Modelica Consortium (OSMC)

Distributed under OMSC-PL and GPL, see https://www.openmodelica.org/

Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]

...

Example Session 2 - create an TestModel.mo file and run omc on it

C:\dev> echo model TestModel parameter Real x = 1; end TestModel; >
TestModel.mo

C:\dev> C:\OpenModelica1.9.2 \bin\omc TestModel.mo

class TestModel

parameter Real x = 1.0;

end TestModel;

C:\dev>

Example Session 3 - create an script.mos file and run omc on it

Create a file script.mos using your editor containing these commands:

// start script.mos

loadModel(Modelica); getErrorString();

simulate(Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum);
getErrorString();

// end script.mos

C:\dev> notepad script.mos

C:\dev> C:\OpenModelica1.9.2 \bin\omc script.mos

true

""

record SimulationResult

resultFile =
"C:/dev/Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 5.0,
numberOfIntervals = 500, tolerance = 1e-006, method = 'dassl',
fileNamePrefix =
'Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum', options =
'', outputFormat = 'mat', variableFilter = '.*', cflags = '',
simflags = ''",

messages = "",

timeFrontend = 1.245787339209033,

timeBackend = 20.51007138993843,

timeSimCode = 0.1510248469321959,

timeTemplates = 0.5052317333954395,

timeCompile = 5.128213942691722,

timeSimulation = 0.4049189573103951,

timeTotal = 27.9458487395605

end SimulationResult;

""

In order to obtain more information from the compiler one can use the
command line options +showErrorMessages +d=failtrace when running
the compiler:

C:\dev> C:\OpenModelica1.9.2 \bin\omc +showErrorMessages
+d=failtrace script.mos

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

OMEdit – OpenModelica Connection Editor

OMEdit – OpenModelica Connection Editor is the new Graphical User
Interface for graphical model editing in OpenModelica. It is implemented
in C++ using the Qt 4.8 graphical user interface library and supports
the Modelica Standard Library version 3.1 that is included in the latest
OpenModelica installation. This chapter gives a brief introduction to
OMEdit and also demonstrates how to create a DCMotor model using the
editor.

OMEdit provides several user friendly features for creating, browsing,
editing, and simulating models:

	Modeling – Easy model creation for Modelica models.

	
	Pre-defined models – Browsing the Modelica Standard library to

	access the provided models.

	
	User defined models – Users can create their own models for

	immediate usage and later reuse.

	
	Component interfaces – Smart connection editing for drawing and

	editing connections between model interfaces.

	
	Simulation – Subsystem for running simulations and specifying

	simulation parameters start and stop time, etc.

	Plotting – Interface to plot variables from simulated models.

Starting OMEdit

A splash screen similar to the one shown in Figure 5 will
appear indicating that it is starting OMEdit.
The executable is found in different places depending on the platform
(see below).

[image: _images/omedit_splashscreen.png]
Figure 5 OMEdit Splash Screen.

Microsoft Windows

OMEdit can be launched using the executable placed in
OpenModelicaInstallationDirectory/bin/OMEdit/OMEdit.exe. Alternately,
choose OpenModelica > OpenModelica Connection Editor from the start menu
in Windows.

Linux

Start OMEdit by either selecting the corresponding menu application item
or typing “OMEdit” at the shell or command prompt.

Mac OS X

The default installation is /Application/MacPorts/OMEdit.app.

MainWindow & Browsers

The MainWindow contains several dockable browsers,

	Libraries Browser

	Documentation Browser

	Variables Browser

	Messages Browser

Figure 6 shows the MainWindow and browsers.

[image: _images/omedit-mainwindow-browsers.png]
Figure 6 OMEdit MainWindow and Browsers.

The default location of the browsers are shown in Figure 6.
All browsers except for Message Browser can be docked into left or right
column. The Messages Browser can be docked into left,right or bottom
areas. If you want OMEdit to remember the new docked position of the
browsers then you must enable Preserve User's GUI Customizations option,
see section General.

Search Classes

To search a class click Edit->Search Classes or press keyboard
shortcut Ctrl+Shift+F. The loaded Modelica classes can be searched by
typing any part of the class name.

Libraries Browser

To view the Libraries Browser click View->Windows->Libraries Browser.
Shows the list of loaded Modelica classes. Each item of the Libraries
Browser has right click menu for easy manipulation and usage of the
class. The classes are shown in a tree structure with name and icon. The
protected classes are not shown by default. If you want to see the
protected classes then you must enable the Show Protected Classes
option, see section General.

[image: _images/omedit-libraries-browser.png]
Figure 7 Libraries Browser.

Documentation Browser

Displays the HTML documentation of Modelica classes. It contains the
navigation buttons for moving forward and backward. To see documentation
of any class, right click the Modelica class in Libraries Browser and
choose View Documentation.

[image: _images/omedit-documentation-browser.png]
Figure 8 Documentation Browser.

Variables Browser

The class variables are structured in the form of the tree and are
displayed in the Variables Browser. Each variable has a checkbox.
Ticking the checkbox will plot the variable values. There is a find box
on the top for filtering the variable in the tree. The filtering can be
done using Regular Expression, Wildcard and Fixed String. The complete
Variables Browser can be collapsed and expanded using the Collapse All
and Expand All buttons.

The browser allows manipulation of changeable parameters for
Re-simulating a Model. It also displays the unit and
description of the variable.

[image: _images/omedit-variables-browser.png]
Figure 9 Variables Browser.

Messages Browser

Shows the list of errors. Following kinds of error can occur,

	Syntax

	Grammar

	Translation

	Symbolic

	Simulation

	Scripting

See section Messages for Messages Browser options.

Perspectives

The perspective tabs are loacted at the bottom right of the MainWindow:

	Welcome Perspective

	Modeling Perspective

	Plotting Perspective

Welcome Perspective

[image: _images/omedit-welcome.png]
Figure 10 OMEdit Welcome Perspective.

The Welcome Perspective shows the list of recent files and the list of
latest news from https://www.openmodelica.org/.
See Figure 10. The orientation of recent files and latest news can be
horizontal or vertical. User is allowed to show/hide the latest news.
See section General.

Modeling Perspective

The Modeling Perpective provides the interface where user can create and
design their models. See Figure 11.

[image: _images/omedit-modeling-perspective.png]
Figure 11 OMEdit Modeling Perspective.

The Modeling Perspective interface can be viewed in two different modes,
the tabbed view and subwindow view, see section General.

Plotting Perspective

The Plotting Perspective shows the simulation results of the models.
Plotting Perspective will automatically become active when the
simulation of the model is finished successfully. It will also become
active when user opens any of the OpenModelica’s supported result file.
Similar to Modeling Perspective this perspective can also be viewed in
two different modes, the tabbed view and subwindow view, see section
General.

[image: _images/omedit-plotting-perspective.png]
Figure 12 OMEdit Plotting Perspective.

Modeling a Model

Creating a New Modelica class

Creating a new Modelica class in OMEdit is rather straightforward.
Choose any of the following methods,

	Select File > New Modelica Class from the menu.

	Click on New Modelica Class toolbar button.

	
	Click on the Create New Modelica Class button available at the left

	bottom of Welcome Perspective.

	Press Ctrl+N.

Opening a Modelica File

Choose any of the following methods to open a Modelica file,

	Select File > Open Model/Library File(s) from the menu.

	Click on Open Model/Library File(s) toolbar button.

	
	Click on the Open Model/Library File(s) button available at the right

	bottom of Welcome Perspective.

	Press Ctrl+O.

Opening a Modelica File with Encoding

Select File > Open/Convert Modelica File(s) With Encoding from the menu.
It is also possible to convert files to UTF-8.

Model Widget

For each Modelica class one Model Widget is created. It has a statusbar
and a view area. The statusbar contains buttons for navigation between
the views and labels for information. The view area is used to display
the icon, diagram and text layers of Modelica class. See Figure 13.

[image: _images/omedit-model-widget.png]
Figure 13 Model Widget showing the Diagram View.

Adding Component Models

Drag the models from the Libraries Browser and drop them on either
Diagram or Icon View of Model Widget.

Making Connections

In order to connect one component model to another the user first needs
to enable the connect mode ([image: OMEdit connect mode icon]) from the toolbar.

Simulating a Model

The OMEdit Simulation Dialog can be launched by,

	
	Selecting Simulation > Simulation Setup from the menu. (requires a

	model to be active in ModelWidget)

	
	Clicking on the Simulation Setup toolbar button. (requires a model to

	be active in ModelWidget)

	
	Right clicking the model from the Libraries Browser and choosing

	Simulation Setup.

General Tab

	Start Time – the simulation start time.

	Stop Time – the simulation stop time.

	Number of Intervals – the simulation number of intervals.

	Interval – the length of one interval (i.e., stepsize)

	Method – the simulation solver. See section Integration Methods for solver details.

	Tolerance – the simulation tolerance.

	DASSL Options

	Compiler Flags (Optional) – the optional C compiler flags.

	Number of Processors – the number of processors used to build the simulation.

	Build Only – only builds the class.

	Launch Transformational Debugger – launches the transformational debugger.

	Launch Algorithmic Debugger – launches the algorithmic debugger.

Output Tab

	Output Format – the simulation result file output format.

	File Name (Optional) – the simulation result file name.

	Variable Filter (Optional).

	Protected Variables – adds the protected variables in result file.

	Equidistant Time Grid – output the internal steps given by dassl instead of interpolating results into an equidistant time grid as given by stepSize or numberOfIntervals

	Store Variables at Events – adds the variables at time events.

	Show Generated File – displays the generated files in a dialog box.

Simulation Flags Tab

	Model Setup File (Optional) – specifies a new setup XML file to the generated simulation code.

	Initialization Method (Optional) – specifies the initialization method.

	
	Equation System Initialization File (Optional) – specifies an

	external file for the initialization of the model.

	
	Equation System Initialization Time (Optional) – specifies a time

	for the initialization of the model.

	Clock (Optional) – the type of clock to use.

	Linear Solver (Optional) – specifies the linear solver method.

	Non Linear Solver (Optional) – specifies the nonlinear solver.

	
	Linearization Time (Optional) – specifies a time where the

	linearization of the model should be performed.

	
	Output Variables (Optional) – outputs the variables a, b and c at

	the end of the simulation to the standard output.

	Profiling – creates a profiling HTML file.

	CPU Time – dumps the cpu-time into the result file.

	Enable All Warnings – outputs all warnings.

	Logging (Optional)

	DASSL Solver Information – prints additional information about
dassl solver.

	Debug – prints additional debug information.

	Dynamic State Selection Information – outputs information about
dynamic state selection.

	Jacobians Dynamic State Selection Information – outputs jacobain of
the dynamic state selection.

	Event Iteration – additional information during event iteration.

	Verbose Event System – verbose logging of event system.

	Initialization – prints additional information during
initialization.

	Jacobians Matrix – outputs the jacobian matrix used by dassl.

	Non Linear Systems – logging for nonlinear systems.

	Verbose Non Linear Systems – verbose logging of nonlinear systems.

	Jacobians Non Linear Systems – outputs the jacobian of nonlinear
systems.

	Initialization Residuals – outputs residuals of the initialization.

	Simulation Process – additional information about simulation
process.

	Solver Process – additional information about solver process.

	Final Initialization Solution – final solution of the
initialization.

	Timer/Event/Solver Statistics – additional statistics about
timer/events/solver.

	Util.

	Zero Crossings – additional information about the zerocrossings.

	
	Additional Simulation Flags (Optional) – specify any other

	simulation flag.

Archived Simulations Tab

Shows the list of simulations already finished or running.
Double clicking on any of them opens the simulation output window.

Plotting the Simulation Results

Successful simulation of model produces the result file which contains
the instance variables that are candidate for plotting. Variables
Browser will show the list of such instance variables. Each variable has
a checkbox, checking it will plot the variable. See Figure 12.

Types of Plotting

The plotting type depends on the active Plot Window. By default the
plotting type is Time Plot.

Time Plot

Plots the variable over the simulation time. You can have multiple Time
Plot windows by clicking on New Plot Window toolbar button ([image: OMEdit New Plot Window Icon]).

Plot Parametric

Draws a two-dimensional parametric diagram, between variables x and y,
with y as a function of x. You can have multiple Plot Parametric
windows by clicking on the New Plot Parametric toolbar button ([image: OMEdit New Parametric Plot Window Icon]).

Re-simulating a Model

The Variables Browser allows manipulation of changeable
parameters for re-simulation.
After changing the parameter values user can click on the re-simulate
toolbar button ([image: OMEdit Re-simulate button]), or right click the model in Variables Browser and choose
re-simulate from the menu.

How to Create User Defined Shapes – Icons

Users can create shapes of their own by using the shape creation tools
available in OMEdit.

	
	Line Tool – Draws a line. A line is created with a minimum of two

	points. In order to create a line, the user first selects the
line tool from the toolbar and then click on the Icon/Diagram
View; this will start creating a line. If a user clicks again on
the Icon/Diagram View a new line point is created. In order to
finish the line creation, user has to double click on the
Icon/Diagram View.

	
	Polygon Tool – Draws a polygon. A polygon is created in a similar

	fashion as a line is created. The only difference between a line
and a polygon is that, if a polygon contains two points it will
look like a line and if a polygon contains more than two points
it will become a closed polygon shape.

	
	Rectangle Tool – Draws a rectangle. The rectangle only contains two

	points where first point indicates the starting point and the
second point indicates the ending the point. In order to create
rectangle, the user has to select the rectangle tool from the
toolbar and then click on the Icon/Diagram View, this click will
become the first point of rectangle. In order to finish the
rectangle creation, the user has to click again on the
Icon/Diagram View where he/she wants to finish the rectangle. The
second click will become the second point of rectangle.

	
	Ellipse Tool – Draws an ellipse. The ellipse is created in a

	similar way as a rectangle is created.

	Text Tool – Draws a text label.

	Bitmap Tool – Draws a bitmap container.

The shape tools are located in the toolbar. See Figure 14.

[image: _images/omedit-user-defined-shapes.png]
Figure 14 User defined shapes.

The user can select any of the shape tools and start drawing on the
Icon/Diagram View. The shapes created on the Diagram View of Model
Widget are part of the diagram and the shapes created on the Icon View
will become the icon representation of the model.

For example, if a user creates a model with name testModel and add a
rectangle using the rectangle tool and a polygon using the polygon tool,
in the Icon View of the model. The model’s Modelica Text will appear as
follows:

model testModel
 annotation(Icon(graphics = {Rectangle(rotation = 0, lineColor = {0,0,255}, fillColor = {0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.None, lineThickness = 0.25, extent = {{ -64.5,88},{63, -22.5}}),Polygon(points = {{ -47.5, -29.5},{52.5, -29.5},{4.5, -86},{ -47.5, -29.5}}, rotation = 0, lineColor = {0,0,255}, fillColor = {0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.None, lineThickness = 0.25)}));
end testModel;

In the above code snippet of testModel, the rectangle and a polygon are
added to the icon annotation of the model. Similarly, any user defined
shape drawn on a Diagram View of the model will be added to the diagram
annotation of the model.

Global head section in documentation

If you want to use same styles or same JavaScript for the classes contained inside a package then
you can define __OpenModelica_infoHeader annotation inside the Documentation annotation of a package.
For example,

package P
 model M
 annotation(Documentation(info="<html>
 Click here
 </html>"));
 end M;
 annotation(Documentation(__OpenModelica_infoHeader="
 <script type=\"text/javascript\">
 function HelloWorld() {
 alert(\"Hello World!\");
 }
 </script>"));
end P;

In the above example model M does not need to define the javascript function HelloWorld.
It is only defined once at the package level using the __OpenModelica_infoHeader and then all classes
contained in the package can use it.

In addition styles and JavaScript can be added from file locations using Modelica URIs.
Example:

package P
 model M
 annotation(Documentation(info="<html>
 Click here
 </html>"));
 end M;
 annotation(Documentation(__OpenModelica_infoHeader="
 <script type=\"text/javascript\">
 src=\"modelica://P/Resources/hello.js\">
 }
 </script>"));
end P;

Where the file Resources/hello.js then contains:

function HelloWorld() {
 alert("Hello World!");
}

Settings

OMEdit allows users to save several settings which will be remembered
across different sessions of OMEdit. The Options Dialog can be used for
reading and writing the settings.

General

	General

	Language – Sets the application language.

	Working Directory – Sets the application working directory.

	Toolbar Icon Size – Sets the size for toolbar icons.

	Preserve User’s GUI Customizations – If true then OMEdit will
remember its windows and toolbars positions and sizes.

	Terminal Command – Sets the terminal command.

	Terminal Command Arguments – Sets the terminal command arguments.

	Libraries Browser

	Library Icon Size – Sets the size for library icons.

	Show Protected Classes – Sets the application language.

	Modeling View Mode

	Tabbed View/SubWindow View – Sets the view mode for modeling.

	Default View

	Icon View/DiagramView/Modelica Text View/Documentation View – If no
preferredView annotation is defined then this setting is used to show
the respective view when user double clicks on the class in the
Libraries Browser.

	Enable Auto Save

	Auto Save interval – Sets the auto save interval value. The minimum
possible interval value is 60 seconds.

	Enable Auto Save for single classes – Enables the auto save for one
class saved in one file.

	Enable Auto Save for one file packages – Enables the auto save for
packages saved in one file.

	Welcome Page

	Horizontal View/Vertical View – Sets the view mode for welcome page.

	Show Latest News – if true then displays the latest news.

Libraries

	
	System Libraries – The list of system libraries that should be

	loaded every time OMEdit starts.

	
	Force loading of Modelica Standard Library – If true then Modelica

	and ModelicaReference will always load even if user has removed
them from the list of system libraries.

	
	User Libraries – The list of user libraries/files that should be

	loaded every time OMEdit starts.

Modelica Text Editor

	Tabs and Indentation

	Tab Policy – Sets the tab policy to either spaces or tabs only.

	Tab Size – Sets the tab size.

	Indent Size – Sets the indent size.

	Preserve Text Indentation – If true then uses diffModelicaFileListings API call otherwise uses the OMC pretty-printing.

	Syntax Highlight and Text Wrapping

	Enable Syntax Highlighting – Enable/Disable the syntax highlighting
for the Modelica Text Widget.

	Match Parentheses within Comments and Quotes – Enable/Disable the matching of parenthese
within comments and quotes.

	Enable Line Wrapping – Enable/Disable the line wrapping for the
Modelica Text Widget.

	Fonts and Colors

	Font Family – Contains the names list of available fonts.

	Font Size – Sets the font size.

	Items – List of categories used of syntax highlighting the code.

	Item Color – Sets the color for the selected item.

	Preview – Shows the demo of the syntax highlighting.

Graphical Views

	Extent

	Left – Defines the left extent point for the view.

	Bottom – Defines the bottom extent point for the view.

	Right – Defines the right extent point for the view.

	Top – Defines the top extent point for the view.

	Grid

	Horizontal – Defines the horizontal size of the view grid.

	Vertical – Defines the vertical size of the view grid.

	Component

	Scale factor – Defines the initial scale factor for the component

dragged on the view.

	Preserve aspect ratio – If true then the component’s aspect ratio

is preserved while scaling.

Simulation

	Simulation

	Matching Algorithm – sets the matching algorithm for simulation.

	Index Reduction Method – sets the index reduction method for
simulation.

	Target Language – sets the target language in which the code is generated.

	Target Compiler – sets the target compiler for compiling the generated code.

	OMC Flags – sets the omc flags for simulation.

	Save class before simulation – if ture then always saves the class
before running the simulation.

	Output

	Structured – Shows the simulation output in the form of tree
structure.

	Formatted Text – Shows the simulation output in the form of
formatted text.

Messages

	General

	Output Size - Specifies the maximum number of rows the Messages
Browser may have. If there are more rows then the rows are removed
from the beginning.

	Reset messages number before simulation – Resets the messages
counter before starting the simulation.

	Font and Colors

	Font Family – Sets the font for the messages.

	Font Size – Sets the font size for the messages.

	Notification Color – Sets the text color for notification messages.

	Warning Color – Sets the text color for warning messages.

	Error Color – Sets the text color for error messages.

Notifications

	Notifications

	Always quit without prompt – If true then OMEdit will quit without
prompting the user.

	Show item dropped on itself message – If true then a message will
pop-up when a class is dragged and dropped on itself.

	Show model is defined as partial and component will be added as
replaceable message – If true then a message will pop-up when a
partial class is added to another class.

	Show component is declared as inner message – If true then a
message will pop-up when an inner component is added to another
class.

	Show save model for bitmap insertion message – If true then a
message will pop-up when user tries to insert a bitmap from a local
directory to an unsaved class.

Line Style

	Line Style

	Color – Sets the line color.

	Pattern – Sets the line pattern.

	Thickness – Sets the line thickness.

	Start Arrow – Sets the line start arrow.

	End Arrow – Sets the line end arrow.

	Arrow Size – Sets the start and end arrow size.

	Smooth – If true then the line is drawn as a Bezier curve.

Fill Style

	Fill Style

	Color – Sets the fill color.

	Pattern – Sets the fill pattern.

Plotting

	General

	Auto Scale – sets whether to auto scale the plots or not.

	Plotting View Mode

	Tabbed View/SubWindow View – Sets the view mode for plotting.

	Curve Style

	Pattern – Sets the curve pattern.

	Thickness – Sets the curve thickness.

Figaro

	Figaro

	Figaro Library – the Figaro library file path.

	Tree generation options – the Figaro tree generation options file path.

	Figaro Processor – the Figaro processor location.

Debugger

	Algorithmic Debugger

	GDB Path – the gnu debugger path

	GDB Command Timeout – timeout for gdb commands.

	GDB Output Limit – limits the GDB output to N characters.

	Display C frames – if true then shows the C stack frames.

	Display unknown frames – if true then shows the unknown stack
frames. Unknown stack frames means frames whose file path is unknown.

	Clear old output on a new run – if true then clears the output
window on new run.

	Clear old log on new run – if true then clears the log window on
new run.

	Transformational Debugger

	Always show Transformational Debugger after compilation – if true
then always open the Transformational Debugger window after model
compilation.

	Generate operations in the info xml – if true then adds the
operations information in the info xml file.

FMI

	Export

	Version

	1.0 – Sets the FMI export version to 1.0

	2.0 – Sets the FMI export version to 2.0

	Type

	Model Exchange – Sets the FMI export type to Model Exchange.

	Co-Simulation – Sets the FMI export type to Co-Simulation.

	Model Exchange and Co-Simulation – Sets the FMI export type to Model Exchange and Co-Simulation.

	FMU Name – Sets a prefix for generated FMU file.

Debugger

For debugging capability, see Debugging.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

2D Plotting

This chapter covers the 2D plotting available in OpenModelica via
OMNotebook, OMShell and command line script. The plotting is based on
OMPlot application.

Example

class HelloWorld
 Real x(start = 1, fixed = true);
 parameter Real a = 1;
equation
 der(x) = - a * x;
end HelloWorld;

To create a simple time plot the above model HelloWorld is simulated. To
reduce the amount of simulation data in this example the number of
intervals is limited with the argument numberOfIntervals=5. The
simulation is started with the command below.

>>> simulate(HelloWorld, outputFormat="csv", startTime=0, stopTime=4, numberOfIntervals=5)
record SimulationResult
 resultFile = "«DOCHOME»/HelloWorld_res.csv",
 simulationOptions = "startTime = 0.0, stopTime = 4.0, numberOfIntervals = 5, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'HelloWorld', options = '', outputFormat = 'csv', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 0.004746777000000001,
 timeBackend = 0.003080168,
 timeSimCode = 0.057667449,
 timeTemplates = 0.00355092,
 timeCompile = 0.228620355,
 timeSimulation = 0.007206733000000001,
 timeTotal = 0.304991645
end SimulationResult;

When the simulation is finished the file HelloWorld_res.csv contains the
simulation data:

Listing 1 HelloWorld_res.csv

"time","x","der(x)"
0,1,-1
0.8,0.4493289092712475,-0.4493289092712475
1.6,0.2018973974273906,-0.2018973974273906
2.4,0.09071896372718975,-0.09071896372718975
3.2,0.04076293845066793,-0.04076293845066793
4,0.01831609502171534,-0.01831609502171534
4,0.01831609502171534,-0.01831609502171534

Diagrams are now created with the new OMPlot program by using the
following plot command:

Figure 15 Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, for example using the
default 500 intervals, a much smoother plot can be obtained.
Note that the default solver method dassl has more internal points than the output points in the initial plot.
The results are identical, except the detailed plot has a smoother curve.

>>> 0==system("./HelloWorld -override stepSize=0.008")
true
>>> res:=strtok(readFile("HelloWorld_res.csv"), "\n");
>>> res[end]
"4,0.01831609502171534,-0.01831609502171534"

Figure 16 Simple 2D plot of the HelloWorld example with a larger number of output points.

Plot Command Interface

Plot command have a number of optional arguments to
further customize the the resulting diagram.

>>> list(OpenModelica.Scripting.plot,interfaceOnly=true)
"function plot
 input VariableNames vars \"The variables you want to plot\";
 input Boolean externalWindow = false \"Opens the plot in a new plot window\";
 input String fileName = \"<default>\" \"The filename containing the variables. <default> will read the last simulation result\";
 input String title = \"\" \"This text will be used as the diagram title.\";
 input String grid = \"detailed\" \"Sets the grid for the plot i.e simple, detailed, none.\";
 input Boolean logX = false \"Determines whether or not the horizontal axis is logarithmically scaled.\";
 input Boolean logY = false \"Determines whether or not the vertical axis is logarithmically scaled.\";
 input String xLabel = \"time\" \"This text will be used as the horizontal label in the diagram.\";
 input String yLabel = \"\" \"This text will be used as the vertical label in the diagram.\";
 input Real xRange[2] = {0.0, 0.0} \"Determines the horizontal interval that is visible in the diagram. {0,0} will select a suitable range.\";
 input Real yRange[2] = {0.0, 0.0} \"Determines the vertical interval that is visible in the diagram. {0,0} will select a suitable range.\";
 input Real curveWidth = 1.0 \"Sets the width of the curve.\";
 input Integer curveStyle = 1 \"Sets the style of the curve. SolidLine=1, DashLine=2, DotLine=3, DashDotLine=4, DashDotDotLine=5, Sticks=6, Steps=7.\";
 input String legendPosition = \"top\" \"Sets the POSITION of the legend i.e left, right, top, bottom, none.\";
 input String footer = \"\" \"This text will be used as the diagram footer.\";
 input Boolean autoScale = true \"Use auto scale while plotting.\";
 input Boolean forceOMPlot = false \"if true launches OMPlot and doesn't call callback function even if it is defined.\";
 output Boolean success \"Returns true on success\";
end plot;"

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Debugging

There are two main ways to debug Modelica code, the
transformations browser, which shows the
transformations OpenModelica performs on the equations.
There is also a debugger for debugging of algorithm sections and functions.

The Equation-based Debugger

This section gives a short description how to get started using the
equation-based debugger in OMEdit.

Enable Tracing Symbolic Transformations

This enables tracing symbolic transformations of equations. It is
optional but strongly recommended in order to fully use the debugger.
The compilation time overhead from having this tracing on is less than
1%, however, in addition to that, some time is needed for the system to
write the xml file containing the transformation tracing information.

Enable +d=infoXmlOperations in Tools->Options->Simulation (see section
Simulation) OR alternatively click on the checkbox Generate operations in
the info xml in Tools->Options->Debugger (see section Debugger) which
performs the same thing.

This adds all the transformations performed by OpenModelica on the
equations and variables stored in the model_info.xml file. This is
necessary for the debugger to be able to show the whole path from the
source equation(s) to the position of the bug.

Load a Model to Debug

Load an interesting model. We will use the package Debugging.mo [https://github.com/OpenModelica/OMCompiler/blob/master/Examples/Debugging.mo]
since it contains suitable, broken models to demonstrate common errors.

Simulate and Start the Debugger

Select and simulate the model as usual. For example, if using the
Debugging package, select the model
Debugging.Chattering.ChatteringEvents1. If there is an error, you will
get a clickable link that starts the debugger. If the user interface is
unresponsive or the running simulation uses too much processing power,
click cancel simulation first.

[image: _images/omedit-debug-more.png]
Figure 17 Simulating the model.

Use the Transformation Debugger for Browsing

Use the transformation debugger. It opens on the equation where the
error was found. You can browse through the dependencies (variables that
are defined by the equation, or the equation is dependent on), and
similar for variables. The equations and variables form a bipartite
graph that you can walk.

If the +d=infoXmlOperations was used or you clicked the “generate
operations” button, the operations performed on the equations and
variables can be viewed. In the example package, there are not a lot of
operations because the models are small.

Try some larger models, e.g. in the MultiBody library or some other
library, to see more operations with several transformation steps
between different versions of the relevant equation(s). If you do not
trigger any errors in a model, you can still open the debugger, using
File->Open Transformations File (model_info.json).

[image: _images/omedit-transformationsbrowser.png]
Figure 18 Transfomations Browser.

The Algorithmic Debugger

This section gives a short description how to get started using the
algorithmic debugger in OMEdit. See section Simulation for further details
of debugger options/settings. The Algorithmic Debugger window can be
launched from Tools->Windows->Algorithmic Debugger.

Adding Breakpoints

There are two ways to add the breakpoints,

	
	Click directly on the line number in Text View, a red circle is

	created indicating a breakpoint as shown in Figure 19.

	
	Open the Algorithmic Debugger window and add a breakpoint using the

	right click menu of Breakpoints Browser window.

[image: _images/omedit-add-breakpoint.png]
Figure 19 Adding breakpoint in Text View.

Start the Algorithmic Debugger

You should add breakpoints before starting the debugger because
sometimes the simulation finishes quickly and you won’t get any chance
to add the breakpoints.

There are four ways to start the debugger,

	
	Open the Simulation Setup and click on Launch Algorithmic Debugger

	before pressing Simulate.

	
	Right click the model in Libraries Browser and select Simulate with

	Algorithmic Debugger.

	
	Open the Algorithmic Debugger window and from menu select

	Debug-> Debug Configurations.

	
	Open the Algorithmic Debugger window and from menu select

	Debug-> Attach to Running Process.

Debug Configurations

If you already have a simulation executable with debugging symbols
outside of OMEdit then you can use the Debug->Debug Configurations
option to load it.

The debugger also supports MetaModelica data structures so one can debug
omc executable. Select omc executable as program and write the name of
the mos script file in Arguments.

[image: _images/omedit-debug-config.png]
Figure 20 Debug Configurations.

Attach to Running Process

If you already have a running simulation executable with debugging
symbols outside of OMEdit then you can use the Debug->Attach to Running
Process option to attach the debugger with it. Figure 21 shows the
Attach to Running Process dialog. The dialog shows the list of processes
running on the machine. The user selects the program that he/she wish to
debug. OMEdit debugger attaches to the process.

[image: _images/omedit-attach-to-process.png]
Figure 21 Attach to Running Process.

Using the Algorithmic Debugger Window

Figure 22 shows the Algorithmic Debugger window. The window contains
the following browsers,

	
	Stack Frames Browser – shows the list of frames. It contains the

	program context buttons like resume, interrupt, exit, step over,
step in, step return. It also contains a threads drop down which
allows switching between different threads.

	
	BreakPoints Browser – shows the list of breakpoints. Allows

	adding/editing/removing breakpoints.

	
	Locals Browser – Shows the list of local variables with values.

	Select the variable and the value will be shown in the bottom
right window. This is just for convenience because some variables
might have long values.

	
	Debugger CLI – shows the commands sent to gdb and their responses.

	This is for advanced users who want to have more control of the
debugger. It allows sending commands to gdb.

	Output Browser – shows the output of the debugged executable.

[image: _images/omedit-algorithmic-debugger.png]
Figure 22 Algorithmic Debugger.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

OMNotebook with DrModelica and DrControl

This chapter covers the OpenModelica electronic notebook subsystem,
called OMNotebook, together with the DrModelica tutoring system for
teaching Modelica, and DrControl for teaching control together with
Modelica. Both are using such notebooks.

Interactive Notebooks with Literate Programming

Interactive Electronic Notebooks are active documents that may contain
technical computations and text, as well as graphics. Hence, these
documents are suitable to be used for teaching and experimentation,
simulation scripting, model documentation and storage, etc.

Mathematica Notebooks

Literate Programming [Knu84] is a form of
programming where programs are integrated with documentation in the same
document. Mathematica notebooks [Wol96] is one of the first
WYSIWYG systems that support Literate
Programming. Such notebooks are used, e.g., in the MathModelica modeling
and simulation environment, see e.g. Figure 23 below
and Chapter 19 in [Fri04].

OMNotebook

The OMNotebook software [Axe05][Fernstrom06]
is a new open source free software that gives an
interactive WYSIWYG realization of
Literate Programming, a form of programming where programs are
integrated with documentation in the same document.

The OMNotebook facility is actually an interactive WYSIWYG
realization of Literate Programming, a form of programming where programs are
integrated with documentation in the same document.
OMNotebook is a simple open-source software tool for an electronic notebook supporting Modelica.

A more advanced electronic notebook tool, also supporting mathematical
typesetting and many other facilities, is provided by Mathematica
notebooks in the MathModelica environment, see Figure 23.

Figure 23 Examples of Mathematica notebooks in the MathModelica modeling and
simulation environment.

Traditional documents, e.g. books and reports, essentially always have a
hierarchical structure. They are divided into sections, subsections,
paragraphs, etc. Both the document itself and its sections usually have
headings as labels for easier navigation. This kind of structure is also
reflected in electronic notebooks. Every notebook corresponds to one
document (one file) and contains a tree structure of cells. A cell can
have different kinds of contents, and can even contain other cells. The
notebook hierarchy of cells thus reflects the hierarchy of sections and
subsections in a traditional document such as a book.

DrModelica Tutoring System – an Application of OMNotebook

Understanding programs is hard, especially code written by someone else.
For educational purposes it is essential to be able to show the source
code and to give an explanation of it at the same time.

Moreover, it is important to show the result of the source code’s
execution. In modeling and simulation it is also important to have the
source code, the documentation about the source code, the execution
results of the simulation model, and the documentation of the simulation
results in the same document. The reason is that the problem solving
process in computational simulation is an iterative process that often
requires a modification of the original mathematical model and its
software implementation after the interpretation and validation of the
computed results corresponding to an initial model.

Most of the environments associated with equation-based modeling
languages focus more on providing efficient numerical algorithms rather
than giving attention to the aspects that should facilitate the learning
and teaching of the language. There is a need for an environment
facilitating the learning and understanding of Modelica. These are the
reasons for developing the DrModelica teaching material for Modelica and
for teaching modeling and simulation.

An earlier version of DrModelica was developed using the MathModelica
(now Wolfram SystemModeler) environment. The rest of this chapter is
concerned with the OMNotebook version of DrModelica and on the
OMNotebook tool itself.

DrModelica has a hierarchical structure represented as notebooks. The
front-page notebook is similar to a table of contents that holds all
other notebooks together by providing links to them. This particular
notebook is the first page the user will see (Figure 24).

[image: _images/omnotebook-drmodelica.png]
Figure 24 The front-page notebook of the OMNotebook version of the DrModelica
tutoring system.

In each chapter of DrModelica the user is presented a short summary of
the corresponding chapter of the Modelica book [Fri04]. The
summary introduces some keywords, being hyperlinks that will lead the
user to other notebooks describing the keywords in detail.

[image: _images/omnotebook-helloworld.png]
Figure 25 The HelloWorld class simulated and plotted using the OMNotebook version of DrModelica.

Now, let us consider that the link “HelloWorld” in DrModelica
Section is clicked by the user. The new HelloWorld notebook (see Figure 25),
to which the user is being linked, is not only a textual
description but also contains one or more examples explaining the
specific keyword. In this class, HelloWorld, a differential equation is
specified.

No information in a notebook is fixed, which implies that the user can
add, change, or remove anything in a notebook. Alternatively, the user
can create an entirely new notebook in order to write his/her own
programs or copy examples from other notebooks. This new notebook can be
linked from existing notebooks.

[image: _images/omnotebook-drmodelica-ch9.png]
Figure 26 DrModelica Chapter on Algorithms and Functions in the main page of the
OMNotebook version of DrModelica.

When a class has been successfully evaluated the user can simulate and
plot the result, as previously depicted in Figure 25 for the simple
HelloWorld example model.

After reading a chapter in DrModelica the user can immediately practice
the newly acquired information by doing the exercises that concern the
specific chapter. Exercises have been written in order to elucidate
language constructs step by step based on the pedagogical assumption
that a student learns better “using the strategy of learning by
doing”. The exercises consist of either theoretical questions or
practical programming assignments. All exercises provide answers in
order to give the user immediate feedback.

Figure 26 shows part of Chapter 9 of the
DrModelica teaching material.
Here the user can read about language constructs, like algorithm sections,
when-statements, and reinit equations, and then practice these constructs
by solving the exercises corresponding to the recently studied section.

[image: _images/omnotebook-drmodelica-ex1.png]
Figure 27 Exercise 1 in Chapter 9 of DrModelica.

Exercise 1 from Chapter 9 is shown in Figure 27.
In this exercise the user has the opportunity to practice different
language constructs and then compare the solution to the answer for the exercise.
Notice that the answer is not visible until the Answer section is expanded.
The answer is shown in Figure 28.

[image: _images/omnotebook-drmodelica-ex1-answer.png]
Figure 28 The answer section to Exercise 1 in Chapter 9 of DrModelica.

DrControl Tutorial for Teaching Control Theory

DrControl is an interactive OMNotebook document aimed at teaching
control theory. It is included in the OpenModelica distribution and
appears under the directory:

>>> getInstallationDirectoryPath() + "/share/omnotebook/drcontrol"
"«OPENMODELICAHOME»/share/omnotebook/drcontrol"

The front-page of DrControl resembles a linked table of content that can
be used as a navigation center. The content list contains topics like:

	Getting started

	The control problem in ordinary life

	Feedback loop

	Mathematical modeling

	Transfer function

	Stability

	Example of controlling a DC-motor

	Feedforward compensation

	State-space form

	State observation

	Closed loop control system.

	Reconstructed system

	Linear quadratic optimization

	Linearization

Each entry in this list leads to a new notebook page where either the
theory is explained with Modelica examples or an exercise with a
solution is provided to illustrate the background theory. Below we show
a few sections of DrControl.

Feedback Loop

One of the basic concepts of control theory is using feedback loops
either for neutralizing the disturbances from the surroundings or a
desire for a smoother output.

In Figure 29, control of a simple car model is illustrated where the
car velocity on a road is controlled, first with an open loop control,
and then compared to a closed loop system with a feedback loop. The car
has a mass m, velocity y, and aerodynamic coefficient α. The θ is the
road slope, which in this case can be regarded as noise.

[image: _images/omnotebook-feedback.png]
Figure 29 Feedback loop.

Lets look at the Modelica model for the open loop controlled car:

[image: m \dot y = u - \alpha y - m g * sin(\theta)]

model noFeedback
 import SI = Modelica.SIunits;
 SI.Velocity y; // output signal without noise, theta = 0 -> v(t) = 0
 SI.Velocity yNoise; // output signal with noise, theta <> 0 -> v(t) <> 0
 parameter SI.Mass m = 1500;
 parameter Real alpha = 200;
 parameter SI.Angle theta = 5*3.141592/180;
 parameter SI.Acceleration g = 9.82;
 SI.Force u;
 SI.Velocity r=20;
equation
 m*der(y)=u-alpha*y; // signal without noise
 m*der(yNoise)=u-alpha*yNoise-m*g*sin(theta); // with noise
 u = 250*r;
end noFeedback;

By applying a road slope angle different from zero the car velocity is
influenced which can be regarded as noise in this model. The output
signal in Figure 30 is stable but an overshoot can be observed
compared to the reference signal. Naturally the overshoot is not desired
and the student will in the next exercise learn how to get rid of this
undesired behavior of the system.

>>> loadModel(Modelica)
true
>>> simulate(noFeedback, stopTime=100)
record SimulationResult
 resultFile = "«DOCHOME»/noFeedback_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 100.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'noFeedback', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 0.276351157,
 timeBackend = 0.005117208000000001,
 timeSimCode = 0.05031228899999995,
 timeTemplates = 0.003951804000000001,
 timeCompile = 0.226089156,
 timeSimulation = 0.007191418000000001,
 timeTotal = 0.569142236
end SimulationResult;

Warning

Warning: The initial conditions are not fully specified. Use +d=initialization for more information.

Figure 30 Open loop control example.

The closed car model with a proportional regulator is shown below:

[image: u = K*(r-y)]

model withFeedback
 import SI = Modelica.SIunits;
 SI.Velocity y; // output signal with feedback link and without noise, theta = 0 -> v(t) = 0
 SI.Velocity yNoise; // output signal with feedback link and noise, theta <> 0 -> v(t) <> 0
 parameter SI.Mass m = 1500;
 parameter Real alpha = 250;
 parameter SI.Angle theta = 5*3.141592/180;
 parameter SI.Acceleration g = 9.82;
 SI.Force u;
 SI.Force uNoise;
 SI.Velocity r=20;
equation
 m*der(y)=u-alpha*y;
 m*der(yNoise)=uNoise-alpha*yNoise-m*g*sin(theta);
 u = 5000*(r-y);
 uNoise = 5000*(r-yNoise);
end withFeedback;

By using the information about the current level of the output signal
and re-tune the regulator the output quantity can be controlled towards
the reference signal smoothly and without an overshoot, as shown in
Figure 31.

In the above simple example the flat modeling approach was adopted since
it was the fastest one to quickly obtain a working model. However, one
could use the object oriented approach and encapsulate the car and
regulator models in separate classes with the Modelica connector
mechanism in between.

>>> loadModel(Modelica)
true
>>> simulate(withFeedback, stopTime=10)
record SimulationResult
 resultFile = "«DOCHOME»/withFeedback_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'withFeedback', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 0.248624309,
 timeBackend = 0.003581093,
 timeSimCode = 0.05015043600000001,
 timeTemplates = 0.004219965,
 timeCompile = 0.213396868,
 timeSimulation = 0.006775702000000001,
 timeTotal = 0.5268408010000001
end SimulationResult;

Warning

Warning: The initial conditions are not fully specified. Use +d=initialization for more information.

Figure 31 Closed loop control example.

Mathematical Modeling with Characteristic Equations

In most systems the relation between the inputs and outputs can be
described by a linear differential equation. Tearing apart the solution
of the differential equation into homogenous and particular parts is an
important technique taught to the students in engineering courses, also
illustrated in Figure 32.

[image: {{\partial ^{n}y}\over{\partial t^n}} + a_1 {{\partial ^{n-1}y}\over{\partial t^{n-1}}} + \ldots + a_n y = b_0 {{\partial ^{m}u} \over {\partial t^m}} + \ldots + b_{m-1} {{\partial u}\over{\partial t}} + b_m u]

Now let us examine a second order system:

[image: \ddot y + a_1 \dot y + a_2 y = 1]

model NegRoots
 Real y;
 Real der_y;
 parameter Real a1 = 3;
 parameter Real a2 = 2;
equation
 der_y = der(y);
 der(der_y) + a1*der_y + a2*y = 1;
end NegRoots;

Choosing different values for a1 and a2 leads to
different behavior as shown in Figure 33 and Figure 34.

[image: _images/omnotebook-mathematical-modeling-with-characteristic-equation.png]
Figure 32 Mathematical modeling with characteristic equation.

In the first example the values of a1 and a2 are
chosen in such way that the characteristic equation has negative real
roots and thereby a stable output response, see Figure 33.

>>> simulate(NegRoots, stopTime=10)
record SimulationResult
 resultFile = "«DOCHOME»/NegRoots_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'NegRoots', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 0.2276404729999999,
 timeBackend = 0.001995515,
 timeSimCode = 0.057163073,
 timeTemplates = 0.003687522,
 timeCompile = 0.265781848,
 timeSimulation = 0.013530099,
 timeTotal = 0.569872906
end SimulationResult;

Warning

Warning: The initial conditions are not fully specified. Use +d=initialization for more information.

Figure 33 Characteristic equation with real negative roots.

The importance of the sign of the roots in the characteristic equation
is illustrated in Figure 33 and
Figure 34, e.g., a stable system
with negative real roots and an unstable system with positive imaginary
roots resulting in oscillations.

model ImgPosRoots
 Real y;
 Real der_y;
 parameter Real a1 = -2;
 parameter Real a2 = 10;
equation
 der_y = der(y);
 der(der_y) + a1*der_y + a2*y = 1;
end ImgPosRoots;

>>> simulate(ImgPosRoots, stopTime=10)
record SimulationResult
 resultFile = "«DOCHOME»/ImgPosRoots_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'ImgPosRoots', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 0.264817264,
 timeBackend = 0.001702554,
 timeSimCode = 0.04986303600000001,
 timeTemplates = 0.003532124,
 timeCompile = 0.221572349,
 timeSimulation = 0.007608963000000001,
 timeTotal = 0.549167738
end SimulationResult;

Warning

Warning: The initial conditions are not fully specified. Use +d=initialization for more information.

Figure 34 Characteristic equation with imaginary roots with positive real part.

[image: _images/omnotebook-step-pulse.png]
Figure 35 Step and pulse (weight function) response.

The theory and application of Kalman filters is also explained in the
interactive course material.

[image: _images/omnotebook-theory-kalman.png]
Figure 36 Theory background about Kalman filter.

In reality noise is present in almost every physical system under study
and therefore the concept of noise is also introduced in the course
material, which is purely Modelica based.

[image: _images/omnotebook-kalman-noisy-feedback.png]
Figure 37 Comparison of a noisy system with feedback link in DrControl.

OpenModelica Notebook Commands

OMNotebook currently supports the commands and concepts that are
described in this section.

Cells

Everything inside an OMNotebook document is made out of cells. A cell
basically contains a chunk of data. That data can be text, images, or
other cells. OMNotebook has four types of cells: headercell, textcell,
inputcell, and groupcell. Cells are ordered in a tree structure, where
one cell can be a parent to one or more additional cells. A tree view is
available close to the right border in the notebook window to display
the relation between the cells.

	
	Textcell – This cell type is used to display ordinary text and

	images. Each textcell has a style that specifies how text is
displayed. The cell´s style can be changed in the menu
Format->Styles, example of different styles are: Text, Title, and
Subtitle. The Textcell type also has support for following links
to other notebook documents.

	
	Inputcell – This cell type has support for syntax highlighting and

	evaluation. It is intended to be used for writing program code,
e.g. Modelica code. Evaluation is done by pressing the key
combination Shift+Return or Shift+Enter. All the text in the cell
is sent to OMC (OpenModelica Compiler/interpreter), where the
text is evaluated and the result is displayed below the
inputcell. By double-clicking on the cell marker in the tree
view, the inputcell can be collapsed causing the result to be
hidden.

	
	Latexcell – This cell type has support for evaluation of latex scripts.

	It is intended to be mainly used for writing mathematical equations and
formulas for advanced documentation in OMNotebook. Each Latexcell supports
a maximum of one page document output.To evaluate this cell, latex must be
installed in your system.The users can copy and paste the latex scripts and
start the evaluation.Evaluation is done by pressing the key
combination Shift+Return or Shift+Enter or the green color eval button
present in the toolbar. The script in the cell is sent to latex compiler, where it
is evaluated and the output is displayed hiding the latex source. By double-clicking
on the cell marker in the tree view,the latex source is displayed for further modification.

	
	Groupcell – This cell type is used to group together other cell. A

	groupcell can be opened or closed. When a groupcell is opened all
the cells inside the groupcell are visible, but when the
groupcell is closed only the first cell inside the groupcell is
visible. The state of the groupcell is changed by the user
double-clicking on the cell marker in the tree view. When the
groupcell is closed the marker is changed and the marker has an
arrow at the bottom.

Cursors

An OMNotebook document contains cells which in turn contain text. Thus,
two kinds of cursors are needed for positioning, text cursor and cell
cursor:

	
	Textcursor – A cursor between characters in a cell, appearing as a

	small vertical line. Position the cursor by clicking on the text
or using the arrow buttons.

	
	Cellcursor – This cursor shows which cell currently has the input

	focus. It consists of two parts. The main cellcursor is basically
just a thin black horizontal line below the cell with input
focus. The cellcursor is positioned by clicking on a cell,
clicking between cells, or using the menu item Cell->Next Cell or
Cell->Previous Cell. The cursor can also be moved with the key
combination Ctrl+Up or Ctrl+Down. The dynamic cellcursor is a
short blinking horizontal line. To make this visible, you must
click once more on the main cellcursor (the long horizontal
line). NOTE: In order to paste cells at the cellcursor, the
dynamic cellcursor must be made active by clicking on the main
cellcursor (the horizontal line).

Selection of Text or Cells

To perform operations on text or cells we often need to select a range
of characters or cells.

	
	Select characters – There are several ways of selecting characters,

	e.g. double-clicking on a word, clicking and dragging the mouse,
or click followed by a shift-click at an adjacent positioin
selects the text between the previous click and the position of
the most recent shift-click.

	
	Select cells – Cells can be selected by clicking on them. Holding

	down Ctrl and clicking on the cell markers in the tree view
allows several cells to be selected, one at a time. Several cells
can be selected at once in the tree view by holding down the
Shift key. Holding down Shift selects all cells between last
selected cell and the cell clicked on. This only works if both
cells belong to the same groupcell.

File Menu

The following file related operations are available in the file menu:

	
	Create a new notebook – A new notebook can be created using the

	menu File->New or the key combination Ctrl+N. A new document
window will then open, with a new document inside.

	
	Open a notebook – To open a notebook use File->Open in the menu or

	the key combination Ctrl+O. Only files of the type .onb or .nb
can be opened. If a file does not follow the OMNotebook format or
the FullForm Mathematica Notebook format, a message box is
displayed telling the user what is wrong. Mathematica Notebooks
must be converted to fullform before they can be opened in
OMNotebook.

	
	Save a notebook – To save a notebook use the menu item File->Save

	or File->Save As. If the notebook has not been saved before the
save as dialog is shown and a filename can be selected.
OMNotebook can only save in xml format and the saved file is not
compatible with Mathematica. Key combination for save is Ctrl+S
and for save as Ctrl+Shift+S. The saved file by default obtains
the file extension .onb.

	
	Print – Printing a document to a printer is done by pressing the

	key combination Ctrl+P or using the menu item File->Print. A
normal print dialog is displayed where the usually properties can
be changed.

	
	Import old document – Old documents, saved with the old version of

	OMNotebook where a different file format was used, can be opened
using the menu item File->Import->Old OMNotebook file. Old
documents have the extension .xml.

	
	Export text – The text inside a document can be exported to a text

	document. The text is exported to this document without almost
any structure saved. The only structure that is saved is the cell
structure. Each paragraph in the text document will contain text
from one cell. To use the export function, use menu item
File->Export->Pure Text.

	
	Close a notebook window – A notebook window can be closed using the

	menu item File->Close or the key combination Ctrl+F4. Any unsaved
changes in the document are lost when the notebook window is
closed.

	
	Quitting OMNotebook – To quit OMNotebook, use menu item File->Quit

	or the key combination Crtl+Q. This closes all notebook windows;
users will have the option of closing OMC also. OMC will not
automatically shutdown because other programs may still use it.
Evaluating the command quit() has the same result as exiting
OMNotebook.

Edit Menu

	
	Editing cell text – Cells have a set of of basic editing functions.

	The key combination for these are: Undo (Ctrl+Z), Redo (Ctrl+Y),
Cut (Ctrl+X), Copy (Ctrl+C) and Paste (Ctrl+V). These functions
can also be accessed from the edit menu; Undo (Edit->Undo), Redo
(Edit->Redo), Cut (Edit->Cut), Copy (Edit->Copy) and Paste
(Edit->Paste). Selection of text is done in the usual way by
double-clicking, triple-clicking (select a paragraph), dragging
the mouse, or using (Ctrl+A) to select all text within the cell.

	
	Cut cell – Cells can be cut from a document with the menu item

	Edit->Cut or the key combination Ctrl+X. The cut function will
always cut cells if cells have been selected in the tree view,
otherwise the cut function cuts text.

	
	Copy cell – Cells can be copied from a document with the menu item

	Edit->Copy or the key combination Ctrl+C. The copy function will
always copy cells if cells have been selected in the tree view,
otherwise the copy function copy text.

	
	Paste cell – To paste copied or cut cells the cell cursor must be

	selected in the location where the cells should be pasted. This
is done by clicking on the cell cursor. Pasteing cells is done
from the menu Edit->Paste or the key combination Ctrl+V. If the
cell cursor is selected the paste function will always paste
cells. OMNotebook share the same application-wide clipboard.
Therefore cells that have been copied from one document can be
pasted into another document. Only pointers to the copied or cut
cells are added to the clipboard, thus the cell that should be
pasted must still exist. Consequently a cell can not be pasted
from a document that has been closed.

	
	Find – Find text string in the current notebook, with the options

	match full word, match cell, search within closed cells. Short
command Ctrl+F.

	
	Replace – Find and replace text string in the current notebook,

	with the options match full word, match cell, search+replace
within closed cells. Short command Ctrl+H.

	
	View expression – Text in a cell is stored internally as a subset

	of HTML code and the menu item Edit->View Expression let the user
switch between viewing the text or the internal HTML
representation. Changes made to the HTML code will affect how the
text is displayed.

Cell Menu

	
	Add textcell – A new textcell is added with the menu item Cell->Add

	Cell (previous cell style) or the key combination Alt+Enter. The
new textcell gets the same style as the previous selected cell
had.

	
	Add inputcell – A new inputcell is added with the menu item

	Cell->Add Inputcell or the key combination Ctrl+Shift+I.

	
	Add latexcell – A new latexcell is added with the menu item

	Cell->Add Latexcell or the key combination Ctrl+Shift+E.

	
	Add groupcell – A new groupcell is inserted with the menu item

	Cell->Groupcell or the key combination Ctrl+Shift+G. The selected
cell will then become the first cell inside the groupcell.

	
	Ungroup groupcell – A groupcell can be ungrouped by selecting it in

	the tree view and using the menu item Cell->Ungroup Groupcell or
by using the key combination Ctrl+Shift+U. Only one groupcell at
a time can be ungrouped.

	
	Split cell – Spliting a cell is done with the menu item Cell->Split

	cell or the key combination Ctrl+Shift+P. The cell is splited at
the position of the text cursor.

	
	Delete cell – The menu item Cell->Delete Cell will delete all cells

	that have been selected in the tree view. If no cell is selected
this action will delete the cell that have been selected by the
cellcursor. This action can also be called with the key
combination Ctrl+Shift+D or the key Del (only works when cells
have been selected in the tree view).

	
	Cellcursor – This cell type is a special type that shows which cell

	that currently has the focus. The cell is basically just a thin
black line. The cellcursor is moved by clicking on a cell or
using the menu item Cell->Next Cell or Cell->Previous Cell. The
cursor can also be moved with the key combination Ctrl+Up or
Ctrl+Down.

Format Menu

	
	Textcell – This cell type is used to display ordinary text and

	images. Each textcell has a style that specifies how text is
displayed. The cells style can be changed in the menu
Format->Styles, examples of different styles are: Text, Title,
and Subtitle. The Textcell type also have support for following
links to other notebook documents.

	
	Text manipulation – There are a number of different text

	manipulations that can be done to change the appearance of the
text. These manipulations include operations like: changing font,
changing color and make text bold, but also operations like:
changing the alignment of the text and the margin inside the
cell. All text manipulations inside a cell can be done on single
letters, words or the entire text. Text settings are found in the
Format menu. The following text manipulations are available in
OMNotebook:

> Font family

> Font face (Plain, Bold, Italic, Underline)

> Font size

> Font stretch

> Font color

> Text horizontal alignment

> Text vertical alignment

> Border thickness

> Margin (outside the border)

> Padding (inside the border)

Insert Menu

	
	Insert image – Images are added to a document with the menu item

	Insert->Image or the key combination Ctrl+Shift+M. After an image
has been selected a dialog appears, where the size of the image
can be chosen. The images actual size is the default value of the
image. OMNotebook stretches the image accordantly to the selected
size. All images are saved in the same file as the rest of the
document.

	
	Insert link – A document can contain links to other OMNotebook file

	or Mathematica notebook and to add a new link a piece of text
must first be selected. The selected text make up the part of the
link that the user can click on. Inserting a link is done from
the menu Insert->Link or with the key combination Ctrl+Shift+L. A
dialog window, much like the one used to open documents, allows
the user to choose the file that the link refers to. All links
are saved in the document with a relative file path so documents
that belong together easily can be moved from one place to
another without the links failing.

Window Menu

	
	Change window – Each opened document has its own document window.

	To switch between those use the Window menu. The window menu
lists all titles of the open documents, in the same order as they
were opened. To switch to another document, simple click on the
title of that document.

Help Menu

	
	About OMNotebook – Accessing the about message box for OMNotebook

	is done from the menu Help->About OMNotebook.

	
	About Qt – To access the message box for Qt, use the menu

	Help->About Qt.

	
	Help Text – Opening the help text (document OMNotebookHelp.onb) for

	OMNotebook can be done in the same way as any OMNotebook document
is opened or with the menu Help->Help Text. The menu item can
also be triggered with the key F1.

Additional Features

	
	Links – By clicking on a link, OMNotebook will open the document

	that is referred to in the link.

	
	Update link – All links are stored with relative file path.

	Therefore OMNotebook has functions that automatically updating
links if a document is resaved in another folder. Every time a
document is saved, OMNotebook checks if the document is saved in
the same folder as last time. If the folder has changed, the
links are updated.

	
	Evaluate whole Notebook – All the cells present in the Notebook can

	be evaluated in one step by pressing the red color evalall button
in the toolbar. The cells are evaluated in the same order as they
are in the Notebook.However the latexcells cannot be evaluated by
this feature.

	
	Evaluate several cells – Several inputcells can be evaluated at

	the same time by selecting them in the treeview and then pressing
the key combination Shift+Enter or Shift+Return. The cells are
evaluated in the same order as they have been selected. If a
groupcell is selected all inputcells in that groupcell are
evaluated, in the order they are located in the groupcell.

	
	Moving and Reordering cells in a Notebook – It is possible to shift cells

	to a new position and change the hierarchical order of the document.This can
be done by clicking the cell and press the Up and Down arrow button in
the tool bar to move either Up or Down. The cells are moved one cell
above or below.It is also possible to move a cell directly to a new
position with one single click by pressing the red color bidirectional
UpDown arrow button in the toolbar. To do this the user has to place
the cell cursor to a position where the selected cells must be moved.
After selecting the cell cursor position, select the cells you want to
shift and press the bidirectional UpDown arrow button. The cells are
shifted in the same order as they are selected.This is especially very
useful when shifting a group cell.

	
	Command completion – Inputcells have command completion support,

	which checks if the user is typing a command (or any keyword
defined in the file commands.xml) and finish the command. If the
user types the first two or three letters in a command, the
command completion function fills in the rest. To use command
completion, press the key combination Ctrl+Space or Shift+Tab.
The first command that matches the letters written will then
appear. Holding down Shift and pressing Tab (alternative holding
down Ctrl and pressing Space) again will display the second
command that matches. Repeated request to use command completion
will loop through all commands that match the letters written.
When a command is displayed by the command completion
functionality any field inside the command that should be edited
by the user is automatically selected. Some commands can have
several of these fields and by pressing the key combination
Ctrl+Tab, the next field will be selected inside the command. >
Active Command completion: Ctrl+Space / Shift+Tab > Next command:
Ctrl+Space / Shift+Tab > Next field in command: Ctrl+Tab’

	
	Generated plot – When plotting a simulation result, OMC uses the

	program Ptplot to create a plot. From Ptplot OMNotebook gets an
image of the plot and automatically adds that image to the output
part of an inputcell. Like all other images in a document, the
plot is saved in the document file when the document is saved.

	
	Stylesheet –OMNotebook follows the style settings defined in

	stylesheet.xml and the correct style is applied to a cell when
the cell is created.

	
	Automatic Chapter Numbering – OMNotebook automatically numbers

	different chapter, subchapter, section and other styles. The user
can specify which styles should have chapter numbers and which
level the style should have. This is done in the stylesheet.xml
file. Every style can have a <chapterLevel> tag that specifies
the chapter level. Level 0 or no tag at all, means that the style
should not have any chapter numbering.

	
	Scrollarea – Scrolling through a document can be done by using the

	mouse wheel. A document can also be scrolled by moving the cell
cursor up or down.

	
	Syntax highlighter – The syntax highlighter runs in a separated

	thread which speeds up the loading of large document that
contains many Modelica code cells. The syntax highlighter only
highlights when letters are added, not when they are removed. The
color settings for the different types of keywords are stored in
the file modelicacolors.xml. Besides defining the text color and
background color of keywords, whether or not the keywords should
be bold or/and italic can be defined.

	
	Change indicator – A star (*) will appear behind the filename in

	the title of notebook window if the document has been changed and
needs saving. When the user closes a document that has some
unsaved change, OMNotebook asks the user if he/she wants to save
the document before closing. If the document never has been saved
before, the save-as dialog appears so that a filename can be
choosen for the new document.

	
	Update menus – All menus are constantly updated so that only menu

	items that are linked to actions that can be performed on the
currently selected cell is enabled. All other menu items will be
disabled. When a textcell is selected the Format menu is updated
so that it indicates the text settings for the text, in the
current cursor position.

References

Todo

Add these into extrarefs.bib and cite them somewhere

Eric Allen, Robert Cartwright, Brian Stoler. DrJava: A lightweight
pedagogic environment for Java. In Proceedings of the 33rd ACM Technical
Symposium on Computer Science Education (SIGCSE 2002) (Northern Kentucky
– The Southern Side of Cincinnati, USA, February 27 – March 3, 2002).

Anders Fernström, Ingemar Axelsson, Peter Fritzson, Anders Sandholm,
Adrian Pop. OMNotebook – Interactive WYSIWYG Book Software for Teaching
Programming. In Proc. of the Workshop on Developing Computer Science
Education – How Can It Be Done?. Linköping University, Dept. Computer &
Inf. Science, Linköping, Sweden, March 10, 2006.

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritzson, and Peter
Bunus. DrModelica – A Web-Based Teaching Environment for Modelica. In
Proceedings of the 44th Scandinavian Conference on Simulation and
Modeling (SIMS’2003), available at www.scan-sims.org. Västerås, Sweden.
September 18-19, 2003.

	[Axe05]	Ingemar Axelsson. OpenModelica Notebook for interactive structured Modelica documents. Master's thesis, Linköping University, Department of Computer and Information Science, oct 2005. LITH-IDA-EX–05/080–SE.

	[Fernstrom06]	Anders Fernström. Extending OpenModelica Notebook – an interactive notebook for structured Modelica documents. Master's thesis, Linköping University, Department of Computer and Information Science, sep 2006. LITH-IDA-EX–06/057—SE.

	[Fri04]	(1, 2) Peter Fritzson. Principles of Ob­ject-Ori­ent­ed Modeling and Simulation with Modelica 2.1. Wiley-IEEE Press, feb 2004.

	[Knu84]	DonaldE. Knuth. Literate programming. The Computer Journal, 27:97–111, 1984.

	[Wol96]	Stephen Wolfram. The Mathematica Book. Wolfram Media/Cambridge University Press, third edition, 1996.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Functional Mock-up Interface - FMI

The new standard for model exchange and co-simulation with Functional
Mockup Interface (FMI) allows export of pre-compiled models, i.e.,
C-code or binary code, from a tool for import in another tool, and vice
versa. The FMI standard is Modelica independent. Import and export works
both between different Modelica tools, or between certain non-Modelica
tools. OpenModelica supports FMI 1.0 & 2.0,

	Model Exchange

	Co-Simulation (under development)

FMI Export

To export the FMU use the OpenModelica command
translateModelFMU(ModelName) from command line interface, OMShell,
OMNotebook or MDT. The export FMU command is also integrated with
OMEdit. Select FMI > Export FMU the FMU package is generated in the
current directory of omc. You can use the cd() command to see the
current location. You can set which version of FMI to export through
OMEdit settings, see section FMI.

To export the bouncing ball example to an FMU, use the following commands:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.mo")
true
>>> translateModelFMU(BouncingBall)
"SimCode: The model BouncingBall has been translated to FMU"
>>> system("unzip -l BouncingBall.fmu | egrep -v 'sources|files' | tail -n+3 | grep -o '[A-Za-z._0-9/]*$' > BB.log")
0

Warning

Warning: The initial conditions are not fully specified. Use +d=initialization for more information.

After the command execution is complete you will see that a file
BouncingBall.fmu has been created. Its contents varies depending on the
current platform.
On the machine generating this documentation, the contents in
Listing 2 are generated (along with the C source code).

Listing 2 BouncingBall FMU contents

binaries/
binaries/linux64/
binaries/linux64/config.log
binaries/linux64/BouncingBall_FMU.libs
binaries/linux64/BouncingBall.so
modelDescription.xml

A log file for FMU creation is also generated named ModelName_FMU.log.
If there are some errors while creating FMU they will be shown in the
command line window and logged in this log file as well.

FMI Import

To import the FMU package use the OpenModelica command importFMU,

>>> list(OpenModelica.Scripting.importFMU, interfaceOnly=true)
function importFMU
 input String filename "the fmu file name";
 input String workdir = "<default>" "The output directory for imported FMU files. <default> will put the files to current working directory.";
 input Integer loglevel = 3 "loglevel_nothing=0;loglevel_fatal=1;loglevel_error=2;loglevel_warning=3;loglevel_info=4;loglevel_verbose=5;loglevel_debug=6";
 input Boolean fullPath = false "When true the full output path is returned otherwise only the file name.";
 input Boolean debugLogging = false "When true the FMU's debug output is printed.";
 input Boolean generateInputConnectors = true "When true creates the input connector pins.";
 input Boolean generateOutputConnectors = true "When true creates the output connector pins.";
 output String generatedFileName "Returns the full path of the generated file.";
end importFMU;

The command could be used from command line interface, OMShell,
OMNotebook or MDT. The importFMU command is also integrated with OMEdit.
Select FMI > Import FMU the FMU package is extracted in the directory
specified by workdir, since the workdir parameter is optional so if its
not specified then the current directory of omc is used. You can use the
cd() command to see the current location.

The implementation supports FMI for Model Exchange 1.0 & 2.0 and FMI for
Co-Simulation 1.0 stand-alone. The support for FMI Co-Simulation is
still under development.

The FMI Import is currently a prototype. The prototype has been tested
in OpenModelica with several examples. It has also been tested with
example FMUs from FMUSDK and Dymola. A more fullfleged version for FMI
Import will be released in the near future.

When importing the model into OMEdit, roughly the following commands will be executed:

>>> imported_fmu_mo_file:=importFMU("BouncingBall.fmu")
"BouncingBall_me_FMU.mo"
>>> loadFile(imported_fmu_mo_file)
true

The imported FMU can then be simulated like any normal model:

>>> simulate(BouncingBall_me_FMU, stopTime=3.0)
record SimulationResult
 resultFile = "«DOCHOME»/BouncingBall_me_FMU_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'BouncingBall_me_FMU', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 0.027117728,
 timeBackend = 0.006746535000000001,
 timeSimCode = 0.060173859,
 timeTemplates = 0.015818171,
 timeCompile = 0.242732452,
 timeSimulation = 0.037597458,
 timeTotal = 0.390304644
end SimulationResult;

Figure 38 Height of the bouncing ball, simulated through an FMU.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Optimization with OpenModelica

The following facilities for model-based optimization are provided with
OpenModelica:

	
	Builtin Dynamic Optimization with OpenModelica and IpOpt using

	dynamic optimization is the recommended way of
performing dynamic optimization with OpenModelica.

	
	Dynamic Optimization with OpenModelica and CasADi. Use this if you want to employ

	the CasADi tool for dynamic optimization.

	
	Classical Parameter Sweep Optimization using OMOptim. Use

	this if you have a static optimization problem.

Builtin Dynamic Optimization with OpenModelica and IpOpt

Note: this is a very short preliminary decription which soon will be
considerably improved.

OpenModelica provides builtin dynamic optimization of models by using
the powerful symbolic machinery of the OpenModelica compiler for more
efficient and automatic solution of dynamic optimization problems.

The builtin dynamic optimization allows users to define optimal control
problems (OCP) using the Modelica language for the model and the
optimization language extension called Optimica (currently partially
supported) for the optimization part of the problem. This is used to
solve the underlying dynamic optimization model formulation using
collocation methods, using a single execution instead of multiple
simulations as in the parameter-sweep optimization described in section Parameter Sweep Optimization using OMOptim.

For more detailed information regarding background and methods, see [BOR+12][RBB+14]

Compiling the Modelica code

Before starting the optimization the model should be symbolically
instantiated by the compiler in order to get a single flat system of
equations. The model variables should also be scalarized. The compiler
frontend performs this, including syntax checking, semantics and type
checking, simplification and constant evaluation etc. are applied. Then
the complete flattened model can be used for initialization, simulation
and last but not least for model-based dynamic optimization.

The OpenModelica command optimize(ModelName) from OMShell, OMNotebook or
MDT runs immediately the optimization. The generated result file can be
read in and visualized with OMEdit or within OMNotebook.

An Example

In this section, a simple optimal control problem will be solved. When
formulating the optimization problems, models are expressed in the
Modelica language and optimization specifications. The optimization
language specification allows users to formulate dynamic optimization
problems to be solved by a numerical algorithm. It includes several
constructs including a new specialized class optimization, a constraint
section, startTime, finalTime etc. See the optimal control problem for
batch reactor model below.

Create a new file named BatchReactor.mo and save it in you working
directory. Notice that this model contains both the dynamic system to be
optimized and the optimization specification.

Once we have formulated the undelying optimal control problems, we can
run the optimization by using OMShell, OMNotebook, MDT, OMEdit using
command line terminals similar to the options described below:

>>> setCommandLineOptions("+g=Optimica");

Listing 3 BatchReactor.mo

optimization BatchReactor(objective=-x2(finalTime), startTime = 0, finalTime =1)
 Real x1(start =1, fixed=true, min=0, max=1);
 Real x2(start =0, fixed=true, min=0, max=1);
 input Real u(min=0, max=5);
equation
 der(x1) = -(u+u^2/2)*x1;
 der(x2) = u*x1;
end BatchReactor;

optimization nmpcBatchReactor(objective=-x2)
 extends BatchReactor;
end nmpcBatchReactor;

>>> optimize(nmpcBatchReactor, numberOfIntervals=16, stopTime=1, tolerance=1e-8)
record SimulationResult
 resultFile = "«DOCHOME»/nmpcBatchReactor_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOfIntervals = 16, tolerance = 1e-08, method = 'optimization', fileNamePrefix = 'nmpcBatchReactor', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "
Optimizer Variables
==
State[0]:x1(start = 1, nominal = 1, min = 0, max = 1, init = 1)
State[1]:x2(start = 0, nominal = 1, min = 0, max = 1, init = 0)
Input[2]:u(start = 0, nominal = 5, min = 0, max = 5)
--
number of nonlinear constraints: 0
==

**
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
 For more information visit http://projects.coin-or.org/Ipopt
**

",
 timeFrontend = 0.07424507500000001,
 timeBackend = 0.009054444,
 timeSimCode = 0.05946370500000001,
 timeTemplates = 0.006224112,
 timeCompile = 0.218236651,
 timeSimulation = 0.027518769,
 timeTotal = 0.394858878
end SimulationResult;

The control and state trajectories of the optimization results:

Figure 39 Optimization results for Batch Reactor model – input variables.

Figure 40 Optimization results for Batch Reactor model – state variables.

Different Options for the Optimizer IPOPT

Table 1 New meanings of the usual simualtion options for Ipopt.

 MDT – The OpenModelica Development Tooling Eclipse Plugin

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

MDT – The OpenModelica Development Tooling Eclipse Plugin

Introduction

The Modelica Development Tooling (MDT) Eclipse Plugin as part of OMDev –
The OpenModelica Development Environment integrates the OpenModelica
compiler with Eclipse. MDT, together with the OpenModelica compiler,
provides an environment for working with Modelica and MetaModelica
development projects. This plugin is primarily intended for tool
developers rather than application Modelica modelers.

The following features are available:

	Browsing support for Modelica projects, packages, and classes

	Wizards for creating Modelica projects, packages, and classes

	Syntax color highlighting

	Syntax checking

	Browsing of the Modelica Standard Library or other libraries

	Code completion for class names and function argument lists

	Goto definition for classes, types, and functions

	Displaying type information when hovering the mouse over an
identifier.

Installation

The installation of MDT is accomplished by following the below
installation instructions. These instructions assume that you have
successfully downloaded and installed Eclipse (http://www.eclipse.org).

The latest installation instructions are available through the OpenModelica Trac [https://trac.openmodelica.org/MDT].

	Start Eclipse

	Select Help->Software Updates->Find and Install... from the
menu

	Select ‘Search for new features to install’ and click ‘Next’

	Select ‘New Remote Site...’

	Enter ‘MDT’ as name and
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT
as URL and click ‘OK’

	Make sure ‘MDT’ is selected and click ‘Finish’

	In the updates dialog select the ‘MDT’ feature and click ‘Next’

	Read through the license agreement, select ‘I accept...’ and click
‘Next’

	Click ‘Finish’ to install MDT

Getting Started

Configuring the OpenModelica Compiler

MDT needs to be able to locate the binary of the compiler. It uses the
environment variable OPENMODELICAHOME to do so.

If you have problems using MDT, make sure that OPENMODELICAHOME is
pointing to the folder where the OpenModelica Compiler is installed. In
other words, OPENMODELICAHOME must point to the folder that contains the
Open Modelica Compiler (OMC) binary. On the Windows platform it’s called
omc.exe and on Unix platforms it’s called omc.

Using the Modelica Perspective

The most convenient way to work with Modelica projects is to use to the
Modelica perspective. To switch to the Modelica perspective, choose the
Window menu item, pick Open Perspective followed by Other...
Select the Modelica option from the dialog presented and click OK..

Selecting a Workspace Folder

Eclipse stores your projects in a folder called a workspace. You need to
choose a workspace folder for this session, see Figure 45.

[image: _images/mdt-switch-workspace.png]
Figure 45 Eclipse Setup – Switching Workspace.

Creating one or more Modelica Projects

To start a new project, use the New Modelica Project Wizard. It is
accessible through File->New-> Modelica Project or by right-clicking in
the Modelica Projects view and selecting New->Modelica Project.

Figure 46 Eclipse Setup – creating a Modelica project in the workspace.

You need to disable automatic build for the project(s) (Figure 47).

[image: _images/mdt-disable-automatic-build.png]
Figure 47 Eclipse Setup – disable automatic build for the projects.

Repeat the procedure for all the projects you need, e.g. for the
exercises described in the MetaModelica users guide: 01_experiment,
02a_exp1, 02b_exp2, 03_assignment, 04a_assigntwotype, etc.

NOTE: Leave open only the projects you are working on! Close all the
others!

Building and Running a Project

After having created a project, you eventually need to build the project
(Figure 48).

[image: _images/mdt-build-project.png]
Figure 48 Eclipse MDT – Building a project.

The build options are the same as the make targets: you can build,
build from scratch (clean), or run simulations depending on how the
project is setup. See Figure 49 for an example of how omc
can be compiled (make omc builds OMC).

Figure 49 Eclipse – building a project.

[image: _images/mdt-build-log.png]
Figure 50 Eclipse – building a project, resulting log.

Switching to Another Perspective

If you need, you can (temporarily) switch to another perspective, e.g.
to the Java perspective for working with an OpenModelica Java client as
in Figure 51.

[image: _images/mdt-switch-perspective.png]
Figure 51 Eclipse – Switching to another perspective – e.g. the Java Perspective.

Creating a Package

To create a new package inside a Modelica project, select
File->New->Modelica Package. Enter the desired name of the package
and a description of what it contains. Note: for the exercises we
already have existing packages.

[image: _images/mdt-create-package.png]
Figure 52 Creating a new Modelica package.

Creating a Class

To create a new Modelica class, select where in the hierarchy that you
want to add your new class and select File->New->Modelica Class. When
creating a Modelica class you can add different restrictions on what the
class can contain. These can for example be model, connector, block,
record, or function. When you have selected your desired class type, you
can select modifiers that add code blocks to the generated code.
‘Include initial code block’ will for example add the line ‘initial
equation’ to the class.

[image: _images/mdt-create-class.png]
Figure 53 Creating a new Modelica class.

Syntax Checking

Whenever a build command is given to the MDT environment, modified and
saved Modelica (.mo) files are checked for syntactical errors. Any
errors that are found are added to the Problems view and also marked in
the source code editor. Errors are marked in the editor as a red circle
with a white cross, a squiggly red line under the problematic construct,
and as a red marker in the right-hand side of the editor. If you want to
reach the problem, you can either click the item in the Problems view or
select the red box in the right-hand side of the editor.

[image: _images/mdt-syntax-checking.png]
Figure 54 Syntax checking.

Automatic Indentation Support

MDT currently has support for automatic indentation. When typing the
Return (Enter) key, the next line is indented correctly. You can also
correct indentation of the current line or a range selection using
CTRL+I or “Correct Indentation” action on the toolbar or in the Edit
menu.

Code Completion

MDT supports Code Completion in two variants. The first variant, code
completion when typing a dot after a class (package) name, shows
alternatives in a menu. Besides the alternatives, Modelica documentation
from comments is shown if is available. This makes the selection easyer.

[image: _images/mdt-code-completion.png]
Figure 55 Code completion when typing a dot.

The second variant is useful when typing a call to a function. It shows
the function signature (formal parameter names and types) in a popup
when typing the parenthesis after the function name, here the signature
Real sin(SI.Angle u) of the sin function:

[image: _images/mdt-code-completion-call.png]
Figure 56 Code completion at a function call when typing left parenthesis.

Code Assistance on Identifiers when Hovering

When hovering with the mouse over an identifier a popup with information
about the identifier is displayed. If the text is too long, the user can
press F2 to focus the popup dialog and scroll up and down to examine all
the text. As one can see the information in the popup dialog is
syntax-highlighted.

[image: _images/mdt-info-on-hover.png]
Figure 57 Displaying information for identifiers on hovering.

Go to Definition Support

Besides hovering information the user can press CTRL+click to go to the
definition of the identifier. When pressing CTRL the identifier will be
presented as a link and when pressing mouse click the editor will go to
the definition of the identifier.

Code Assistance on Writing Records

When writing records, the same functionality as for function calls is
used. This is useful especially in MetaModelica when writing cases in
match constructs.

[image: _images/mdt-assist-mm-record.png]
Figure 58 Code assistance when writing cases with records in MetaModelica.

Using the MDT Console for Plotting

[image: _images/mdt-console.png]
Figure 59 Activate the MDT Console.

[image: _images/mdt-console-simulate.png]
Figure 60 Simulation from MDT Console.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 MDT Debugger for Algorithmic Modelica

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

MDT Debugger for Algorithmic Modelica

The algorithmic code debugger, used for the algorithmic subset of the
Modelica language as well as the MetaModelica language is described in
Section The Eclipse-based Debugger for Algorithmic Modelica.
Using this debugger replaces debugging of algorithmic code
by primitive means such as print statements or asserts which is complex,
time-consuming and error- prone. The usual debugging functionality found
in debuggers for procedural or traditional object-oriented languages is
supported, such as setting and removing breakpoints, stepping,
inspecting variables, etc. The debugger is integrated with Eclipse.

The Eclipse-based Debugger for Algorithmic Modelica

The debugging framework for the algorithmic subset of Modelica and
MetaModelica is based on the Eclipse environment and is implemented as a
set of plugins which are available from Modelica Development Tooling
(MDT) environment. Some of the debugger functionality is presented
below. In the right part a variable value is explored. In the top-left
part the stack trace is presented. In the middle-left part the execution
point is presented.

The debugger provides the following general functionalities:

	Adding/Removing breakpoints.

	Step Over – moves to the next line, skipping the function calls.

	Step In – takes the user into the function call.

	
	Step Return – complete the execution of the function and takes the

	user back to the point from where the function is called.

	Suspend – interrupts the running program.

[image: _images/mdt-debugger-overview.png]
Figure 61 Debugging functionality.

Starting the Modelica Debugging Perspective

To be able to run in debug mode, one has to go through the following
steps:

	create a mos file

	setting the debug configuration

	setting breakpoints

	running the debug configuration

All these steps are presented below using images.

Create mos file

In order to debug Modelica code we need to load the Modelica files into
the OpenModelica Compiler. For this we can write a small script file
like this:

function HelloWorld
 input Real r;
 output Real o;
algorithm
 o := 2 * r;
end HelloWorld;

>>> setCommandLineOptions({"+d=rml,noevalfunc","+g=MetaModelica"})
{true,true}
>>> setCFlags(getCFlags() + " -g")
true
>>> HelloWorld(120.0)
240.0

So lets say that we want to debug HelloWorld.mo. For that we must load
it into the compiler using the script file. Put all the Modelica files
there in the script file to be loaded. We should also initiate the
debugger by calling the starting function, in the above code
HelloWorld(120.0);

Setting the debug configuration

While the Modelica perspective is activated the user should click on the
bug icon on the toolbar and select Debug in order to access the dialog
for building debug configurations.

[image: _images/mdt-debugger-config-1.png]
Figure 62 Accessing the debug configuration dialog.

To create the debug configuration, right click on the classification
Modelica Development Tooling (MDT) GDB and select New as in figure
below. Then give a name to the configuration, select the debugging
executable to be executed and give it command line parameters. There are
several tabs in which the user can select additional debug configuration
settings like the environment in which the executable should be run.

Note that we require Gnu Debugger (GDB) for debugging session. We must
specify the GDB location, also we must pass our script file as an
argument to OMC.

[image: _images/mdt-debugger-config-2.png]
Figure 63 Creating the Debug Configuration.

Setting/Deleting Breakpoints

The Eclipse interface allows to add/remove breakpoints. At the moment
only line number based breakpoints are supported. Other alternative to
set the breakpoints is; function breakpoints.

[image: _images/mdt-debugger-breakpoint.png]
Figure 64 Setting/deleting breakpoints.

Starting the debugging session and enabling the debug perspective

[image: _images/mdt-debugger-start-1.png]
Figure 65 Starting the debugging session.

[image: _images/mdt-debugger-start-2.png]
Figure 66 Eclipse will ask if the user wants to switch to the debugging perspective.

The Debugging Perspective

The debug view primarily consists of two main views:

	Stack Frames View

	Variables View

The stack frame view, shown in the figure below, shows a list of frames
that indicates how the flow had moved from one function to another or
from one file to another. This allows backtracing of the code. It is
very much possible to select the previous frame in the stack and inspect
the values of the variables in that frame. However, it is not possible
to select any of the previous frame and start debugging from there. Each
frame is shown as <function_name at file_name:line_number>.

The Variables view shows the list of variables at a certain point in the
program, containing four colums:

	Name – the variable name.

	Declared Type – the Modelica type of the variable.

	Value – the variable value.

	Actual Type – the mapped C type.

By preserving the stack frames and variables it is possible to keep
track of the variables values. If the value of any variable is changed
while stepping then that variable will be highlighted yellow (the
standard Eclipse way of showing the change).

[image: _images/mdt-debugger-perspective.png]
Figure 67 The debugging perspective.

[image: _images/mdt-debugger-switch-perspective.png]
Figure 68 Switching between perspectives.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Modelica Performance Analyzer

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Modelica Performance Analyzer

A common problem when simulating models in an equation-based language
like Modelica is that the model may contain non-linear equation systems.
These are solved in each time-step by extrapolating an initial guess and
running a non-linear system solver. If the simulation takes too long to
simulate, it is useful to run the performance analysis tool. The tool
has around 5~25% overhead, which is very low compared to
instruction-level profilers (30x-100x overhead). Due to being based on a
single simulation run, the report may contain spikes in the charts.

When running a simulation for performance analysis, execution times of
user-defined functions as well as linear, non-linear and mixed equation
systems are recorded.

To start a simulation in this mode, just use the measureTime flag of the
simulate command.

>>> simulate(modelname, measureTime = true)

The generated report is in HTML format (with images in the SVG format),
stored in a file modelname_prof.html, but the XML database and measured
times that generated the report and graphs are also available if you
want to customize the report for comparison with other tools.

Below we use the performance profiler on the simple model A:

model ProfilingTest
 function f
 input Real r;
 output Real o = sin(r);
 end f;
 String s = "abc";
 Real x = f(x) "This is x";
 Real y(start=1);
 Real z1 = cos(z2);
 Real z2 = sin(z1);
equation
 der(y) = time;
end ProfilingTest;

We simulate as usual, but set measureTime=true to activate the profiling:

>>> setCommandLineOptions("--profiling=blocks+html")
true
>>> simulate(ProfilingTest)
record SimulationResult
 resultFile = "«DOCHOME»/ProfilingTest_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'ProfilingTest', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "Warning: empty y range [1:1], adjusting to [0.99:1.01]
Warning: empty y range [1:1], adjusting to [0.99:1.01]
Warning: empty y range [1:1], adjusting to [0.99:1.01]
Warning: empty y range [1:1], adjusting to [0.99:1.01]
Warning: empty y range [1:1], adjusting to [0.99:1.01]
Warning: empty y range [1:1], adjusting to [0.99:1.01]
stdout | info | Time measurements are stored in ProfilingTest_prof.html (human-readable) and ProfilingTest_prof.xml (for XSL transforms or more details)
",
 timeFrontend = 0.007613611,
 timeBackend = 0.007789999000000001,
 timeSimCode = 0.051829759,
 timeTemplates = 0.004488681,
 timeCompile = 0.228864193,
 timeSimulation = 0.03990333999999995,
 timeTotal = 0.34055633
end SimulationResult;
"Warning: The initial conditions are not fully specified. Use +d=initialization for more information.
Warning: There are iteration variables with default zero start attribute. Use +d=initialization for more information.
"

Error

Profiling output should go here, but is currently broken on the build server.

Genenerated JSON for the Example

Listing 4 ProfilingTest_prof.json

{
"name":"ProfilingTest",
"prefix":"ProfilingTest",
"date":"2016-03-09 17:36:53",
"method":"dassl",
"outputFormat":"mat",
"outputFilename":"ProfilingTest_res.mat",
"outputFilesize":24569,
"overheadTime":0.000304846,
"preinitTime":0.000216343,
"initTime":7.1647e-05,
"eventTime":2.6496e-05,
"outputTime":0.000380748,
"linearizeTime":0,
"totalTime":0.00294489,
"totalStepsTime":3.289e-06,
"totalTimeProfileBlocks":0.00112421,
"numStep":499,
"maxTime":7.2292e-05,
"functions":[
{"name":"ProfilingTest.f","ncall":506,"time":0.000018875,"maxTime":0.000000439}
],
"profileBlocks":[
{"id":0,"ncall":7,"time":0.000032649,"maxTime":0.000033135},
{"id":12,"ncall":2,"time":0.000001701,"maxTime":0.000001782},
{"id":20,"ncall":504,"time":0.000442071,"maxTime":0.000030894},
{"id":22,"ncall":504,"time":0.000647790,"maxTime":0.000027331}
]
}

Using the Profiler from OMEdit

When running a simulation from OMEdit, it is possible to enable profiling
information, which can be combined with the transformations browser.

[image: Profiling setup]
Figure 69 Setting up the profiler from OMEdit.

When profiling the DoublePendulum example from MSL, the following output in Figure 70 is a typical result.
This information clearly shows which system takes longest to simulate (a linear system, where most of the time overhead probably comes from initializing LAPACK [http://www.netlib.org/lapack/] over and over).

[image: Profiling results]
Figure 70 Profiling results of the Modelica standard library DoublePendulum example, sorted by execution time.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Modelica3D

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Modelica3D

Modelica3D is a lightweight, platform independent 3D-visualisation
library for Modelica. Read more about the Modelica3D library here [https://mlcontrol.uebb.tu-berlin.de/redmine/projects/modelica3d-public].

Installing Modelica3D

Windows

In order to run Modelica3D on windows you need following softwares;

	
	Python – Install python from

	http://www.python.org/download/.
Python2.7.3 is recommended.

	
	PyGTK – Install GTK+ for python from

	http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.24/.
Download the all-in-one package. Recommmended is
pygtk-all-in-one-2.24.2.win32-py2.7.msi.

MacOS

On MacOS you can use the 3d visualization like this. Note that on your
system the paths used here might vary. In one terminal type:

start the dbus server (you only need to do this once)
sudo launchctl load -w /opt/openmodelica/Library/LaunchDaemons/org.freedesktop.dbus-system.plist
launchctl load -w /opt/openmodelica/Library/LaunchAgents/org.freedesktop.dbus-session.plist
export python path
export PYTHONPATH=/opt/openmodelica/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages:$PYTHONPATH

Running Modelica3D

Run the Modelica3D server by executing the dbus-server.py script located
in your OpenModelica or Modelica3D installation, for example:

>>> "python " + getInstallationDirectoryPath() + "/lib/omlibrary-modelica3d/osg-gtk/dbus-server.py"
"python «OPENMODELICAHOME»/lib/omlibrary-modelica3d/osg-gtk/dbus-server.py"

Running this command in a command prompt will start the Modelica3D
server and on success you should see the output:

Running dbus-server...

Now run the simulation. The following commands will load the Modelica3D
library and the modified DoublePendulum example:

>>> loadModelica3D()
true

model DoublePendulum
 extends Modelica.Mechanics.MultiBody.Examples.Elementary.DoublePendulum;
 inner ModelicaServices.Modelica3D.Controller m3d_control;
end DoublePendulum;

Then simulate the DoublePendulum:

>>> simulate(DoublePendulum)

If everything goes fine a 3D visualization of DoublePendulum will pop-up.

[image: _images/modelica3d.png]
Figure 71 3D visualization of DoublePendulum

To visualize any models from the MultiBody library you can use this script and change
the extends to point to the model you want. Note that you will need to
add visualisers to your model similarly to what Modelica.MultiBody
library has. The documentation of the visualizers is available here [https://build.openmodelica.org/Documentation/Modelica.Mechanics.MultiBody.Visualizers.html].

model Visualize_MyModel
 inner ModelicaServices.Modelica3D.Controller m3d_control;
 extends MyModel;
end Visualize_MyModel;

>>> simulate(Visualize_MyModel)

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Simulation in Web Browser

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Simulation in Web Browser

OpenModelica can simulate in a web browser on a client computer by model
code being compiled to efficient Javacript code.

For more information, see https://github.com/tshort/openmodelica-javascript

Below used on the MSL MultiBody RobotR3.fullRobot example model.

[image: _images/emscripten-model.png]
[image: _images/emscripten-result.png]

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Interoperability – C and Python

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Interoperability – C and Python

Below is information and examples about the OpenModelica external C
interfaces, as well as examples of Python interoperability.

Calling External C functions

The following is a small example (ExternalLibraries.mo) to show the use
of external C functions:

model ExternalLibraries

 function ExternalFunc1
 input Real x;
 output Real y;
 external y=ExternalFunc1_ext(x) annotation(Library="ExternalFunc1.o", LibraryDirectory="modelica://ExternalLibraries", Include="#include \"ExternalFunc1.h\"");
 end ExternalFunc1;

 function ExternalFunc2
 input Real x;
 output Real y;
 external "C" annotation(Library="ExternalFunc2", LibraryDirectory="modelica://ExternalLibraries");
 end ExternalFunc2;

 Real x(start=1.0, fixed=true), y(start=2.0, fixed=true);
equation
 der(x)=-ExternalFunc1(x);
 der(y)=-ExternalFunc2(y);
end ExternalLibraries;

These C (.c) files and header files (.h) are needed (note that the headers are not needed since OpenModelica will generate the correct definition if it is not present; using the headers it is possible to write C-code directly in the Modelica source code or declare non-standard calling conventions):

Listing 5 ExternalFunc1.c

double ExternalFunc1_ext(double x)
{
 double res;
 res = x+2.0*x*x;
 return res;
}

Listing 6 ExternalFunc1.h

double ExternalFunc1_ext(double);

Listing 7 ExternalFunc2.c

double ExternalFunc2(double x)
{
 double res;
 res = (x-1.0)*(x+2.0);
 return res;
}

The following script file ExternalLibraries.mos will perform everything
that is needed, provided you have gcc installed in your path:

>>> system(getCompiler() + " -c -o ExternalFunc1.o ExternalFunc1.c")
0
>>> system(getCompiler() + " -c -o ExternalFunc2.o ExternalFunc2.c")
0
>>> system("ar rcs libExternalFunc2.a ExternalFunc2.o")
0
>>> simulate(ExternalLibraries)
record SimulationResult
 resultFile = "«DOCHOME»/ExternalLibraries_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'ExternalLibraries', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "",
 timeFrontend = 0.006022915,
 timeBackend = 0.00249154,
 timeSimCode = 0.05011002000000001,
 timeTemplates = 0.003524778,
 timeCompile = 0.221628939,
 timeSimulation = 0.006768978,
 timeTotal = 0.290628321
end SimulationResult;

And plot the results:

Figure 72 Plot generated by OpenModelica+gnuplot

Calling external Python Code from a Modelica model

The following calls external Python code through a very simplistic
external function (no data is retrieved from the Python code).
By making it a dynamically linked library, you might get the code to
work without changing the linker settings.

function pyRunString
 input String s;
external "C" annotation(Include="
#include <Python.h>

void pyRunString(const char *str)
{
 Py_SetProgramName(\"pyRunString\"); /* optional but recommended */
 Py_Initialize();
 PyRun_SimpleString(str);
 Py_Finalize();
}
");
end pyRunString;

model CallExternalPython
algorithm
 pyRunString("
print 'Python says: simulation time',"+String(time)+"
");
end CallExternalPython;

>>> system("python-config --cflags > pycflags")
0
>>> system("python-config --ldflags > pyldflags")
0
>>> pycflags := stringReplace(readFile("pycflags"),"\n","");
>>> pyldflags := stringReplace(readFile("pyldflags"),"\n","");
>>> setCFlags(getCFlags()+pycflags)
true
>>> setLinkerFlags(getLinkerFlags()+pyldflags)
true
>>> simulate(CallExternalPython, stopTime=2)
record SimulationResult
 resultFile = "«DOCHOME»/CallExternalPython_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 2.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'CallExternalPython', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "Python says: simulation time 0
Python says: simulation time 0
Python says: simulation time 2
",
 timeFrontend = 0.004539704,
 timeBackend = 0.003738246,
 timeSimCode = 0.05045332800000001,
 timeTemplates = 0.003295364,
 timeCompile = 0.363296528,
 timeSimulation = 0.039060488,
 timeTotal = 0.464465496
end SimulationResult;

Calling OpenModelica from Python Code

This section describes a simple-minded approach to calling Python code
from OpenModelica. For a description of Python scripting with
OpenModelica, see OMPython – OpenModelica Python Interface.

The interaction with Python can be perfomed in four different ways
whereas one is illustrated below. Assume that we have the following
Modelica code:

Listing 8 CalledbyPython.mo

model CalledbyPython
 Real x(start=1.0), y(start=2.0);
 parameter Real b = 2.0;
equation
 der(x) = -b*y;
 der(y) = x;
end CalledbyPython;

In the following Python (.py) files the above Modelica model is
simulated via the OpenModelica scripting interface:

Listing 9 PythonCaller.py

#!/usr/bin/python
import sys,os
global newb = 0.5
execfile('CreateMosFile.py')
os.popen(r"omc CalledbyPython.mos").read()
execfile('RetrResult.py')

Listing 10 CreateMosFile.py

#!/usr/bin/python
mos_file = open('CalledbyPython.mos','w', 1)
mos_file.write('loadFile("CalledbyPython.mo");\n')
mos_file.write('setComponentModifierValue(CalledbyPython,b,$Code(="+str(newb)+"));\n')
mos_file.write('simulate(CalledbyPython,stopTime=10);\n')
mos_file.close()

Listing 11 RetrResult.py

#!/usr/bin/python
def zeros(n): #
 vec = [0.0]
 for i in range(int(n)-1): vec = vec + [0.0]
 return vec
res_file = open("CalledbyPython_res.plt",'r',1)
line = res_file.readline()
size = int(res_file.readline().split('=')[1])
time = zeros(size)
y = zeros(size)
while line != ['DataSet: time\\n']:
 line = res_file.readline().split(',')[0:1]
for j in range(int(size)):
 time[j]=float(res_file.readline().split(',')[0])
while line != ['DataSet: y\\n']:
 line=res_file.readline().split(',')[0:1]
for j in range(int(size)):
 y[j]=float(res_file.readline().split(',')[1])
res_file.close()

A second option of simulating the above Modelica model is to use the
command buildModel instead of the simulate command and setting the
parameter value in the initial parameter file, CalledbyPython_init.txt
instead of using the command setComponentModifierValue. Then the file
CalledbyPython.exe is just executed.

The third option is to use the Corba interface for invoking the compiler
and then just use the scripting interface to send commands to the
compiler via this interface.

The fourth variant is to use external function calls to directly
communicate with the executing simulation process.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 OpenModelica Python Interface and PySimulator

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

OpenModelica Python Interface and PySimulator

This chapter describes the OpenModelica Python integration facilities.

	OMPython – the OpenModelica Python scripting interface, see OMPython – OpenModelica Python Interface.

	
	PySimulator – a Python package that provides simulation and post

	processing/analysis tools integrated with OpenModelica, see
PySimulator.

OMPython – OpenModelica Python Interface

OMPython – OpenModelica Python API is a free, open source, highly
portable Python based interactive session handler for Modelica
scripting. It provides the modeler with components for creating a
complete Modelica modeling, compilation and simulation environment based
on the latest OpenModelica library standard available. OMPython is
architectured to combine both the solving strategy and model building.
So domain experts (people writing the models) and computational
engineers (people writing the solver code) can work on one unified tool
that is industrially viable for optimization of Modelica models, while
offering a flexible platform for algorithm development and research.
OMPython v2.0 is not a standalone package, it depends upon the
OpenModelica installation.

OMPython v2.0 is implemented in Python using the OmniORB and OmniORBpy -
high performance CORBA ORBs for Python and it supports the Modelica
Standard Library version 3.2 that is included in starting with
OpenModelica 1.9.2.
It is now primarily available using the command pip install ompython,
but it is also possible to run python setup.py install manually
or use the version provided in the Windows installer.

Features of OMPython

OMPython provides user friendly features like:

	
	Interactive session handling, parsing, interpretation of commands and

	Modelica expressions for evaluation, simulation, plotting, etc.

	Interface to the latest OpenModelica API calls.

	
	Optimized parser results that give control over every element of the

	output.

	Helper functions to allow manipulation on Nested dictionaries.

	Easy access to the library and testing of OpenModelica commands.

Test Commands

To test the command outputs, simply create an OMCSession object by
importing from the OMPython library within Python interepreter. The
module allows you to interactively send commands to the OMC server and
display their output.

To get started, create an OMCSession object:

>>> from OMPython import OMCSession
>>> omc = OMCSession()

>>> omc.sendExpression("getVersion()")
v1.9.4
>>> omc.sendExpression("cd()")
«DOCHOME»
>>> omc.sendExpression("loadModel(Modelica)")
True
>>> omc.sendExpression("loadFile(getInstallationDirectoryPath() + \"/share/doc/omc/testmodels/BouncingBall.mo\")")
True
>>> omc.sendExpression("instantiateModel(BouncingBall)")
class BouncingBall
 parameter Real e = 0.7 "coefficient of restitution";
 parameter Real g = 9.81 "gravity acceleration";
 Real h(start = 1.0) "height of ball";
 Real v "velocity of ball";
 Boolean flying(start = true) "true, if ball is flying";
 Boolean impact;
 Real v_new;
 Integer foo;
equation
 impact = h <= 0.0;
 foo = if impact then 1 else 2;
 der(v) = if flying then -g else 0.0;
 der(h) = v;
 when {h <= 0.0 and v <= 0.0, impact} then
 v_new = if edge(impact) then (-e) * pre(v) else 0.0;
 flying = v_new > 0.0;
 reinit(v, v_new);
 end when;
end BouncingBall;

We get the name and other properties of a class:

>>> omc.sendExpression("getClassNames()")
('BouncingBall', 'ModelicaServices', 'Complex', 'Modelica')
>>> omc.sendExpression("isPartial(BouncingBall)")
False
>>> omc.sendExpression("isPackage(BouncingBall)")
False
>>> omc.sendExpression("isModel(BouncingBall)")
True
>>> omc.sendExpression("checkModel(BouncingBall)")
Check of BouncingBall completed successfully.
Class BouncingBall has 6 equation(s) and 6 variable(s).
1 of these are trivial equation(s).
>>> omc.sendExpression("getClassRestriction(BouncingBall)")
model
>>> omc.sendExpression("getClassInformation(BouncingBall)")
('model', '', False, False, False, '«OPENMODELICAHOME»/share/doc/omc/testmodels/BouncingBall.mo', False, 1, 1, 23, 17, (), False, False, '', '')
>>> omc.sendExpression("getConnectionCount(BouncingBall)")
0
>>> omc.sendExpression("getInheritanceCount(BouncingBall)")
0
>>> omc.sendExpression("getComponentModifierValue(BouncingBall,e)")
0.7
>>> omc.sendExpression("checkSettings()")
{'RTLIBS': ' -lOpenModelicaRuntimeC -llapack -lblas -lm -lomcgc -lpthread -rdynamic', 'OMC_FOUND': True, 'MODELICAUSERCFLAGS': '', 'C_COMPILER_RESPONDING': True, 'OPENMODELICAHOME': '«OPENMODELICAHOME»', 'CREATE_FILE_WORKS': True, 'SYSTEM_INFO': 'Linux asap 3.13.0-77-generic #121-Ubuntu SMP Wed Jan 20 10:50:42 UTC 2016 x86_64 x86_64 x86_64 GNU/Linux\n', 'HAVE_CORBA': True, 'OMDEV_PATH': '', 'C_COMPILER_VERSION': 'Ubuntu clang version 3.4-1ubuntu3 (tags/RELEASE_34/final) (based on LLVM 3.4)\nTarget: x86_64-pc-linux-gnu\nThread model: posix\n', 'OMC_PATH': '«OPENMODELICAHOME»/bin/omc', 'WORKING_DIRECTORY': '«DOCHOME»', 'REMOVE_FILE_WORKS': True, 'CONFIGURE_CMDLINE': "Configured 2016-03-09 17:32:17 using arguments: '--disable-option-checking --prefix=«OPENMODELICAHOME» --without-cppruntime --with-omniORB --enable-modelica3d CC=clang CXX=clang++ OMPCC=gcc -fopenmp CFLAGS=-O2 -march=native --without-omc --with-omlibrary=core --with-ombuilddir=«OPENMODELICAHOME» --cache-file=/dev/null --srcdir=.'", 'SYSTEM_PATH': '/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/var/lib/hudson/.local/bin/:/var/lib/hudson/.cabal/bin/;«OPENMODELICAHOME»/bin', 'OS': 'linux', 'OPENMODELICALIBRARY': '«OPENMODELICAHOME»/lib/omlibrary', 'C_COMPILER': 'clang'}

The common combination of a simulation followed by getting a value and
doing a plot:

>>> omc.sendExpression("simulate(BouncingBall, stopTime=3.0)")
{'timeCompile': 0.227700794, 'simulationOptions': "startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'BouncingBall', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''", 'timeBackend': 0.004493526, 'messages': '', 'timeFrontend': 0.25253726, 'timeSimulation': 0.009692217000000001, 'timeTemplates': 0.005626255, 'timeSimCode': 0.053097217, 'timeTotal': 0.5532559079999999, 'resultFile': '«DOCHOME»/BouncingBall_res.mat'}
"Warning: The initial conditions are not fully specified. Use +d=initialization for more information.
"
>>> omc.sendExpression("val(h , 2.0)")
0.0423943077288

Import As Library

To use the module from within another python program, simply import
OMCSession from within the using program. Make use of the execute()
function of the OMPython library to send commands to the OMC server.

For example:

answer = OMPython.execute(cmd)

Full example:

test.py
from OMPython import OMCSession
omc = OMCSession()
cmds = [
 "loadModel(Modelica)",
 "model test end test;",
 'loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.mo")'
 "getIconAnnotation(Modelica.Electrical.Analog.Basic.Resistor)",
 "getElementsInfo(Modelica.Electrical.Analog.Basic.Resistor)",
 "simulate(BouncingBall)",
 "plot(h)"
]
for cmd in cmds:
 answer = omc.sendExpression(cmd)
 print "\\nResult:\\n%s"%answer

Implementation

Client Implementation

The OpenModelica Python API Interface – OMPython, attempts to mimic the
OMShell's style of operations.

OMPython is designed to,

	Initialize the CORBA communication.

	Send commands to the Omc server via the CORBA interface.

	Receive the string results.

	Use the Parser module to format the results.

	Return or display the results.

PySimulator

PySimulator provides a graphical user interface for performing analyses
and simulating different model types (currently Functional Mockup Units
and Modelica Models are supported), plotting result variables and
applying simulation result analysis tools like Fast Fourier Transform.

Read more about the PySimulator at https://github.com/PySimulator/PySimulator.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Scripting API

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Scripting API

The following are short summaries of OpenModelica scripting commands.
These commands are useful for loading and saving classes, reading and
storing data, plotting of results, and various other tasks.

The arguments passed to a scripting function should follow syntactic and
typing rules for Modelica and for the scripting function in question. In
the following tables we briefly indicate the types or character of the
formal parameters to the functions by the following notation:

	String typed argument, e.g. "hello", "myfile.mo".

	
	TypeName – class, package or function name, e.g. MyClass,

	Modelica.Math.

	VariableName – variable name, e.g. v1, v2, vars1[2].x, etc.

	Integer or Real typed argument, e.g. 35, 3.14, xintvariable.

	options – optional parameters with named formal parameter passing.

OpenModelica Modelica Scripting Commands

The following are brief descriptions of the scripting commands available
in the OpenModelica environment.

OpenModelica API Calls

All OpenModelica API commands shown in alphabetic order:

GC_expand_hp

Forces the GC to expand the heap to accomodate more data.

function GC_expand_hp
 input Integer size;
 output Boolean success;
end GC_expand_hp;

GC_gcollect_and_unmap

Forces GC to collect and unmap memory (we use it before we start and wait for memory-intensive tasks in child processes).

addClassAnnotation

Used to set annotations, like Diagrams and Icons in classes. The function is given the name of the class and the annotation to set.

Usage: addClassAnnotation(Modelica, annotate = Documentation(info = "<html></html>"))

function addClassAnnotation
 input TypeName class_;
 input ExpressionOrModification annotate;
 output Boolean bool;
end addClassAnnotation;

alarm

Like alarm(2) [http://linux.die.net/man/2/alarm].

Note that OpenModelica also sends SIGALRM to the process group when the alarm is triggered (in order to kill running simulations).

impure function alarm
 input Integer seconds;
 output Integer previousSeconds;
end alarm;

appendEnvironmentVar

Appends a variable to the environment variables list.

function appendEnvironmentVar
 input String var;
 input String value;
 output String result "returns \"error\" if the variable could not be appended";
end appendEnvironmentVar;

basename

Returns the base name (file part) of a file path. Similar to basename(3) [http://linux.die.net/man/3/basename], but with the safety of Modelica strings.

function basename
 input String path;
 output String basename;
end basename;

buildModel

builds a modelica model by generating c code and build it.
It does not run the code!
The only required argument is the className, while all others have some default values.
simulate(className, [startTime], [stopTime], [numberOfIntervals], [tolerance], [method], [fileNamePrefix], [options], [outputFormat], [variableFilter], [cflags], [simflags])
Example command:
simulate(A);

function buildModel
 input TypeName className "the class that should be built";
 input Real startTime = "<default>" "the start time of the simulation. <default> = 0.0";
 input Real stopTime = 1.0 "the stop time of the simulation. <default> = 1.0";
 input Real numberOfIntervals = 500 "number of intervals in the result file. <default> = 500";
 input Real tolerance = 1e-6 "tolerance used by the integration method. <default> = 1e-6";
 input String method = "<default>" "integration method used for simulation. <default> = dassl";
 input String fileNamePrefix = "<default>" "fileNamePrefix. <default> = \"\"";
 input String options = "<default>" "options. <default> = \"\"";
 input String outputFormat = "mat" "Format for the result file. <default> = \"mat\"";
 input String variableFilter = ".*" "Filter for variables that should store in result file. <default> = \".*\"";
 input String cflags = "<default>" "cflags. <default> = \"\"";
 input String simflags = "<default>" "simflags. <default> = \"\"";
 output String[2] buildModelResults;
end buildModel;

buildModelFMU

translates a modelica model into a Functional Mockup Unit.
The only required argument is the className, while all others have some default values.
Example command:
buildModelFMU(className, version="2.0");

function buildModelFMU
 input TypeName className "the class that should translated";
 input String version = "2.0" "FMU version, 1.0 or 2.0.";
 input String fmuType = "me" "FMU type, me (model exchange), cs (co-simulation), me_cs (both model exchange and co-simulation)";
 input String fileNamePrefix = "<default>" "fileNamePrefix. <default> = \"className\"";
 input String platforms[:] = {"dynamic"} "The list of platforms to generate code for. \"dynamic\"=current platform, dynamically link the runtime. \"static\"=current platform, statically link everything. Else, use a host triple, e.g. \"x86_64-linux-gnu\" or \"x86_64-w64-mingw32\"";
 output String generatedFileName "Returns the full path of the generated FMU.";
end buildModelFMU;

buildOpenTURNSInterface

generates wrapper code for OpenTURNS

function buildOpenTURNSInterface
 input TypeName className;
 input String pythonTemplateFile;
 input Boolean showFlatModelica = false;
 output String outPythonScript;
end buildOpenTURNSInterface;

cd

change directory to the given path (which may be either relative or absolute)
returns the new working directory on success or a message on failure
if the given path is the empty string, the function simply returns the current working directory.

function cd
 input String newWorkingDirectory = "";
 output String workingDirectory;
end cd;

checkAllModelsRecursive

Checks all models recursively and returns number of variables and equations.

function checkAllModelsRecursive
 input TypeName className;
 input Boolean checkProtected = false "Checks also protected classes if true";
 output String result;
end checkAllModelsRecursive;

checkCodeGraph

Checks if the given taskgraph has the same structure as the graph described in the codefile.

function checkCodeGraph
 input String graphfile;
 input String codefile;
 output String[:] result;
end checkCodeGraph;

checkInterfaceOfPackages

Verifies the __OpenModelica_Interface=str annotation of all loaded packages with respect to the given main class.

For each row in the dependencyMatrix, the first element is the name of a dependency type. The rest of the elements are the other accepted dependency types for this one (frontend can call frontend and util, for example). Empty entries are ignored (necessary in order to have a rectangular matrix).

function checkInterfaceOfPackages
 input TypeName cl;
 input String dependencyMatrix[:, :];
 output Boolean success;
end checkInterfaceOfPackages;

checkModel

Checks a model and returns number of variables and equations.

function checkModel
 input TypeName className;
 output String result;
end checkModel;

checkSettings

Display some diagnostics.

function checkSettings
 output CheckSettingsResult result;
end checkSettings;

checkTaskGraph

Checks if the given taskgraph has the same structure as the reference taskgraph and if all attributes are set correctly.

function checkTaskGraph
 input String filename;
 input String reffilename;
 output String[:] result;
end checkTaskGraph;

classAnnotationExists

Check if annotation exists

Returns true if className has a class annotation called annotationName.

function classAnnotationExists
 input TypeName className;
 input TypeName annotationName;
 output Boolean exists;
end classAnnotationExists;

clear

Clears everything: symboltable and variables.

function clear
 output Boolean success;
end clear;

clearCommandLineOptions

Resets all command-line flags to their default values.

function clearCommandLineOptions
 output Boolean success;
end clearCommandLineOptions;

clearDebugFlags

Resets all debug flags to their default values.

function clearDebugFlags
 output Boolean success;
end clearDebugFlags;

clearMessages

Clears the error buffer.

function clearMessages
 output Boolean success;
end clearMessages;

clearProgram

Clears loaded .

function clearProgram
 output Boolean success;
end clearProgram;

clearVariables

Clear all user defined variables.

function clearVariables
 output Boolean success;
end clearVariables;

closeSimulationResultFile

Closes the current simulation result file.
Only needed by Windows. Windows cannot handle reading and writing to the same file from different processes.
To allow OMEdit to make successful simulation again on the same file we must close the file after reading the Simulation Result Variables.
Even OMEdit only use this API for Windows.

function closeSimulationResultFile
 output Boolean success;
end closeSimulationResultFile;

codeToString

function codeToString
 input $Code className;
 output String string;
end codeToString;

compareFiles

Compares file1 and file2 and returns true if their content is equal, otherwise false.

impure function compareFiles
 input String file1;
 input String file2;
 output Boolean isEqual;
end compareFiles;

compareFilesAndMove

Compares newFile and oldFile. If they differ, overwrite oldFile with newFile

Basically: test -f ../oldFile && cmp newFile oldFile || mv newFile oldFile

impure function compareFilesAndMove
 input String newFile;
 input String oldFile;
 output Boolean success;
end compareFilesAndMove;

compareSimulationResults

compares simulation results.

function compareSimulationResults
 input String filename;
 input String reffilename;
 input String logfilename;
 input Real relTol = 0.01;
 input Real absTol = 0.0001;
 input String[:] vars = fill("", 0);
 output String[:] result;
end compareSimulationResults;

convertUnits

Returns the scale factor and offsets used when converting two units.

Returns false if the types are not compatible and should not be converted.

function convertUnits
 input String s1;
 input String s2;
 output Boolean unitsCompatible;
 output Real scaleFactor1;
 output Real offset1;
 output Real scaleFactor2;
 output Real offset2;
end convertUnits;

copyClass

Copies a class within the same level

function copyClass
 input TypeName className "the class that should be copied";
 input String newClassName "the name for new class";
 input TypeName withIn = $Code(TopLevel) "the with in path for new class";
 output Boolean result;
end copyClass;

countMessages

Returns the total number of messages in the error buffer, as well as the number of errors and warnings.

function countMessages
 output Integer numMessages;
 output Integer numErrors;
 output Integer numWarnings;
end countMessages;

deleteFile

Deletes a file with the given name.

function deleteFile
 input String fileName;
 output Boolean success;
end deleteFile;

diffModelicaFileListings

Creates diffs of two strings corresponding to Modelica files

Creates diffs of two strings (before and after) corresponding to Modelica files. The diff is specialized to handle the list API moving comments around in the file and introducing or deleting whitespace.

The output can be chosen to be a colored diff (for terminals), XML, or the final text (deletions removed).

function diffModelicaFileListings
 input String before, after;
 input DiffFormat diffFormat = DiffFormat.color;
 output String result;
end diffModelicaFileListings;

diffSimulationResults

compares simulation results.

Takes two result files and compares them. By default, all selected variables that are not equal in the two files are output to diffPrefix.varName.csv.

The output is the names of the variables for which files were generated.

function diffSimulationResults
 input String actualFile;
 input String expectedFile;
 input String diffPrefix;
 input Real relTol = 1e-3 "y tolerance";
 input Real relTolDiffMinMax = 1e-4 "y tolerance based on the difference between the maximum and minimum of the signal";
 input Real rangeDelta = 0.002 "x tolerance";
 input String[:] vars = fill("", 0);
 input Boolean keepEqualResults = false;
 output Boolean success;
 output String[:] failVars;
end diffSimulationResults;

diffSimulationResultsHtml

Takes two result files and compares them. By default, all selected variables that are not equal in the two files are output to diffPrefix.varName.csv.

The output is the names of the variables for which files were generated.

function diffSimulationResultsHtml
 input String var;
 input String actualFile;
 input String expectedFile;
 input Real relTol = 1e-3 "y tolerance";
 input Real relTolDiffMinMax = 1e-4 "y tolerance based on the difference between the maximum and minimum of the signal";
 input Real rangeDelta = 0.002 "x tolerance";
 output String html;
end diffSimulationResultsHtml;

directoryExists

function directoryExists
 input String dirName;
 output Boolean exists;
end directoryExists;

dirname

Returns the directory name of a file path. Similar to dirname(3) [http://linux.die.net/man/3/dirname], but with the safety of Modelica strings.

function dirname
 input String path;
 output String dirname;
end dirname;

dumpXMLDAE

Outputs the DAE system corresponding to a specific model.

Valid translationLevel strings are: flat, optimiser (runs the backend until sorting/matching), backEnd, or stateSpace.

function dumpXMLDAE
 input TypeName className;
 input String translationLevel = "flat" "flat, optimiser, backEnd, or stateSpace";
 input Boolean addOriginalIncidenceMatrix = false;
 input Boolean addSolvingInfo = false;
 input Boolean addMathMLCode = false;
 input Boolean dumpResiduals = false;
 input String fileNamePrefix = "<default>" "this is the className in string form by default";
 input String rewriteRulesFile = "" "the file from where the rewiteRules are read, default is empty which means no rewrite rules";
 output Boolean success "if the function succeeded true/false";
 output String xmlfileName "the Xml file";
end dumpXMLDAE;

echo

echo(false) disables Interactive output, echo(true) enables it again.

function echo
 input Boolean setEcho;
 output Boolean newEcho;
end echo;

escapeXML

function escapeXML
 input String inStr;
 output String outStr;
end escapeXML;

exit

Forces omc to quit with the given exit status.

function exit
 input Integer status;
end exit;

exportToFigaro

function exportToFigaro
 input TypeName path;
 input String directory = cd();
 input String database;
 input String mode;
 input String options;
 input String processor;
 output Boolean success;
end exportToFigaro;

extendsFrom

returns true if the given class extends from the given base class

function extendsFrom
 input TypeName className;
 input TypeName baseClassName;
 output Boolean res;
end extendsFrom;

filterSimulationResults

Takes one simulation result and filters out the selected variables only, producing the output file.

If numberOfIntervals<>0, re-sample to that number of intervals, ignoring event points (might be changed in the future).

function filterSimulationResults
 input String inFile;
 input String outFile;
 input String[:] vars;
 input Integer numberOfIntervals = 0 "0=Do not resample";
 output Boolean success;
end filterSimulationResults;

generateCode

The input is a function name for which C-code is generated and compiled into a dll/so

function generateCode
 input TypeName className;
 output Boolean success;
end generateCode;

generateEntryPoint

Generates a main() function that calls the given MetaModelica entrypoint (assumed to have input list and no outputs).

function generateEntryPoint
 input String fileName;
 input TypeName entryPoint;
 input String url = "https://trac.openmodelica.org/OpenModelica/newticket";
end generateEntryPoint;

generateHeader

function generateHeader
 input String fileName;
 output Boolean success;
end generateHeader;

generateScriptingAPI

Work in progress

Returns OpenModelica.Scripting API entry points for the classes that we can automatically generate entry points for.

The entry points are MetaModelica code calling CevalScript directly, and Qt/C++ code that calls the MetaModelica code.

function generateScriptingAPI
 input TypeName cl;
 input String name;
 output Boolean success;
 output String moFile;
 output String qtFile;
 output String qtHeader;
end generateScriptingAPI;

generateSeparateCode

Under construction.

function generateSeparateCode
 input TypeName className;
 input Boolean cleanCache = false "If true, the cache is reset between each generated package. This conserves memory at the cost of speed.";
 output Boolean success;
end generateSeparateCode;

generateSeparateCodeDependencies

Under construction.

function generateSeparateCodeDependencies
 input String stampSuffix = ".c" "Suffix to add to dependencies (often .c.stamp)";
 output String[:] dependencies;
end generateSeparateCodeDependencies;

generateSeparateCodeDependenciesMakefile

Under construction.

function generateSeparateCodeDependenciesMakefile
 input String filename "The file to write the makefile to";
 input String directory = "" "The relative path of the generated files";
 input String suffix = ".c" "Often .stamp since we do not update all the files";
 output Boolean success;
end generateSeparateCodeDependenciesMakefile;

getAlgorithmCount

Counts the number of Algorithm sections in a class.

function getAlgorithmCount
 input TypeName class_;
 output Integer count;
end getAlgorithmCount;

getAlgorithmItemsCount

Counts the number of Algorithm items in a class.

function getAlgorithmItemsCount
 input TypeName class_;
 output Integer count;
end getAlgorithmItemsCount;

getAnnotationCount

Counts the number of Annotation sections in a class.

function getAnnotationCount
 input TypeName class_;
 output Integer count;
end getAnnotationCount;

getAnnotationVersion

Returns the current annotation version.

function getAnnotationVersion
 output String annotationVersion;
end getAnnotationVersion;

getAstAsCorbaString

Print the whole AST on the CORBA format for records, e.g.
record Absyn.PROGRAM
classes = ...,
within_ = ...,
globalBuildTimes = ...
end Absyn.PROGRAM;

function getAstAsCorbaString
 input String fileName = "<interactive>";
 output String result "returns the string if fileName is interactive; else it returns ok or error depending on if writing the file succeeded";
end getAstAsCorbaString;

getAvailableIndexReductionMethods

function getAvailableIndexReductionMethods
 output String[:] allChoices;
 output String[:] allComments;
end getAvailableIndexReductionMethods;

getAvailableLibraries

Looks for all libraries that are visible from the getModelicaPath().

function getAvailableLibraries
 output String[:] libraries;
end getAvailableLibraries;

getAvailableMatchingAlgorithms

function getAvailableMatchingAlgorithms
 output String[:] allChoices;
 output String[:] allComments;
end getAvailableMatchingAlgorithms;

getAvailableTearingMethods

function getAvailableTearingMethods
 output String[:] allChoices;
 output String[:] allComments;
end getAvailableTearingMethods;

getBooleanClassAnnotation

Check if annotation exists and returns its value

Returns the value of the class annotation annotationName of class className. If there is no such annotation, or if it is not true or false, this function fails.

function getBooleanClassAnnotation
 input TypeName className;
 input TypeName annotationName;
 output Boolean value;
end getBooleanClassAnnotation;

getBuiltinType

Returns the builtin type e.g Real, Integer, Boolean & String of the class.

function getBuiltinType
 input TypeName cl;
 output String name;
end getBuiltinType;

getCFlags

CFLAGS

See setCFlags() for details.

function getCFlags
 output String outString;
end getCFlags;

getCXXCompiler

CXX

function getCXXCompiler
 output String compiler;
end getCXXCompiler;

getClassComment

Returns the class comment.

function getClassComment
 input TypeName cl;
 output String comment;
end getClassComment;

getClassInformation

Returns class information for the given class.

The dimensions are returned as an array of strings. The string is the textual representation of the dimension (they are not evaluated to Integers).

function getClassInformation
 input TypeName cl;
 output String restriction, comment;
 output Boolean partialPrefix, finalPrefix, encapsulatedPrefix;
 output String fileName;
 output Boolean fileReadOnly;
 output Integer lineNumberStart, columnNumberStart, lineNumberEnd, columnNumberEnd;
 output String dimensions[:];
 output Boolean isProtectedClass;
 output Boolean isDocumentationClass;
 output String version;
 output String preferredView;
end getClassInformation;

getClassNames

Returns the list of class names defined in the class.

function getClassNames
 input TypeName class_ = $Code(AllLoadedClasses);
 input Boolean recursive = false;
 input Boolean qualified = false;
 input Boolean sort = false;
 input Boolean builtin = false "List also builtin classes if true";
 input Boolean showProtected = false "List also protected classes if true";
 output TypeName classNames[:];
end getClassNames;

getClassRestriction

Returns the restriction of the given class.

function getClassRestriction
 input TypeName cl;
 output String restriction;
end getClassRestriction;

getClassesInModelicaPath

MathCore-specific or not? Who knows!

function getClassesInModelicaPath
 output String classesInModelicaPath;
end getClassesInModelicaPath;

getCompileCommand

function getCompileCommand
 output String compileCommand;
end getCompileCommand;

getCompiler

CC

function getCompiler
 output String compiler;
end getCompiler;

getComponentModifierNames

Returns the list of class component modifiers.

function getComponentModifierNames
 input TypeName class_;
 input String componentName;
 output String[:] modifiers;
end getComponentModifierNames;

getComponentsTest

Returns the components found in the given class.

function getComponentsTest
 input TypeName name;
 output Component[:] components;
 record Component
 String className;
 // when building record the constructor. Records are allowed to contain only components of basic types, arrays of basic types or other records.
 String name;
 String comment;
 Boolean isProtected;
 Boolean isFinal;
 Boolean isFlow;
 Boolean isStream;
 Boolean isReplaceable;
 String variability "'constant', 'parameter', 'discrete', ''";
 String innerOuter "'inner', 'outer', ''";
 String inputOutput "'input', 'output', ''";
 String dimensions[:];
 end Component;
end getComponentsTest;

getConfigFlagValidOptions

Returns the list of valid options for a string config flag, and the description strings for these options if available

function getConfigFlagValidOptions
 input String flag;
 output String validOptions[:];
 output String mainDescription;
 output String descriptions[:];
end getConfigFlagValidOptions;

getDefaultOpenCLDevice

Returns the id for the default OpenCL device to be used.

function getDefaultOpenCLDevice
 output Integer defdevid;
end getDefaultOpenCLDevice;

getDerivedClassModifierNames

Returns the derived class modifier names.
Example command:
type Resistance = Real(final quantity="Resistance",final unit="Ohm");
getDerivedClassModifierNames(Resistance) => {"quantity","unit"}

Finds the modifiers of the derived class.

function getDerivedClassModifierNames
 input TypeName className;
 output String[:] modifierNames;
end getDerivedClassModifierNames;

getDerivedClassModifierValue

Returns the derived class modifier value.
Example command:
type Resistance = Real(final quantity="Resistance",final unit="Ohm");
getDerivedClassModifierValue(Resistance, unit); => " = "Ohm""
getDerivedClassModifierValue(Resistance, quantity); => " = "Resistance""

Finds the modifier value of the derived class.

function getDerivedClassModifierValue
 input TypeName className;
 input TypeName modifierName;
 output String modifierValue;
end getDerivedClassModifierValue;

getDocumentationAnnotation

Returns the documentaiton annotation defined in the class.

function getDocumentationAnnotation
 input TypeName cl;
 output String out[2] "{info,revision} TODO: Should be changed to have 2 outputs instead of an array of 2 Strings...";
end getDocumentationAnnotation;

getEnvironmentVar

Returns the value of the environment variable.

function getEnvironmentVar
 input String var;
 output String value "returns empty string on failure";
end getEnvironmentVar;

getEquationCount

Counts the number of Equation sections in a class.

function getEquationCount
 input TypeName class_;
 output Integer count;
end getEquationCount;

getEquationItemsCount

Counts the number of Equation items in a class.

function getEquationItemsCount
 input TypeName class_;
 output Integer count;
end getEquationItemsCount;

getErrorString

Returns the current error message. [file.mo:n:n-n:n:b] Error: message

Returns a user-friendly string containing the errors stored in the buffer. With warningsAsErrors=true, it reports warnings as if they were errors.

function getErrorString
 input Boolean warningsAsErrors = false;
 output String errorString;
end getErrorString;

getImportCount

Counts the number of Import sections in a class.

function getImportCount
 input TypeName class_;
 output Integer count;
end getImportCount;

getIndexReductionMethod

function getIndexReductionMethod
 output String selected;
end getIndexReductionMethod;

getInheritedClasses

Returns the list of inherited classes.

function getInheritedClasses
 input TypeName name;
 output TypeName inheritedClasses[:];
end getInheritedClasses;

getInitialAlgorithmCount

Counts the number of Initial Algorithm sections in a class.

function getInitialAlgorithmCount
 input TypeName class_;
 output Integer count;
end getInitialAlgorithmCount;

getInitialAlgorithmItemsCount

Counts the number of Initial Algorithm items in a class.

function getInitialAlgorithmItemsCount
 input TypeName class_;
 output Integer count;
end getInitialAlgorithmItemsCount;

getInitialEquationCount

Counts the number of Initial Equation sections in a class.

function getInitialEquationCount
 input TypeName class_;
 output Integer count;
end getInitialEquationCount;

getInitialEquationItemsCount

Counts the number of Initial Equation items in a class.

function getInitialEquationItemsCount
 input TypeName class_;
 output Integer count;
end getInitialEquationItemsCount;

getInstallationDirectoryPath

This returns OPENMODELICAHOME if it is set; on some platforms the default path is returned if it is not set.

function getInstallationDirectoryPath
 output String installationDirectoryPath;
end getInstallationDirectoryPath;

getLanguageStandard

Returns the current Modelica Language Standard in use.

function getLanguageStandard
 output String outVersion;
end getLanguageStandard;

getLinker

function getLinker
 output String linker;
end getLinker;

getLinkerFlags

function getLinkerFlags
 output String linkerFlags;
end getLinkerFlags;

getLoadedLibraries

Returns a list of names of libraries and their path on the system, for example:

{{"Modelica","/usr/lib/omlibrary/Modelica 3.2.1"},{"ModelicaServices","/usr/lib/omlibrary/ModelicaServices 3.2.1"}}

function getLoadedLibraries
 output String[:, 2] libraries;
end getLoadedLibraries;

getMatchingAlgorithm

function getMatchingAlgorithm
 output String selected;
end getMatchingAlgorithm;

getMemorySize

Retrieves the physical memory size available on the system in megabytes.

function getMemorySize
 output Real memory(unit = "MiB");
end getMemorySize;

getMessagesString

see getErrorString()

function getMessagesString
 output String messagesString;
end getMessagesString;

getModelicaPath

Get the Modelica Library Path.

The MODELICAPATH is list of paths to search when trying to load a library. It is a string separated by colon (:) on all OSes except Windows, which uses semicolon (;).

To override the default path (OPENMODELICAHOME/lib/omlibrary/:~/.openmodelica/libraries/), set the environment variable OPENMODELICALIBRARY=...

function getModelicaPath
 output String modelicaPath;
end getModelicaPath;

getNoSimplify

Returns true if noSimplify flag is set.

function getNoSimplify
 output Boolean noSimplify;
end getNoSimplify;

getNthAlgorithm

Returns the Nth Algorithm section.

function getNthAlgorithm
 input TypeName class_;
 input Integer index;
 output String result;
end getNthAlgorithm;

getNthAlgorithmItem

Returns the Nth Algorithm Item.

function getNthAlgorithmItem
 input TypeName class_;
 input Integer index;
 output String result;
end getNthAlgorithmItem;

getNthAnnotationString

Returns the Nth Annotation section as string.

function getNthAnnotationString
 input TypeName class_;
 input Integer index;
 output String result;
end getNthAnnotationString;

getNthEquation

Returns the Nth Equation section.

function getNthEquation
 input TypeName class_;
 input Integer index;
 output String result;
end getNthEquation;

getNthEquationItem

Returns the Nth Equation Item.

function getNthEquationItem
 input TypeName class_;
 input Integer index;
 output String result;
end getNthEquationItem;

getNthImport

Returns the Nth Import as string.

function getNthImport
 input TypeName class_;
 input Integer index;
 output String out[3] "{\"Path\",\"Id\",\"Kind\"}";
end getNthImport;

getNthInitialAlgorithm

Returns the Nth Initial Algorithm section.

function getNthInitialAlgorithm
 input TypeName class_;
 input Integer index;
 output String result;
end getNthInitialAlgorithm;

getNthInitialAlgorithmItem

Returns the Nth Initial Algorithm Item.

function getNthInitialAlgorithmItem
 input TypeName class_;
 input Integer index;
 output String result;
end getNthInitialAlgorithmItem;

getNthInitialEquation

Returns the Nth Initial Equation section.

function getNthInitialEquation
 input TypeName class_;
 input Integer index;
 output String result;
end getNthInitialEquation;

getNthInitialEquationItem

Returns the Nth Initial Equation Item.

function getNthInitialEquationItem
 input TypeName class_;
 input Integer index;
 output String result;
end getNthInitialEquationItem;

getOrderConnections

Returns true if orderConnections flag is set.

function getOrderConnections
 output Boolean orderConnections;
end getOrderConnections;

getPackages

Returns the list of packages defined in the class.

function getPackages
 input TypeName class_ = $Code(AllLoadedClasses);
 output TypeName classNames[:];
end getPackages;

getParameterNames

Returns the list of parameters of the class.

function getParameterNames
 input TypeName class_;
 output String[:] parameters;
end getParameterNames;

getParameterValue

Returns the value of the parameter of the class.

function getParameterValue
 input TypeName class_;
 input String parameterName;
 output String parameterValue;
end getParameterValue;

getSettings

function getSettings
 output String settings;
end getSettings;

getShowAnnotations

function getShowAnnotations
 output Boolean show;
end getShowAnnotations;

getSimulationOptions

Returns the startTime, stopTime, tolerance, and interval based on the experiment annotation.

function getSimulationOptions
 input TypeName name;
 input Real defaultStartTime = 0.0;
 input Real defaultStopTime = 1.0;
 input Real defaultTolerance = 1e-6;
 input Integer defaultNumberOfIntervals = 500 "May be overridden by defining defaultInterval instead";
 input Real defaultInterval = 0.0 "If = 0.0, then numberOfIntervals is used to calculate the step size";
 output Real startTime;
 output Real stopTime;
 output Real tolerance;
 output Integer numberOfIntervals;
 output Real interval;
end getSimulationOptions;

getSourceFile

Returns the filename of the class.

function getSourceFile
 input TypeName class_;
 output String filename "empty on failure";
end getSourceFile;

getTearingMethod

function getTearingMethod
 output String selected;
end getTearingMethod;

getTempDirectoryPath

Returns the current user temporary directory location.

function getTempDirectoryPath
 output String tempDirectoryPath;
end getTempDirectoryPath;

getTimeStamp

The given class corresponds to a file (or a buffer), with a given last time this file was modified at the time of loading this file. The timestamp along with its String representation is returned.

function getTimeStamp
 input TypeName cl;
 output Real timeStamp;
 output String timeStampAsString;
end getTimeStamp;

getUsedClassNames

Returns the list of class names used in the total program defined by the class.

function getUsedClassNames
 input TypeName className;
 output TypeName classNames[:];
end getUsedClassNames;

getUses

Returns the libraries used by the package {{"Library1","Version"},{"Library2","Version"}}.

function getUses
 input TypeName pack;
 output String[:, :] uses;
end getUses;

getVectorizationLimit

function getVectorizationLimit
 output Integer vectorizationLimit;
end getVectorizationLimit;

getVersion

Returns the version of the Modelica compiler.

function getVersion
 input TypeName cl = $Code(OpenModelica);
 output String version;
end getVersion;

help

display the OpenModelica help text.

function help
 input String topic = "topics";
 output String helpText;
end help;

iconv

The iconv() function converts one multibyte characters from one character
set to another.
See man (3) iconv for more information.

function iconv
 input String string;
 input String from;
 input String to = "UTF-8";
 output String result;
end iconv;

importFMU

Imports the Functional Mockup Unit
Example command:
importFMU("A.fmu");

function importFMU
 input String filename "the fmu file name";
 input String workdir = "<default>" "The output directory for imported FMU files. <default> will put the files to current working directory.";
 input Integer loglevel = 3 "loglevel_nothing=0;loglevel_fatal=1;loglevel_error=2;loglevel_warning=3;loglevel_info=4;loglevel_verbose=5;loglevel_debug=6";
 input Boolean fullPath = false "When true the full output path is returned otherwise only the file name.";
 input Boolean debugLogging = false "When true the FMU's debug output is printed.";
 input Boolean generateInputConnectors = true "When true creates the input connector pins.";
 input Boolean generateOutputConnectors = true "When true creates the output connector pins.";
 output String generatedFileName "Returns the full path of the generated file.";
end importFMU;

inferBindings

function inferBindings
 input TypeName path;
 output Boolean success;
end inferBindings;

instantiateModel

Instantiates the class and returns the flat Modelica code.

function instantiateModel
 input TypeName className;
 output String result;
end instantiateModel;

isBlock

Returns true if the given class has restriction block.

function isBlock
 input TypeName cl;
 output Boolean b;
end isBlock;

isClass

Returns true if the given class has restriction class.

function isClass
 input TypeName cl;
 output Boolean b;
end isClass;

isConnector

Returns true if the given class has restriction connector or expandable connector.

function isConnector
 input TypeName cl;
 output Boolean b;
end isConnector;

isEnumeration

Returns true if the given class has restriction enumeration.

function isEnumeration
 input TypeName cl;
 output Boolean b;
end isEnumeration;

isExperiment

An experiment is defined as having annotation Experiment(stopTime=...)

function isExperiment
 input TypeName name;
 output Boolean res;
end isExperiment;

isFunction

Returns true if the given class has restriction function.

function isFunction
 input TypeName cl;
 output Boolean b;
end isFunction;

isModel

Returns true if the given class has restriction model.

function isModel
 input TypeName cl;
 output Boolean b;
end isModel;

isOperator

Returns true if the given class has restriction operator.

function isOperator
 input TypeName cl;
 output Boolean b;
end isOperator;

isOperatorFunction

Returns true if the given class has restriction "operator function".

function isOperatorFunction
 input TypeName cl;
 output Boolean b;
end isOperatorFunction;

isOperatorRecord

Returns true if the given class has restriction "operator record".

function isOperatorRecord
 input TypeName cl;
 output Boolean b;
end isOperatorRecord;

isOptimization

Returns true if the given class has restriction optimization.

function isOptimization
 input TypeName cl;
 output Boolean b;
end isOptimization;

isPackage

Returns true if the given class is a package.

function isPackage
 input TypeName cl;
 output Boolean b;
end isPackage;

isPartial

Returns true if the given class is partial.

function isPartial
 input TypeName cl;
 output Boolean b;
end isPartial;

isProtectedClass

Returns true if the given class c1 has class c2 as one of its protected class.

function isProtectedClass
 input TypeName cl;
 input String c2;
 output Boolean b;
end isProtectedClass;

isRecord

Returns true if the given class has restriction record.

function isRecord
 input TypeName cl;
 output Boolean b;
end isRecord;

isShortDefinition

returns true if the definition is a short class definition

function isShortDefinition
 input TypeName class_;
 output Boolean isShortCls;
end isShortDefinition;

isType

Returns true if the given class has restriction type.

function isType
 input TypeName cl;
 output Boolean b;
end isType;

linearize

creates a model with symbolic linearization matrixes

Creates a model with symbolic linearization matrixes.

At stopTime the linearization matrixes are evaluated and a modelica model is created.

The only required argument is the className, while all others have some default values.

Usage:

linearize(A, stopTime=0.0);

Creates the file "linear_A.mo" that contains the linearized matrixes at stopTime.

function linearize
 input TypeName className "the class that should simulated";
 input Real startTime = "<default>" "the start time of the simulation. <default> = 0.0";
 input Real stopTime = 1.0 "the stop time of the simulation. <default> = 1.0";
 input Real numberOfIntervals = 500 "number of intervals in the result file. <default> = 500";
 input Real stepSize = 0.002 "step size that is used for the result file. <default> = 0.002";
 input Real tolerance = 1e-6 "tolerance used by the integration method. <default> = 1e-6";
 input String method = "<default>" "integration method used for simulation. <default> = dassl";
 input String fileNamePrefix = "<default>" "fileNamePrefix. <default> = \"\"";
 input Boolean storeInTemp = false "storeInTemp. <default> = false";
 input Boolean noClean = false "noClean. <default> = false";
 input String options = "<default>" "options. <default> = \"\"";
 input String outputFormat = "mat" "Format for the result file. <default> = \"mat\"";
 input String variableFilter = ".*" "Filter for variables that should store in result file. <default> = \".*\"";
 input String cflags = "<default>" "cflags. <default> = \"\"";
 input String simflags = "<default>" "simflags. <default> = \"\"";
 output String linearizationResult;
end linearize;

list

Lists the contents of the given class, or all loaded classes.

Pretty-prints a class definition.

Syntax

list(Modelica.Math.sin)

list(Modelica.Math.sin,interfaceOnly=true)

Description

list() pretty-prints the whole of the loaded AST while list(className) lists a class and its children. It keeps all annotations and comments intact but strips out any comments and normalizes white-space.

list(className,interfaceOnly=true) works on functions and pretty-prints only the interface parts (annotations and protected sections removed). String-comments on public variables are kept.

If the specified class does not exist (or is not a function when interfaceOnly is given), the empty string is returned.

function list
 input TypeName class_ = $Code(AllLoadedClasses);
 input Boolean interfaceOnly = false;
 input Boolean shortOnly = false "only short class definitions";
 input ExportKind exportKind = ExportKind.Absyn;
 output String contents;
end list;

listFile

Lists the contents of the file given by the class.

Lists the contents of the file given by the class. See also list().

function listFile
 input TypeName class_;
 output String contents;
end listFile;

listVariables

Lists the names of the active variables in the scripting environment.

function listVariables
 output TypeName variables[:];
end listVariables;

loadFile

load file (*.mo) and merge it with the loaded AST.

Loads the given file using the given encoding.

Note that if the file basename is package.mo and the parent directory is the top-level class, the library structure is loaded as if loadModel(ClassName) was called. Uses-annotations are respected if uses=true. The main difference from loadModel is that loadFile appends this directory to the MODELICAPATH (for this call only).

function loadFile
 input String fileName;
 input String encoding = "UTF-8";
 input Boolean uses = true;
 output Boolean success;
end loadFile;

loadFileInteractive

function loadFileInteractive
 input String filename;
 input String encoding = "UTF-8";
 output TypeName names[:];
end loadFileInteractive;

loadFileInteractiveQualified

function loadFileInteractiveQualified
 input String filename;
 input String encoding = "UTF-8";
 output TypeName names[:];
end loadFileInteractiveQualified;

loadFiles

load files (*.mo) and merges them with the loaded AST.

function loadFiles
 input String[:] fileNames;
 input String encoding = "UTF-8";
 input Integer numThreads = OpenModelica.Scripting.numProcessors();
 output Boolean success;
end loadFiles;

loadModel

Loads the Modelica Standard Library.

Loads a Modelica library.

Syntax

loadModel(Modelica)

loadModel(Modelica,{"3.2"})

Description

loadModel() begins by parsing the getModelicaPath(), and looking for candidate packages to load in the given paths (separated by : or ; depending on OS).

The candidate is selected by choosing the one with the highest priority, chosen by looking through the priorityVersion argument to the function. If the version searched for is "default", the following special priority is used: no version name > highest main release > highest pre-release > lexical sort of others (see table below for examples). If none of the searched versions exist, false is returned and an error is added to the buffer.

A top-level package may either be defined in a file ("Modelica 3.2.mo") or directory ("Modelica 3.2/package.mo")

The encoding of any Modelica file in the package is assumed to be UTF-8. Legacy code may contain files in a different encoding. In order to handle this, add a file package.encoding at the top-level of the package, containing a single line with the name of the encoding in it. If your package contains files with mixed encodings and your system iconv supports UTF-8//IGNORE, you can ignore the bad characters in some of the files. You are recommended to convert your files to UTF-8 without byte-order mark.

	Priority
	Example

	No version name
	Modelica

	Main release
	Modelica 3.3

	Pre-release
	Modelica 3.3 Beta 1

	Non-ordered
	Modelica Trunk

Bugs

If loadModel(Modelica.XXX) is called, loadModel(Modelica) is executed instead, loading the complete library.

function loadModel
 input TypeName className;
 input String[:] priorityVersion = {"default"};
 input Boolean notify = false "Give a notification of the libraries and versions that were loaded";
 input String languageStandard = "" "Override the set language standard. Parse with the given setting, but do not change it permanently.";
 input Boolean requireExactVersion = false "If the version is required to be exact, if there is a uses Modelica(version=\"3.2\"), Modelica 3.2.1 will not match it.";
 output Boolean success;
end loadModel;

loadModelica3D

Usage

Modelica3D requires some changes to the standard ModelicaServices in order to work correctly. These changes will make your MultiBody models unable to simulate because they need an object declared as:

inner ModelicaServices.Modelica3D.Controller m3d_control

Example session:

loadModelica3D();getErrorString();
loadString("model DoublePendulum
 extends Modelica.Mechanics.MultiBody.Examples.Elementary.DoublePendulum;
 inner ModelicaServices.Modelica3D.Controller m3d_control;
end DoublePendulum;");getErrorString();
system("python " + getInstallationDirectoryPath() + "/lib/omlibrary-modelica3d/osg-gtk/dbus-server.py &");getErrorString();
simulate(DoublePendulum);getErrorString();

This API call will load the modified ModelicaServices 3.2.1 so Modelica3D runs. You can also simply call loadModel(ModelicaServices,{"3.2.1 modelica3d"});

You will also need to start an m3d backend to render the results. We hid them in $OPENMODELICAHOME/lib/omlibrary-modelica3d/osg-gtk/dbus-server.py (or blender2.59).

For more information and example models, visit the Modelica3D wiki [https://mlcontrol.uebb.tu-berlin.de/redmine/projects/modelica3d-public/wiki].

function loadModelica3D
 input String version = "3.2.1";
 output Boolean status;
end loadModelica3D;

loadString

Parses the data and merges the resulting AST with ithe
loaded AST.
If a filename is given, it is used to provide error-messages as if the string
was read in binary format from a file with the same name.
The file is converted to UTF-8 from the given character set.
When merge is true the classes cNew in the file will be merged with the already loaded classes cOld in the following way:
1. get all the inner class definitions from cOld that were loaded from a different file than itself
2. append all elements from step 1 to class cNew public list
NOTE: Encoding is deprecated as ALL strings are now UTF-8 encoded.

function loadString
 input String data;
 input String filename = "<interactive>";
 input String encoding = "UTF-8";
 input Boolean merge = false "if merge is true the parsed AST is merged with the existing AST, default to false which means that is replaced, not merged";
 output Boolean success;
end loadString;

mkdir

create directory of given path (which may be either relative or absolute)
returns true if directory was created or already exists.

function mkdir
 input String newDirectory;
 output Boolean success;
end mkdir;

moveClass

Moves a class up or down depending on the given offset, where a positive
offset moves the class down and a negative offset up. The offset is truncated
if the resulting index is outside the class list. It retains the visibility of
the class by adding public/protected sections when needed, and merges sections
of the same type if the class is moved from a section it was alone in. Returns
true if the move was successful, otherwise false.

function moveClass
 input TypeName className "the class that should be moved";
 input Integer offset "Offset in the class list.";
 output Boolean result;
end moveClass;

moveClassToBottom

Moves a class to the bottom of its enclosing class. Returns true if the move
was successful, otherwise false.

function moveClassToBottom
 input TypeName className;
 output Boolean result;
end moveClassToBottom;

moveClassToTop

Moves a class to the top of its enclosing class. Returns true if the move
was successful, otherwise false.

function moveClassToTop
 input TypeName className;
 output Boolean result;
end moveClassToTop;

ngspicetoModelica

Converts ngspice netlist to Modelica code. Modelica file is created in the same directory as netlist file.

function ngspicetoModelica
 input String netlistfileName;
 output Boolean success = false;
end ngspicetoModelica;

numProcessors

Returns the number of processors (if compiled against hwloc) or hardware threads (if using sysconf) available to OpenModelica.

function numProcessors
 output Integer result;
end numProcessors;

optimize

optimize a modelica/optimica model by generating c code, build it and run the optimization executable.
The only required argument is the className, while all others have some default values.
simulate(className, [startTime], [stopTime], [numberOfIntervals], [stepSize], [tolerance], [fileNamePrefix], [options], [outputFormat], [variableFilter], [cflags], [simflags])
Example command:
simulate(A);

function optimize
 input TypeName className "the class that should simulated";
 input Real startTime = "<default>" "the start time of the simulation. <default> = 0.0";
 input Real stopTime = 1.0 "the stop time of the simulation. <default> = 1.0";
 input Real numberOfIntervals = 500 "number of intervals in the result file. <default> = 500";
 input Real stepSize = 0.002 "step size that is used for the result file. <default> = 0.002";
 input Real tolerance = 1e-6 "tolerance used by the integration method. <default> = 1e-6";
 input String method = DAE.SCONST("optimization") "optimize a modelica/optimica model.";
 input String fileNamePrefix = "<default>" "fileNamePrefix. <default> = \"\"";
 input Boolean storeInTemp = false "storeInTemp. <default> = false";
 input Boolean noClean = false "noClean. <default> = false";
 input String options = "<default>" "options. <default> = \"\"";
 input String outputFormat = "mat" "Format for the result file. <default> = \"mat\"";
 input String variableFilter = ".*" "Filter for variables that should store in result file. <default> = \".*\"";
 input String cflags = "<default>" "cflags. <default> = \"\"";
 input String simflags = "<default>" "simflags. <default> = \"\"";
 output String optimizationResults;
end optimize;

parseFile

function parseFile
 input String filename;
 input String encoding = "UTF-8";
 output TypeName names[:];
end parseFile;

parseString

function parseString
 input String data;
 input String filename = "<interactive>";
 output TypeName names[:];
end parseString;

plot

Launches a plot window using OMPlot.

Launches a plot window using OMPlot. Returns true on success.

Example command sequences:

	simulate(A);plot({x,y,z});

	simulate(A);plot(x, externalWindow=true);

	simulate(A,fileNamePrefix="B");simulate(C);plot(z,fileName="B.mat",legend=false);

function plot
 input VariableNames vars "The variables you want to plot";
 input Boolean externalWindow = false "Opens the plot in a new plot window";
 input String fileName = "<default>" "The filename containing the variables. <default> will read the last simulation result";
 input String title = "" "This text will be used as the diagram title.";
 input String grid = "detailed" "Sets the grid for the plot i.e simple, detailed, none.";
 input Boolean logX = false "Determines whether or not the horizontal axis is logarithmically scaled.";
 input Boolean logY = false "Determines whether or not the vertical axis is logarithmically scaled.";
 input String xLabel = "time" "This text will be used as the horizontal label in the diagram.";
 input String yLabel = "" "This text will be used as the vertical label in the diagram.";
 input Real xRange[2] = {0.0, 0.0} "Determines the horizontal interval that is visible in the diagram. {0,0} will select a suitable range.";
 input Real yRange[2] = {0.0, 0.0} "Determines the vertical interval that is visible in the diagram. {0,0} will select a suitable range.";
 input Real curveWidth = 1.0 "Sets the width of the curve.";
 input Integer curveStyle = 1 "Sets the style of the curve. SolidLine=1, DashLine=2, DotLine=3, DashDotLine=4, DashDotDotLine=5, Sticks=6, Steps=7.";
 input String legendPosition = "top" "Sets the POSITION of the legend i.e left, right, top, bottom, none.";
 input String footer = "" "This text will be used as the diagram footer.";
 input Boolean autoScale = true "Use auto scale while plotting.";
 input Boolean forceOMPlot = false "if true launches OMPlot and doesn't call callback function even if it is defined.";
 output Boolean success "Returns true on success";
end plot;

plotAll

Works in the same way as plot(), but does not accept any
variable names as input. Instead, all variables are part of the plot window.
Example command sequences:
simulate(A);plotAll();
simulate(A);plotAll(externalWindow=true);
simulate(A,fileNamePrefix="B");simulate(C);plotAll(x,fileName="B.mat");

function plotAll
 input Boolean externalWindow = false "Opens the plot in a new plot window";
 input String fileName = "<default>" "The filename containing the variables. <default> will read the last simulation result";
 input String title = "" "This text will be used as the diagram title.";
 input String grid = "detailed" "Sets the grid for the plot i.e simple, detailed, none.";
 input Boolean logX = false "Determines whether or not the horizontal axis is logarithmically scaled.";
 input Boolean logY = false "Determines whether or not the vertical axis is logarithmically scaled.";
 input String xLabel = "time" "This text will be used as the horizontal label in the diagram.";
 input String yLabel = "" "This text will be used as the vertical label in the diagram.";
 input Real xRange[2] = {0.0, 0.0} "Determines the horizontal interval that is visible in the diagram. {0,0} will select a suitable range.";
 input Real yRange[2] = {0.0, 0.0} "Determines the vertical interval that is visible in the diagram. {0,0} will select a suitable range.";
 input Real curveWidth = 1.0 "Sets the width of the curve.";
 input Integer curveStyle = 1 "Sets the style of the curve. SolidLine=1, DashLine=2, DotLine=3, DashDotLine=4, DashDotDotLine=5, Sticks=6, Steps=7.";
 input String legendPosition = "top" "Sets the POSITION of the legend i.e left, right, top, bottom, none.";
 input String footer = "" "This text will be used as the diagram footer.";
 input Boolean autoScale = true "Use auto scale while plotting.";
 input Boolean forceOMPlot = false "if true launches OMPlot and doesn't call callback function even if it is defined.";
 output Boolean success "Returns true on success";
end plotAll;

plotParametric

Launches a plotParametric window using OMPlot. Returns true on success.
Example command sequences:
simulate(A);plotParametric(x,y);
simulate(A);plotParametric(x,y, externalWindow=true);

function plotParametric
 input VariableName xVariable;
 input VariableName yVariable;
 input Boolean externalWindow = false "Opens the plot in a new plot window";
 input String fileName = "<default>" "The filename containing the variables. <default> will read the last simulation result";
 input String title = "" "This text will be used as the diagram title.";
 input String grid = "detailed" "Sets the grid for the plot i.e simple, detailed, none.";
 input Boolean logX = false "Determines whether or not the horizontal axis is logarithmically scaled.";
 input Boolean logY = false "Determines whether or not the vertical axis is logarithmically scaled.";
 input String xLabel = "time" "This text will be used as the horizontal label in the diagram.";
 input String yLabel = "" "This text will be used as the vertical label in the diagram.";
 input Real xRange[2] = {0.0, 0.0} "Determines the horizontal interval that is visible in the diagram. {0,0} will select a suitable range.";
 input Real yRange[2] = {0.0, 0.0} "Determines the vertical interval that is visible in the diagram. {0,0} will select a suitable range.";
 input Real curveWidth = 1.0 "Sets the width of the curve.";
 input Integer curveStyle = 1 "Sets the style of the curve. SolidLine=1, DashLine=2, DotLine=3, DashDotLine=4, DashDotDotLine=5, Sticks=6, Steps=7.";
 input String legendPosition = "top" "Sets the POSITION of the legend i.e left, right, top, bottom, none.";
 input String footer = "" "This text will be used as the diagram footer.";
 input Boolean autoScale = true "Use auto scale while plotting.";
 input Boolean forceOMPlot = false "if true launches OMPlot and doesn't call callback function even if it is defined.";
 output Boolean success "Returns true on success";
end plotParametric;

readFile

The contents of the given file are returned.
Note that if the function fails, the error message is returned as a string instead of multiple output or similar.

impure function readFile
 input String fileName;
 output String contents;
end readFile;

readFileNoNumeric

Returns the contents of the file, with anything resembling a (real) number stripped out, and at the end adding:
Filter count from number domain: n.
This should probably be changed to multiple outputs; the filtered string and an integer.
Does anyone use this API call?

function readFileNoNumeric
 input String fileName;
 output String contents;
end readFileNoNumeric;

readSimulationResult

Reads a result file, returning a matrix corresponding to the variables and size given.

function readSimulationResult
 input String filename;
 input VariableNames variables;
 input Integer size = 0 "0=read any size... If the size is not the same as the result-file, this function fails";
 output Real result[:, :];
end readSimulationResult;

readSimulationResultSize

The number of intervals that are present in the output file.

function readSimulationResultSize
 input String fileName;
 output Integer sz;
end readSimulationResultSize;

readSimulationResultVars

Returns the variables in the simulation file; you can use val() and plot() commands using these names.

Takes one simulation results file and returns the variables stored in it.

If readParameters is true, parameter names are returned.

If openmodelicaStyle is true, the stored variable names are converted to the canonical form used by OpenModelica variables (a.der(b) becomes der(a.b), and so on).

function readSimulationResultVars
 input String fileName;
 input Boolean readParameters = true;
 input Boolean openmodelicaStyle = false;
 output String[:] vars;
end readSimulationResultVars;

realpath

Get full path name of file or directory name

Return the canonicalized absolute pathname. Similar to realpath(3) [http://linux.die.net/man/3/realpath], but with the safety of Modelica strings.

function realpath
 input String name "Absolute or relative file or directory name";
 output String fullName "Full path of 'name'";
end realpath;

regex

Sets the error buffer and returns -1 if the regex does not compile.
The returned result is the same as POSIX regex():
The first value is the complete matched string
The rest are the substrings that you wanted.
For example:
regex(lorem," ([A-Za-z]*) ([A-Za-z]*) ",maxMatches=3)
=> {" ipsum dolor ","ipsum","dolor"}
This means if you have n groups, you want maxMatches=n+1

function regex
 input String str;
 input String re;
 input Integer maxMatches = 1 "The maximum number of matches that will be returned";
 input Boolean extended = true "Use POSIX extended or regular syntax";
 input Boolean caseInsensitive = false;
 output Integer numMatches "-1 is an error, 0 means no match, else returns a number 1..maxMatches";
 output String matchedSubstrings[maxMatches] "unmatched strings are returned as empty";
end regex;

regexBool

Returns true if the string matches the regular expression.

function regexBool
 input String str;
 input String re;
 input Boolean extended = true "Use POSIX extended or regular syntax";
 input Boolean caseInsensitive = false;
 output Boolean matches;
end regexBool;

regularFileExists

function regularFileExists
 input String fileName;
 output Boolean exists;
end regularFileExists;

reloadClass

reloads the file associated with the given (loaded class)

Given an existing, loaded class in the compiler, compare the time stamp of the loaded class with the time stamp (mtime) of the file it was loaded from. If these differ, parse the file and merge it with the AST.

function reloadClass
 input TypeName name;
 input String encoding = "UTF-8";
 output Boolean success;
end reloadClass;

remove

removes a file or directory of given path (which may be either relative or absolute).

function remove
 input String path;
 output Boolean success "Returns true on success.";
end remove;

removeComponentModifiers

Removes the component modifiers.

function removeComponentModifiers
 input TypeName class_;
 input String componentName;
 output Boolean success;
end removeComponentModifiers;

removeExtendsModifiers

Removes the extends modifiers of a class.

function removeExtendsModifiers
 input TypeName className;
 input TypeName baseClassName;
 output Boolean success;
end removeExtendsModifiers;

reopenStandardStream

function reopenStandardStream
 input StandardStream _stream;
 input String filename;
 output Boolean success;
end reopenStandardStream;

rewriteBlockCall

Function for property modeling, transforms block calls into instantiations for a loaded model

An extension for modeling requirements in Modelica. Rewrites block calls as block instantiations.

function rewriteBlockCall
 input TypeName className;
 input TypeName inDefs;
 output Boolean success;
end rewriteBlockCall;

runOpenTURNSPythonScript

runs OpenTURNS with the given python script returning the log file

function runOpenTURNSPythonScript
 input String pythonScriptFile;
 output String logOutputFile;
end runOpenTURNSPythonScript;

runScript

Runs the mos-script specified by the filename.

function runScript
 input String fileName "*.mos";
 output String result;
end runScript;

runScriptParallel

As runScript, but runs the commands in parallel.

If useThreads=false (default), the script will be run in an empty environment (same as running a new omc process) with default config flags.

If useThreads=true (experimental), the scripts will run in parallel in the same address space and with the same environment (which will not be updated).

function runScriptParallel
 input String scripts[:];
 input Integer numThreads = numProcessors();
 input Boolean useThreads = false;
 output Boolean results[:];
end runScriptParallel;

save

function save
 input TypeName className;
 output Boolean success;
end save;

saveAll

save the entire loaded AST to file.

function saveAll
 input String fileName;
 output Boolean success;
end saveAll;

saveModel

function saveModel
 input String fileName;
 input TypeName className;
 output Boolean success;
end saveModel;

saveTotalModel

function saveTotalModel
 input String fileName;
 input TypeName className;
 output Boolean success;
end saveTotalModel;

saveTotalSCode

searchClassNames

Searches for the class name in the all the loaded classes.
Example command:
searchClassNames("ground");
searchClassNames("ground", true);

Look for searchText in All Loaded Classes and their code. Returns the list of searched classes.

function searchClassNames
 input String searchText;
 input Boolean findInText = false;
 output TypeName classNames[:];
end searchClassNames;

setAnnotationVersion

Sets the annotation version.

function setAnnotationVersion
 input String annotationVersion;
 output Boolean success;
end setAnnotationVersion;

setCFlags

CFLAGS

Sets the CFLAGS passed to the C-compiler. Remember to add -fPIC if you are on a 64-bit platform. If you want to see the defaults before you modify this variable, check the output of getCFlags(). ${SIM_OR_DYNLOAD_OPT_LEVEL} can be used to get a default lower optimization level for dynamically loaded functions. And ${MODELICAUSERCFLAGS} is nice to add so you can easily modify the CFLAGS later by using an environment variable.

function setCFlags
 input String inString;
 output Boolean success;
end setCFlags;

setCXXCompiler

CXX

function setCXXCompiler
 input String compiler;
 output Boolean success;
end setCXXCompiler;

setCheapMatchingAlgorithm

example input: 3

function setCheapMatchingAlgorithm
 input Integer matchingAlgorithm;
 output Boolean success;
end setCheapMatchingAlgorithm;

setClassComment

Sets the class comment.

function setClassComment
 input TypeName class_;
 input String filename;
 output Boolean success;
end setClassComment;

setCommandLineOptions

The input is a regular command-line flag given to OMC, e.g. +d=failtrace or +g=MetaModelica

function setCommandLineOptions
 input String option;
 output Boolean success;
end setCommandLineOptions;

setCompileCommand

function setCompileCommand
 input String compileCommand;
 output Boolean success;
end setCompileCommand;

setCompiler

CC

function setCompiler
 input String compiler;
 output Boolean success;
end setCompiler;

setCompilerFlags

function setCompilerFlags
 input String compilerFlags;
 output Boolean success;
end setCompilerFlags;

setCompilerPath

function setCompilerPath
 input String compilerPath;
 output Boolean success;
end setCompilerPath;

setDebugFlags

example input: failtrace,-noevalfunc

function setDebugFlags
 input String debugFlags;
 output Boolean success;
end setDebugFlags;

setDefaultOpenCLDevice

Sets the default OpenCL device to be used.

function setDefaultOpenCLDevice
 input Integer defdevid;
 output Boolean success;
end setDefaultOpenCLDevice;

setDocumentationAnnotation

Used to set the Documentation annotation of a class. An empty argument (e.g. for revisions) means no annotation is added.

function setDocumentationAnnotation
 input TypeName class_;
 input String info = "";
 input String revisions = "";
 output Boolean bool;
end setDocumentationAnnotation;

setEnvironmentVar

function setEnvironmentVar
 input String var;
 input String value;
 output Boolean success;
end setEnvironmentVar;

setIndexReductionMethod

example input: dynamicStateSelection

function setIndexReductionMethod
 input String method;
 output Boolean success;
end setIndexReductionMethod;

setInitXmlStartValue

function setInitXmlStartValue
 input String fileName;
 input String variableName;
 input String startValue;
 input String outputFile;
 output Boolean success = false;
end setInitXmlStartValue;

setInstallationDirectoryPath

Sets the OPENMODELICAHOME environment variable. Use this method instead of setEnvironmentVar.

function setInstallationDirectoryPath
 input String installationDirectoryPath;
 output Boolean success;
end setInstallationDirectoryPath;

setLanguageStandard

Sets the Modelica Language Standard.

function setLanguageStandard
 input String inVersion;
 output Boolean success;
end setLanguageStandard;

setLinker

function setLinker
 input String linker;
 output Boolean success;
end setLinker;

setLinkerFlags

function setLinkerFlags
 input String linkerFlags;
 output Boolean success;
end setLinkerFlags;

setMatchingAlgorithm

example input: omc

function setMatchingAlgorithm
 input String matchingAlgorithm;
 output Boolean success;
end setMatchingAlgorithm;

setModelicaPath

The Modelica Library Path - MODELICAPATH in the language specification; OPENMODELICALIBRARY in OpenModelica.

See loadModel() for a description of what the MODELICAPATH is used for.

function setModelicaPath
 input String modelicaPath;
 output Boolean success;
end setModelicaPath;

setNoSimplify

Sets the noSimplify flag.

function setNoSimplify
 input Boolean noSimplify;
 output Boolean success;
end setNoSimplify;

setOrderConnections

Sets the orderConnection flag.

function setOrderConnections
 input Boolean orderConnections;
 output Boolean success;
end setOrderConnections;

setPlotCommand

function setPlotCommand
 input String plotCommand;
 output Boolean success;
end setPlotCommand;

setPostOptModules

example input: lateInline,inlineArrayEqn,removeSimpleEquations.

function setPostOptModules
 input String modules;
 output Boolean success;
end setPostOptModules;

setPreOptModules

example input: removeFinalParameters,removeSimpleEquations,expandDerOperator

function setPreOptModules
 input String modules;
 output Boolean success;
end setPreOptModules;

setShowAnnotations

function setShowAnnotations
 input Boolean show;
 output Boolean success;
end setShowAnnotations;

setSourceFile

function setSourceFile
 input TypeName class_;
 input String filename;
 output Boolean success;
end setSourceFile;

setTearingMethod

example input: omcTearing

function setTearingMethod
 input String tearingMethod;
 output Boolean success;
end setTearingMethod;

setTempDirectoryPath

function setTempDirectoryPath
 input String tempDirectoryPath;
 output Boolean success;
end setTempDirectoryPath;

setVectorizationLimit

function setVectorizationLimit
 input Integer vectorizationLimit;
 output Boolean success;
end setVectorizationLimit;

simulate

simulates a modelica model by generating c code, build it and run the simulation executable.
The only required argument is the className, while all others have some default values.
simulate(className, [startTime], [stopTime], [numberOfIntervals], [tolerance], [method], [fileNamePrefix], [options], [outputFormat], [variableFilter], [cflags], [simflags])
Example command:
simulate(A);

function simulate
 input TypeName className "the class that should simulated";
 input Real startTime = "<default>" "the start time of the simulation. <default> = 0.0";
 input Real stopTime = 1.0 "the stop time of the simulation. <default> = 1.0";
 input Real numberOfIntervals = 500 "number of intervals in the result file. <default> = 500";
 input Real tolerance = 1e-6 "tolerance used by the integration method. <default> = 1e-6";
 input String method = "<default>" "integration method used for simulation. <default> = dassl";
 input String fileNamePrefix = "<default>" "fileNamePrefix. <default> = \"\"";
 input String options = "<default>" "options. <default> = \"\"";
 input String outputFormat = "mat" "Format for the result file. <default> = \"mat\"";
 input String variableFilter = ".*" "Filter for variables that should store in result file. <default> = \".*\"";
 input String cflags = "<default>" "cflags. <default> = \"\"";
 input String simflags = "<default>" "simflags. <default> = \"\"";
 output String simulationResults;
end simulate;

solveLinearSystem

Solve A*X = B, using dgesv or lp_solve (if any variable in X is integer)
Returns for solver dgesv: info>0: Singular for element i. info<0: Bad input.
For solver lp_solve: ???

function solveLinearSystem
 input Real[size(B, 1), size(B, 1)] A;
 input Real[:] B;
 input LinearSystemSolver solver = LinearSystemSolver.dgesv;
 input Integer[:] isInt = {-1} "list of indices that are integers";
 output Real[size(B, 1)] X;
 output Integer info;
end solveLinearSystem;

sortStrings

Sorts a string array in ascending order.

function sortStrings
 input String arr[:];
 output String sorted;
end sortStrings;

stringReplace

Replaces all occurances of the string source with target.

function stringReplace
 input String str;
 input String source;
 input String target;
 output String res;
end stringReplace;

stringSplit

Splits the string at the places given by the character

function stringSplit
 input String string;
 input String token "single character only";
 output String[:] strings;
end stringSplit;

stringTypeName

stringTypeName is used to make it simpler to create some functionality when scripting. The basic use-case is calling functions like simulate when you do not know the name of the class a priori simulate(stringTypeName(readFile("someFile"))).

function stringTypeName
 input String str;
 output TypeName cl;
end stringTypeName;

stringVariableName

stringVariableName is used to make it simpler to create some functionality when scripting. The basic use-case is calling functions like val when you do not know the name of the variable a priori val(stringVariableName(readFile("someFile"))).

function stringVariableName
 input String str;
 output VariableName cl;
end stringVariableName;

strtok

Splits the strings at the places given by the token, for example:
strtok("abcbdef","b") => {"a","c","def"}
strtok("abcbdef","cd") => {"ab","ef"}

function strtok
 input String string;
 input String token;
 output String[:] strings;
end strtok;

system

Similar to system(3). Executes the given command in the system shell.

impure function system
 input String callStr "String to call: sh -c $callStr";
 input String outputFile = "" "The output is redirected to this file (unless already done by callStr)";
 output Integer retval "Return value of the system call; usually 0 on success";
end system;

system_parallel

Similar to system(3). Executes the given commands in the system shell, in parallel if omc was compiled using OpenMP.

impure function system_parallel
 input String callStr[:] "String to call: sh -c $callStr";
 input Integer numThreads = numProcessors();
 output Integer retval[:] "Return value of the system call; usually 0 on success";
end system_parallel;

testsuiteFriendlyName

function testsuiteFriendlyName
 input String path;
 output String fixed;
end testsuiteFriendlyName;

threadWorkFailed

(Experimental) Exits the current (worker thread) signalling a failure.

translateGraphics

function translateGraphics
 input TypeName className;
 output String result;
end translateGraphics;

translateModelFMU

translates a modelica model into a Functional Mockup Unit.
The only required argument is the className, while all others have some default values.
Example command:
translateModelFMU(className, version="2.0");

function translateModelFMU
 input TypeName className "the class that should translated";
 input String version = "2.0" "FMU version, 1.0 or 2.0.";
 input String fmuType = "me" "FMU type, me (model exchange), cs (co-simulation), me_cs (both model exchange and co-simulation)";
 input String fileNamePrefix = "<default>" "fileNamePrefix. <default> = \"className\"";
 output String generatedFileName "Returns the full path of the generated FMU.";
end translateModelFMU;

typeNameString

function typeNameString
 input TypeName cl;
 output String out;
end typeNameString;

typeNameStrings

function typeNameStrings
 input TypeName cl;
 output String out[:];
end typeNameStrings;

typeOf

function typeOf
 input VariableName variableName;
 output String result;
end typeOf;

uriToFilename

Handles modelica:// and file:// URI's. The result is an absolute path on the local system. modelica:// URI's are only handled if the class is already loaded. Returns the empty string on failure.

function uriToFilename
 input String uri;
 output String filename = "";
 output String message = "";
end uriToFilename;

val

Return the value of a variable at a given time in the simulation results

Return the value of a variable at a given time in the simulation results.

Works on the filename pointed to by the scripting variable currentSimulationResult or a given filename.

For parameters, any time may be given. For variables the startTime<=time<=stopTime needs to hold.

On error, nan (Not a Number) is returned and the error buffer contains the message.

function val
 input VariableName var;
 input Real timePoint;
 input String fileName = "<default>" "The contents of the currentSimulationResult variable";
 output Real valAtTime;
end val;

verifyCompiler

function verifyCompiler
 output Boolean compilerWorks;
end verifyCompiler;

writeFile

Write the data to file. Returns true on success.

impure function writeFile
 input String fileName;
 input String data;
 input Boolean append = false;
 output Boolean success;
end writeFile;

Examples

The following is an interactive session with the OpenModelica
environment including some of the abovementioned commands and examples.
First we start the system, and use the command line interface from
OMShell, OMNotebook, or command window of some of the other tools.

We type in a very small model:

model Test "Testing OpenModelica Scripts"
 Real x, y;
equation
 x = 5.0+time; y = 6.0;
end Test;

We give the command to flatten a model:

>>> instantiateModel(Test)
class Test "Testing OpenModelica Scripts"
 Real x;
 Real y;
equation
 x = 5.0 + time;
 y = 6.0;
end Test;

A range expression is typed in:

>>> a:=1:10
{1,2,3,4,5,6,7,8,9,10}

It is multiplied by 2:

>>> a*2
{2,4,6,8,10,12,14,16,18,20}

The variables are cleared:

>>> clearVariables()
true

We print the loaded class test from its internal representation:

>>> list(Test)
model Test "Testing OpenModelica Scripts"
 Real x, y;
equation
 x = 5.0 + time;
 y = 6.0;
end Test;

We get the name and other properties of a class:

>>> getClassNames()
{Test,ProfilingTest}
>>> getClassComment(Test)
"Testing OpenModelica Scripts"
>>> isPartial(Test)
false
>>> isPackage(Test)
false
>>> isModel(Test)
true
>>> checkModel(Test)
"Check of Test completed successfully.
Class Test has 2 equation(s) and 2 variable(s).
2 of these are trivial equation(s)."

The common combination of a simulation followed by getting a value and
doing a plot:

>>> simulate(Test, stopTime=3.0)
record SimulationResult
 resultFile = "«DOCHOME»/Test_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'Test', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "stdout | info | Time measurements are stored in Test_prof.html (human-readable) and Test_prof.xml (for XSL transforms or more details)
",
 timeFrontend = 0.004695674,
 timeBackend = 0.002415199,
 timeSimCode = 0.05067707599999993,
 timeTemplates = 0.002594295,
 timeCompile = 0.211425765,
 timeSimulation = 0.0180206,
 timeTotal = 0.289900143
end SimulationResult;
>>> val(x , 2.0)
7.0

Figure 73 Plot generated by OpenModelica+gnuplot

>>> plotall()

Figure 74 Plot generated by OpenModelica+gnuplot

Interactive Function Calls, Reading, and Writing

We enter an assignment of a vector expression, created by the range
construction expression 1:12, to be stored in the variable x. The type
and the value of the expression is returned.

>>> x := 1:12
{1,2,3,4,5,6,7,8,9,10,11,12}

The function bubblesort is called to sort this vector in descending
order. The sorted result is returned together with its type. Note that
the result vector is of type Real[:], instantiated as Real[12], since
this is the declared type of the function result. The input Integer
vector was automatically converted to a Real vector according to the
Modelica type coercion rules.

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/bubblesort.mo")
true
>>> bubblesort(x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Now we want to try another small application, a simplex algorithm for
optimization. First read in a small matrix containing coefficients that
define a simplex problem to be solved:

>>> a := {
 {-1,-1,-1, 0, 0, 0, 0, 0, 0},
 {-1, 1, 0, 1, 0, 0, 0, 0, 5},
 { 1, 4, 0, 0, 1, 0, 0, 0, 45},
 { 2, 1, 0, 0, 0, 1, 0, 0, 27},
 { 3,-4, 0, 0, 0, 0, 1, 0, 24},
 { 0, 0, 1, 0, 0, 0, 0, 1, 4}
}
{{-1,-1,-1,0,0,0,0,0,0},{-1,1,0,1,0,0,0,0,5},{1,4,0,0,1,0,0,0,45},{2,1,0,0,0,1,0,0,27},{3,-4,0,0,0,0,1,0,24},{0,0,1,0,0,0,0,1,4}}

function pivot1
 input Real b[:,:];
 input Integer p;
 input Integer q;
 output Real a[size(b,1),size(b,2)];
protected
 Integer M;
 Integer N;
algorithm
 a := b;
 N := size(a,1)-1;
 M := size(a,2)-1;
 for j in 1:N loop
 for k in 1:M loop
 if j<>p and k<>q then
 a[j,k] := a[j,k]-0.3*j;
 end if;
 end for;
 end for;
 a[p,q] := 0.05;
end pivot1;

function misc_simplex1
 input Real matr[:,:];
 output Real x[size(matr,2)-1];
 output Real z;
 output Integer q;
 output Integer p;
protected
 Real a[size(matr,1),size(matr,2)];
 Integer M;
 Integer N;
algorithm
 N := size(a,1)-1;
 M := size(a,2)-1;
 a := matr;
 p:=0;q:=0;
 a := pivot1(a,p+1,q+1);
 while not (q==(M) or p==(N)) loop
 q := 0;
 while not (q == (M) or a[0+1,q+1]>1) loop
 q:=q+1;
 end while;
 p := 0;
 while not (p == (N) or a[p+1,q+1]>0.1) loop
 p:=p+1;
 end while;
 if (q < M) and (p < N) and(p>0) and (q>0) then
 a := pivot1(a,p,q);
 end if;
 if(p<=0) and (q<=0) then
 a := pivot1(a,p+1,q+1);
 end if;
 if(p<=0) and (q>0) then
 a := pivot1(a,p+1,q);
 end if;
 if(p>0) and (q<=0) then
 a := pivot1(a,p,q+1);
 end if;
 end while;
 z := a[1,M];
 x := {a[1,i] for i in 1:size(x,1)};
 for i in 1:10 loop
 for j in 1:M loop
 x[j] := x[j]+x[j]*0.01;
 end for;
 end for;
end misc_simplex1;

Then call the simplex algorithm implemented as the Modelica function
simplex1. This function returns four results, which are represented as a
tuple of four return values:

>>> misc_simplex1(a)
({0.05523110627056022,-1.104622125411205,-1.104622125411205,0.0,0.0,0.0,0.0,0.0},0.0,8,1)

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 OpenModelica Compiler Flags

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

OpenModelica Compiler Flags

Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]

	Libraries: Fully qualified names of libraries to load before processing Model or Script.
The libraries should be separated by spaces: Lib1 Lib2 ... LibN.

Options

-d, --debug

Sets debug flags. Use --help=debug to see available flags.

String list (default empty).

-h, --help

Displays the help text. Use --help=topics for more information.

String (default empty).

--v, --version

Print the version and exit.

Boolean (default false).

--target

Sets the target compiler to use.

String (default gcc). Valid options:

	gcc

	msvc

	msvc10

	msvc12

	msvc13

	msvc15

	vxworks69

	debugrt

-g, --grammar

Sets the grammar and semantics to accept.

String (default Modelica). Valid options:

	Modelica

	MetaModelica

	ParModelica

	Optimica

	PDEModelica

--annotationVersion

Sets the annotation version that should be used.

String (default 3.x). Valid options:

	1.x

	2.x

	3.x

--std

Sets the language standard that should be used.

String (default latest). Valid options:

	1.x

	2.x

	3.1

	3.2

	3.3

	latest

--showErrorMessages

Show error messages immediately when they happen.

Boolean (default false).

--showAnnotations

Show annotations in the flattened code.

Boolean (default false).

--noSimplify

Do not simplify expressions if set.

Boolean (default false).

--preOptModules

Sets the pre optimization modules to use in the back end. See --help=optmodules for more info.

String list (default evaluateReplaceProtectedFinalEvaluateParameters,simplifyIfEquations,expandDerOperator,removeEqualFunctionCalls,clockPartitioning,findStateOrder,replaceEdgeChange,inlineArrayEqn,removeSimpleEquations,comSubExp,evalFunc,encapsulateWhenConditions). Valid options:

	clockPartitioning (Does the clock partitioning.)

	comSubExp (replaces common sub expressions)

	dumpDAE (dumps the DAE representation of the current transformation state)

	dumpDAEXML (dumps the DAE as xml representation of the current transformation state)

	encapsulateWhenConditions (This module replaces each when condition with a boolean variable.)

	evalFunc (evaluates functions partially)

	evaluateAllParameters (Evaluates all parameters to increase simulation speed.)

	evaluateEvaluateParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateFinalEvaluateParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateFinalParameters (Structural parameters and parameters declared as final are evalutated and replaced with their value in other vars. They may no longer be changed in the init file.)

	evaluateReplaceEvaluateParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateReplaceFinalEvaluateParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateReplaceFinalParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateReplaceProtectedFinalEvaluateParameters (Structural parameters and parameters declared as final or protected are removed and replaced with their value. They may no longer be changed in the init file.)

	expandDerOperator (Expands der(expr) using Derive.differentiteExpTime.)

	findStateOrder (Sets derivative information to states.)

	inlineArrayEqn (This module expands all array equations to scalar equations.)

	inputDerivativesForDynOpt (Allowed derivatives of inputs in dyn. optimization.)

	introduceDerAlias (Adds for every der-call an alias equation e.g. dx = der(x).)

	removeEqualFunctionCalls (Detects equal function calls of the form a=f(b) and c=f(b) and substitutes them to get speed up.)

	removeProtectedParameters (Replace all parameters with protected=true in the system.)

	removeSimpleEquations (Performs alias elimination and removes constant variables from the DAE, replacing all occurrences of the old variable reference with the new value (constants) or variable reference (alias elimination).)

	removeUnusedParameter (Strips all parameter not present in the equations from the system.)

	removeUnusedVariables (Strips all variables not present in the equations from the system.)

	replaceEdgeChange (Replace edge(b) = b and not pre(b) and change(b) = v <> pre(v).)

	residualForm (Transforms simple equations x=y to zero-sum equations 0=y-x.)

	resolveLoops (resolves linear equations in loops)

	simplifyAllExpressions (Does simplifications on all expressions.)

	simplifyIfEquations (Tries to simplify if equations by use of information from evaluated parameters.)

	sortEqnsVars (Heuristic sorting for equations and variables. This module requires +d=sortEqnsAndVars.)

	stateMachineElab (Does the elaboration of state machines.)

	unitChecking (advanced unit checking: 1. calculation of unspecified unit information for variables; 2. unit consistency check for equations)

	wrapFunctionCalls (This module wraps function calls to gain speed up.)

--cheapmatchingAlgorithm

Sets the cheap matching algorithm to use. A cheap matching algorithm gives a jump start matching by heuristics.

Integer (default 3). Valid options:

	0 (No cheap matching.)

	1 (Cheap matching, traverses all equations and match the first free variable.)

	3 (Random Karp-Sipser: R. M. Karp and M. Sipser. Maximum matching in sparse random graphs.)

--matchingAlgorithm

Sets the matching algorithm to use. See --help=optmodules for more info.

String (default PFPlusExt). Valid options:

	BFSB (Breadth First Search based algorithm.)

	DFSB (Depth First Search based algorithm.)

	MC21A (Depth First Search based algorithm with look ahead feature.)

	PF (Depth First Search based algorithm with look ahead feature.)

	PFPlus (Depth First Search based algorithm with look ahead feature and fair row traversal.)

	HK (Combined BFS and DFS algorithm.)

	HKDW (Combined BFS and DFS algorithm.)

	ABMP (Combined BFS and DFS algorithm.)

	PR (Matching algorithm using push relabel mechanism.)

	DFSBExt (Depth First Search based Algorithm external c implementation.)

	BFSBExt (Breadth First Search based Algorithm external c implementation.)

	MC21AExt (Depth First Search based Algorithm with look ahead feature external c implementation.)

	PFExt (Depth First Search based Algorithm with look ahead feature external c implementation.)

	PFPlusExt (Depth First Search based Algorithm with look ahead feature and fair row traversal external c implementation.)

	HKExt (Combined BFS and DFS algorithm external c implementation.)

	HKDWExt (Combined BFS and DFS algorithm external c implementation.)

	ABMPExt (Combined BFS and DFS algorithm external c implementation.)

	PRExt (Matching algorithm using push relabel mechanism external c implementation.)

	BB (BBs try.)

--indexReductionMethod

Sets the index reduction method to use. See --help=optmodules for more info.

String (default dynamicStateSelection). Valid options:

	uode (Use the underlying ODE without the constraints.)

	dynamicStateSelection (Simple index reduction method, select (dynamic) dummy states based on analysis of the system.)

	dummyDerivatives (Simple index reduction method, select (static) dummy states based on heuristic.)

--postOptModules

Sets the post optimization modules to use in the back end. See --help=optmodules for more info.

String list (default lateInlineFunction,inlineArrayEqn,constantLinearSystem,simplifysemiLinear,removeSimpleEquations,simplifyComplexFunction,tearingSystem,inputDerivativesUsed,calculateStrongComponentJacobians,calculateStateSetsJacobians,detectJacobianSparsePattern,removeConstants,simplifyTimeIndepFuncCalls,simplifyAllExpressions). Valid options:

	addScaledVars_states (added var_norm = var/nominal, where var is state)

	addScaledVars_inputs (added var_norm = var/nominal, where var is input)

	addTimeAsState (Experimental feature: this replaces each occurrence of variable time with a new introduced state $time with equation der($time) = 1.0)

	calculateStateSetsJacobians (Generates analytical jacobian for dynamic state selection sets.)

	calculateStrongComponentJacobians (Generates analytical jacobian for torn linear and non-linear strong components. By default non-linear components with user-defined function calls are skipped. See also debug flags: NLSanalyticJacobian and forceNLSanalyticJacobian)

	constantLinearSystem (Evaluates constant linear systems (a*x+b*y=c; d*x+e*y=f; a,b,c,d,e,f are constants) at compile-time.)

	countOperations (Count the mathematical operations of the system.)

	cseBinary (Common Sub-expression Elimination)

	detectJacobianSparsePattern (Detects the sparse pattern for Jacobian A.)

	dumpComponentsGraphStr (Dumps the assignment graph used to determine strong components to format suitable for Mathematica)

	dumpDAE (dumps the DAE representation of the current transformation state)

	dumpDAEXML (dumps the DAE as xml representation of the current transformation state)

	evaluateEvaluateParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateFinalEvaluateParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateFinalParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateReplaceEvaluateParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateReplaceFinalEvaluateParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateReplaceFinalParameters (Structural parameters and parameters declared as final are removed and replaced with their value. They may no longer be changed in the init file.)

	evaluateReplaceProtectedFinalEvaluateParameters (Structural parameters and parameters declared as final and protected parameters are removed and replaced with their value. They may no longer be changed in the init file.)

	extendDynamicOptimization (Move loops to constraints.)

	generateSymbolicJacobian (Generates symbolic Jacobian matrix, where der(x) is differentiated w.r.t. x. This matrix can be used to simulate with dasslColorSymJac.)

	generateSymbolicLinearization (Generates symbolic linearization matrices A,B,C,D for linear model:[image: \dot{x} = Ax + Bu][image: ty = Cx +Du])

	inlineArrayEqn (This module expands all array equations to scalar equations.)

	inputDerivativesUsed (Checks if derivatives of inputs are need to calculate the model.)

	lateInlineFunction (Perform function inlining for function with annotation LateInline=true.)

	partlintornsystem (partitions linear torn systems.)

	recursiveTearing (inline and repeat tearing)

	reduceDynamicOptimization (Removes equations which are not needed for the calculations of cost and constraints. This module requires +d=reduceDynOpt.)

	relaxSystem (relaxation from gausian elemination)

	removeConstants (Remove all constants in the system.)

	removeEqualFunctionCalls (Detects equal function calls of the form a=f(b) and c=f(b) and substitutes them to get speed up.)

	removeSimpleEquations (Performs alias elimination and removes constant variables from the DAE, replacing all occurrences of the old variable reference with the new value (constants) or variable reference (alias elimination).)

	removeUnusedParameter (Strips all parameter not present in the equations from the system to get speed up for compilation of target code.)

	removeUnusedVariables (Strips all variables not present in the equations from the system to get speed up for compilation of target code.)

	reshufflePost (Reshuffles algebraic loops.)

	simplifyAllExpressions (Does simplifications on all expressions.)

	simplifyComplexFunction (Some simplifications on complex functions (complex refers to the internal data structure))

	simplifyConstraints (Rewrites nonlinear constraints into box constraints if possible. This module requires +gDynOpt.)

	simplifyLoops (Simplifies algebraic loops. This modules requires +simplifyLoops.)

	simplifyTimeIndepFuncCalls (Simplifies time independent built in function calls like pre(param) -> param, der(param) -> 0.0, change(param) -> false, edge(param) -> false.)

	simplifysemiLinear (Simplifies calls to semiLinear.)

	solveLinearSystem (solve linear system with newton step)

	solveSimpleEquations (Solves simple equations)

	symEuler (Rewrites the ode system for implicit Euler method. This module requires +symEuler.)

	tearingSystem (For method selection use flag tearingMethod.)

	wrapFunctionCalls (This module wraps function calls to gain speed up.)

--simCodeTarget

Sets the target language for the code generation.

String (default C). Valid options:

	None

	Adevs

	C

	Cpp

	CSharp

	Java

	JavaScript

	sfmi

	XML

--orderConnections

Orders connect equations alphabetically if set.

Boolean (default true).

-t, --typeinfo

Prints out extra type information if set.

Boolean (default false).

-a, --keepArrays

Sets whether to split arrays or not.

Boolean (default false).

-m, --modelicaOutput

Enables valid modelica output for flat modelica.

Boolean (default false).

-q, --silent

Turns on silent mode.

Boolean (default false).

-c, --corbaSessionName

Sets the name of the corba session if -d=interactiveCorba is used.

String (default empty).

-n, --numProcs

Sets the number of processors to use (0=default=auto).

Integer (default 0).

-l, --latency

Sets the latency for parallel execution.

Integer (default 0).

-b, --bandwidth

Sets the bandwidth for parallel execution.

Integer (default 0).

-i, --instClass

Instantiate the class given by the fully qualified path.

String (default empty).

-v, --vectorizationLimit

Sets the vectorization limit, arrays and matrices larger than this will not be vectorized.

Integer (default 0).

-s, --simulationCg

Turns on simulation code generation.

Boolean (default false).

--evalAnnotationParams

Sets whether to evaluate parameters in annotations or not.

Boolean (default false).

--generateLabeledSimCode

Turns on labeled SimCode generation for reduction algorithms.

Boolean (default false).

--reduceTerms

Turns on reducing terms for reduction algorithms.

Boolean (default false).

--reductionMethod

Sets the reduction method to be used.

String (default deletion). Valid options:

	deletion

	substitution

	linearization

--demoMode

Disable Warning/Error Massages.

Boolean (default false).

--locale

Override the locale from the environment.

String (default empty).

-o, --defaultOCLDevice

Sets the default OpenCL device to be used for parallel execution.

Integer (default 0).

--maxTraversals

Maximal traversals to find simple equations in the acausal system.

Integer (default 2).

--dumpTarget

Redirect the dump to file. If the file ends with .html HTML code is generated.

String (default empty).

--delayBreakLoop

Enables (very) experimental code to break algebraic loops using the delay() operator. Probably messes with initialization.

Boolean (default true).

--tearingMethod

Sets the tearing method to use. Select no tearing or choose tearing method.

String (default cellier). Valid options:

	noTearing (Skip tearing.)

	omcTearing (Tearing method developed by TU Dresden: Frenkel, Schubert.)

	cellier (Tearing based on Celliers method, revised by FH Bielefeld: Täuber, Patrick)

--tearingHeuristic

Sets the tearing heuristic to use for Cellier-tearing.

String (default MC3). Valid options:

	MC1 (Original cellier with consideration of impossible assignments and discrete Vars.)

	MC2 (Modified cellier, drop first step.)

	MC11 (Modified MC1, new last step 'count impossible assignments'.)

	MC21 (Modified MC2, new last step 'count impossible assignments'.)

	MC12 (Modified MC1, step 'count impossible assignments' before last step.)

	MC22 (Modified MC2, step 'count impossible assignments' before last step.)

	MC13 (Modified MC1, build sum of impossible assignment and causalizable equations, choose var with biggest sum.)

	MC23 (Modified MC2, build sum of impossible assignment and causalizable equations, choose var with biggest sum.)

	MC231 (Modified MC23, Two rounds, choose better potentials-set.)

	MC3 (Modified cellier, build sum of impossible assignment and causalizable equations for all vars, choose var with biggest sum.)

	MC4 (Modified cellier, use all heuristics, choose var that occurs most in potential sets)

--disableLinearTearing

Disables the tearing of linear systems. That might improve the performance of large linear systems(N>1000) in combination with a sparse solver (e.g. umfpack) at runtime (usage with: -ls umfpack).

Boolean (default false).

--scalarizeMinMax

Scalarizes the builtin min/max reduction operators if true.

Boolean (default false).

--scalarizeBindings

Always scalarizes bindings if set.

Boolean (default false).

--corbaObjectReferenceFilePath

Sets the path for corba object reference file if -d=interactiveCorba is used.

String (default empty).

--hpcomScheduler

Sets the scheduler for task graph scheduling (list | listr | level | levelfix | ext | metis | mcp | taskdep | tds | bls | rand | none). Default: level.

String (default level).

--hpcomCode

Sets the code-type produced by hpcom (openmp | pthreads | pthreads_spin | tbb | mpi). Default: openmp.

String (default openmp).

--rewriteRulesFile

Activates user given rewrite rules for Absyn expressions. The rules are read from the given file and are of the form rewrite(fromExp, toExp);

String (default empty).

--replaceHomotopy

Replaces homotopy(actual, simplified) with the actual expression or the simplified expression. Good for debugging models which use homotopy. The default is to not replace homotopy.

String (default none). Valid options:

	none (Default, do not replace homotopy.)

	actual (Replace homotopy(actual, simplified) with actual.)

	simplified (Replace homotopy(actual, simplified) with simplified.)

--generateSymbolicJacobian

Generates symbolic Jacobian matrix, where der(x) is differentiated w.r.t. x. This matrix can be utilise by dassl with the runtime option: -dasslJacobian=coloredSymbolical|symbolical.
Deprecated flag: Use --postOptModules+=generateSymbolicJacobian instead.

Boolean (default false).

--generateSymbolicLinearization

	Generates symbolic linearization matrices A,B,C,D for linear model:

	[image: \dot x = Ax + Bu]
[image: y = Cx +Du]

Boolean (default false).

--intEnumConversion

Allow Integer to enumeration conversion.

Boolean (default false).

--profiling

Sets the profiling level to use. Profiled equations and functions record execution time and count for each time step taken by the integrator.

String (default none). Valid options:

	none (Generate code without profiling)

	blocks (Generate code for profiling function calls as well as linear and non-linear systems of equations)

	blocks+html (Like blocks, but also run xsltproc and gnuplot to generate an html report)

	all (Generate code for profiling of all functions and equations)

	all_perf (Generate code for profiling of all functions and equations with additional performance data using the papi-interface (cpp-runtime))

	all_stat (Generate code for profiling of all functions and equations with additional statistics (cpp-runtime))

--reshuffle

sets tolerance of reshuffling algorithm: 1: conservative, 2: more tolerant, 3 resolve all

Integer (default 1).

--gDynOpt

Generate dynamic optimization problem based on annotation approach.

Boolean (default false).

--maxSizeSolveLinearSystem

Max size for solveLinearSystem.

Integer (default 0).

--cppFlags

Sets extra flags for compilation with the C++ compiler (e.g. +cppFlags=-O3,-Wall)

String list (default).

--removeSimpleEquations

Specifies method that removes simple equations.

String (default default). Valid options:

	none (Disables module)

	default (Performs alias elimination and removes constant variables. Default case uses in preOpt phase the fastAcausal and in postOpt phase the causal implementation.)

	causal (Performs alias elimination and removes constant variables. Causal implementation.)

	fastAcausal (Performs alias elimination and removes constant variables. fastImplementation fastAcausal.)

	allAcausal (Performs alias elimination and removes constant variables. Implementation allAcausal.)

	new (New implementation (experimental))

--dynamicTearing

Activates dynamic tearing (TearingSet can be changed automatically during runtime, strict set vs. casual set.)

Boolean (default false).

--symEuler

Rewrite the ode system for implicit euler.

Boolean (default false).

--loop2con

Specifies method that transform loops in constraints. hint: using initial guess from file!

String (default none). Valid options:

	none (Disables module)

	lin (linear loops --> constraints)

	noLin (no linear loops --> constraints)

	all (loops --> constraints)

--forceTearing

Use tearing set even if it is not smaller than the original component.

Boolean (default false).

--simplifyLoops

Simplify algebraic loops.

Integer (default 0). Valid options:

	0 (do nothing)

	1 (special modification of residual expressions)

	2 (special modification of residual expressions with helper variables)

--recursiveTearing

Inline and repeat tearing.

Integer (default 0). Valid options:

	0 (do nothing)

	1 (linear tearing set of size 1)

	2 (linear tearing)

--flowThreshold

Sets the minium threshold for stream flow rates

Real (default 1e-07).

--matrixFormat

Sets the matrix format type in cpp runtime which should be used (dense | sparse). Default: dense.

String (default dense).

--partlintorn

Sets the limit for partitionin of linear torn systems.

Integer (default 0).

--initOptModules

Sets the initialization optimization modules to use in the back end. See --help=optmodules for more info.

String list (default simplifyComplexFunction,tearingSystem,calculateStrongComponentJacobians,solveSimpleEquations,simplifyAllExpressions). Valid options:

	calculateStrongComponentJacobians (Generates analytical jacobian for torn linear and non-linear strong components. By default non-linear components with user-defined function calls are skipped. See also debug flags: NLSanalyticJacobian and NLSanalyticJacobianDisable)

	constantLinearSystem (Evaluates constant linear systems (a*x+b*y=c; d*x+e*y=f; a,b,c,d,e,f are constants) at compile-time.)

	extendDynamicOptimization (Move loops to constraints.)

	inputDerivativesUsed (Checks if derivatives of inputs are need to calculate the model.)

	recursiveTearing (inline and repeat tearing)

	reduceDynamicOptimization (Removes equations which are not needed for the calculations of cost and constraints. This module requires +d=reduceDynOpt.)

	simplifyAllExpressions (Does simplifications on all expressions.)

	simplifyComplexFunction (Some simplifications on complex functions (complex refers to the internal data structure))

	simplifyConstraints (Rewrites nonlinear constraints into box constraints if possible. This module requires +gDynOpt.)

	simplifyLoops (Simplifies algebraic loops. This modules requires +simplifyLoops.)

	solveSimpleEquations (Solves simple equations)

	tearingSystem (For method selection use flag tearingMethod.)

--maxMixedDeterminedIndex

Sets the maximum mixed-determined index that is handled by the initialization.

Integer (default 3).

--useLocalDirection

Keeps the input/output prefix for all variables in the flat model, not only top-level ones.

Boolean (default false).

--defaultOptModulesOrdering

If this is activated, then the specified pre-/post-/init-optimization modules will be rearranged to the recommended ordering.

Boolean (default true).

--preOptModules+

Sets additional pre-optimization modules to use in the back end. See --help=optmodules for more info.

String list (default empty).

--preOptModules-

Disables a list of pre-optimization modules. See --help=optmodules for more info.

String list (default empty).

--postOptModules+

Sets additional post-optimization modules to use in the back end. See --help=optmodules for more info.

String list (default empty).

--postOptModules-

Disables a list of post-optimization modules. See --help=optmodules for more info.

String list (default empty).

--initOptModules+

Sets additional init-optimization modules to use in the back end. See --help=optmodules for more info.

String list (default empty).

--initOptModules-

Disables a list of init-optimization modules. See --help=optmodules for more info.

String list (default empty).

Debug flags

The debug flag takes a comma-separated list of flags which are used by the
compiler for debugging or experimental purposes.
Flags prefixed with "-" or "no" will be disabled.
The available flags are (+ are enabled by default, - are disabled):

	Cache (default: on)

	Turns off the instantiation cache.

	NLSanalyticJacobian (default: on)

	Enables analytical jacobian for non-linear strong components without user-defined function calls, for that see forceNLSanalyticJacobian

	acceptTooManyFields (default: off)

	Accepts passing records with more fields than expected to a function. This is not allowed, but is used in Fluid.Dissipation. See https://trac.modelica.org/Modelica/ticket/1245 for details.

	addDerAliases (default: off)

	Adds for every der-call an alias equation e.g. dx = der(x). It's a work-a-round flag,
which helps im some cases to simulate the models e.g.
Modelica.Fluid.Examples.HeatExchanger.HeatExchangerSimulation.
Deprecated flag: Use --preOptModules+=introduceDerAlias instead.

	addScaledVars (default: off)

	Adds an alias equation var_nrom = var/nominal where var is state
Deprecated flag: Use --postOptModules+=addScaledVars_states instead.

	addScaledVarsInput (default: off)

	Adds an alias equation var_nrom = var/nominal where var is input
Deprecated flag: Use --postOptModules+=addScaledVars_inputs instead.

	advanceTearing (default: off)

	Using ExpressionSolve in adjacencyRowEnhanced

	backenddaeinfo (default: off)

	Enables dumping of back-end information about system (Number of equations before back-end,...).

	bltdump (default: off)

	Dumps information from index reduction.

	buildExternalLibs (default: on)

	Use the autotools project in the Resources folder of the library to build missing external libraries.

	ceval (default: off)

	Prints extra information from Ceval.

	cgraph (default: off)

	Prints out connection graph information.

	cgraphGraphVizFile (default: off)

	Generates a graphviz file of the connection graph.

	cgraphGraphVizShow (default: off)

	Displays the connection graph with the GraphViz lefty tool.

	checkASUB (default: off)

	Prints out a warning if an ASUB is created from a CREF expression.

	checkBackendDae (default: off)

	Do some simple analyses on the datastructure from the frontend to check if it is consistent.

	checkDAECrefType (default: off)

	Enables extra type checking for cref expressions.

	checkSimplify (default: off)

	Enables checks for expression simplification and prints a notification whenever an undesirable transformation has been performed.

	constjac (default: off)

	solves linear systems with constant Jacobian and variable b-Vector symbolically

	countOperations (default: off)

	Count operations.

	daedumpgraphv (default: off)

	Dumps the DAE in graphviz format.

	debugAlgebraicLoopsJacobian (default: off)

	Dumps debug output while creating symbolic jacobians for non-linear systems.

	debugAlias (default: off)

	Dump the found alias variables.

	debugDifferentiation (default: off)

	Dumps debug output for the differentiation process.

	debugDifferentiationVerbose (default: off)

	Dumps verbose debug output for the differentiation process.

	disableComSubExp (default: off)

	Deactivates module 'comSubExp'
Deprecated flag: Use --preOptModules-=comSubExp instead.

	disableJacsforSCC (default: off)

	Disables calculation of jacobians to detect if a SCC is linear or non-linear. By disabling all SCC will handled like non-linear.

	disablePartitioning (default: off)

	Deactivates partitioning of entire equation system.
Deprecated flag: Use --preOptModules-=clockPartitioning instead.

	disableRecordConstructorOutput (default: off)

	Disables output of record constructors in the flat code.

	disableSimplifyComplexFunction (default: off)

	disable simplifyComplexFunction
Deprecated flag: Use --postOptModules-=simplifyComplexFunction/--initOptModules-=simplifyComplexFunction instead.

	disableSingleFlowEq (default: off)

	Disables the generation of single flow equations.

	disableStartCalc (default: off)

	Deactivates the pre-calculation of start values during compile-time.

	disableSymbolicLinearization (default: off)

	For FMI 2.0 only dependecy analysis will be perform.

	disableWindowsPathCheckWarning (default: off)

	Disables warnings on Windows if OPENMODELICAHOME/MinGW is missing.

	discreteinfo (default: off)

	Enables dumping of discrete variables. Extends -d=backenddaeinfo.

	dummyselect (default: off)

	Dumps information from dummy state selection heuristic.

	dump (default: off)

	Dumps the absyn representation of a program.

	dumpCSE (default: off)

	Additional output for CSE module.

	dumpCSE_verbose (default: off)

	Additional output for CSE module.

	dumpConstrepl (default: off)

	Dump the found replacements for constants.

	dumpEArepl (default: off)

	Dump the found replacements for evaluate annotations (evaluate=true) parameters.

	dumpEncapsulateConditions (default: off)

	Dumps the results of the preOptModule encapsulateWhenConditions.

	dumpEqInUC (default: off)

	Dumps all equations handled by the unit checker.

	dumpEqUCStruct (default: off)

	Dumps all the equations handled by the unit checker as tree-structure.

	dumpExcludedSymJacExps (default: off)

	This flags dumps all expression that are excluded from differentiation of a symbolic Jacobian.

	dumpFPrepl (default: off)

	Dump the found replacements for final parameters.

	dumpFunctions (default: off)

	Add functions to backend dumps.

	dumpHomotopy (default: off)

	Dumps the results of the postOptModule optimizeHomotopyCalls.

	dumpInlineSolver (default: off)

	Dumps the inline solver equation system.

	dumpLoops (default: off)

	Dumps loop equation.

	dumpPPrepl (default: off)

	Dump the found replacements for protected parameters.

	dumpParamrepl (default: off)

	Dump the found replacements for remove parameters.

	dumpRecursiveTearing (default: off)

	Dump between steps of recursiveTearing

	dumpSCCGraphML (default: off)

	Dumps graphml files with the strongly connected components.

	dumpSimCode (default: off)

	Dumps the simCode model used for code generation.

	dumpSimplifyLoops (default: off)

	Dump between steps of simplifyLoops

	dumpSparsePattern (default: off)

	Dumps sparse pattern with coloring used for simulation.

	dumpSparsePatternVerbose (default: off)

	Dumps in verbose mode sparse pattern with coloring used for simulation.

	dumpSynchronous (default: off)

	Dumps information of the clock partitioning.

	dumpTransformedModelica (default: off)

	Dumps the back-end DAE to a Modelica-like model after all symbolic transformations are applied.

	dumpUnits (default: off)

	Dumps all the calculated units.

	dumpdaelow (default: off)

	Dumps the equation system at the beginning of the back end.

	dumpdgesv (default: off)

	Enables dumping of the information whether DGESV is used to solve linear systems.

	dumpeqninorder (default: off)

	Enables dumping of the equations in the order they are calculated.

	dumpindxdae (default: off)

	Dumps the equation system after index reduction and optimization.

	dumpinitialsystem (default: off)

	Dumps the initial equation system.

	dumprepl (default: off)

	Dump the found replacements for simple equation removal.

	dynamicTearingInfo (default: off)

	Dumps information about the strict and casual sets of the tearing system.

	dynload (default: off)

	Display debug information about dynamic loading of compiled functions.

	evalAllParams (default: off)

	Evaluates all parameters in order to increase simulation speed.
Deprecated flag: Use --preOptModules+=evaluateAllParameters instead.

	evalConstFuncs (default: on)

	Evaluates functions complete and partially and checks for constant output.
Deprecated flag: Use --preOptModules+=evalFunc instead.

	evalFuncDump (default: off)

	dumps debug information about the function evaluation

	evalOutputOnly (default: off)

	Generates equations to calculate outputs only.

	evalfunc (default: on)

	Turns on/off symbolic function evaluation.

	evalparam (default: off)

	Constant evaluates parameters if set.

	events (default: on)

	Turns on/off events handling.

	execHash (default: off)

	Measures the time it takes to hash all simcode variables before code generation.

	execstat (default: off)

	Prints out execution statistics for the compiler.

	experimentalReductions (default: off)

	Turns on custom reduction functions (OpenModelica extension).

	failtrace (default: off)

	Sets whether to print a failtrace or not.

	fmuExperimental (default: off)

	Include an extra function in the FMU fmi2GetSpecificDerivatives.

	forceNLSanalyticJacobian (default: off)

	Forces calculation analytical jacobian also for non-linear strong components with user-defined functions.

	gcProfiling (default: off)

	Prints garbage collection stats to standard output.

	gen (default: on)

	Turns on/off dynamic loading of functions that are compiled during translation. Only enable this if external functions are needed to calculate structural parameters or constants.

	gendebugsymbols (default: off)

	Generate code with debugging symbols.

	generateCodeCheat (default: off)

	Used to generate code for the bootstrapped compiler.

	graphInst (default: off)

	Do graph based instantiation.

	graphInstGenGraph (default: off)

	Dumps a graph of the program. Use with -d=graphInst

	graphInstRunDep (default: off)

	Run scode dependency analysis. Use with -d=graphInst

	graphInstShowGraph (default: off)

	Display a graph of the program interactively. Use with -d=graphInst

	graphml (default: off)

	Dumps .graphml files for the bipartite graph after Index Reduction and a task graph for the SCCs. Can be displayed with yEd.

	graphviz (default: off)

	Dumps the absyn representation of a program in graphviz format.

	graphvizDump (default: off)

	Activates additional graphviz dumps (as .dot files). It can be used in addition to one of the following flags: {dumpdaelow|dumpinitialsystems|dumpindxdae}.

	hardcodedStartValues (default: off)

	Embed the start values of variables and parameters into the c++ code and do not read it from xml file.

	hpcom (default: off)

	Enables parallel calculation based on task-graphs.

	hpcomDump (default: off)

	Dumps additional information on the parallel execution with hpcom.

	hpcomMemoryOpt (default: off)

	Optimize the memory structure regarding the selected scheduler

	implOde (default: off)

	activates implicit codegen

	infoXmlOperations (default: off)

	Enables output of the operations in the _info.xml file when translating models.

	initialization (default: off)

	Shows additional information from the initialization process.

	inlineFunctions (default: on)

	Controls if function inlining should be performed.

	inlineSolver (default: off)

	Generates code for inline solver.

	instance (default: off)

	Prints extra failtrace from InstanceHierarchy.

	interactive (default: off)

	Starts omc as a server listening on the socket interface.

	interactiveCorba (default: off)

	Starts omc as a server listening on the Corba interface.

	interactivedump (default: off)

	Prints out debug information for the interactive server.

	iterationVars (default: off)

	Shows a list of all iteration variables.

	lookup (default: off)

	Print extra failtrace from lookup.

	modelInfoJson (default: on)

	Experimental: Generates a file with suffix _info.json instead of _info.xml.

	multirate (default: off)

	The solver can switch partitions in the system.

	onRelaxation (default: off)

	Perform O(n) relaxation.
Deprecated flag: Use --postOptModules+=relaxSystem instead.

	optdaedump (default: off)

	Dumps information from the optimization modules.

	paramdlowdump (default: off)

	Enables dumping of the parameters in the order they are calculated.

	parmodauto (default: off)

	Experimental: Enable parallelization of independent systems of equations in the translated model.

	patternmAllInfo (default: off)

	Adds notifications of all pattern-matching optimizations that are performed.

	patternmDeadCodeElimination (default: on)

	Performs dead code elimination in match-expressions.

	patternmMoveLastExp (default: on)

	Optimization that moves the last assignment(s) into the result of a match-expression. For example: equation c = fn(b); then c; => then fn(b);

patternmSkipFilterUnusedBindings (default: off)

	pedantic (default: off)

	Switch into pedantic debug-mode, to get much more feedback.

	printStructuralParameters (default: off)

	Prints the structural parameters identified by the front-end

	pthreads (default: off)

	Experimental: Unused parallelization.

	reduceDynOpt (default: off)

	remove eqs which not need for the calculations of cost and constraints
Deprecated flag: Use --postOptModules+=reduceDynamicOptimization instead.

	relidx (default: off)

	Prints out debug information about relations, that are used as zero crossings.

	reshufflePost (default: off)

	Reshuffles the systems of equations.

	resolveLoops (default: off)

	Activates the resolveLoops module.
Deprecated flag: Use --preOptModules+=resolveLoops instead.

	rml (default: off)

	Converts Modelica-style arrays to lists.

	runtimeStaticLinking (default: off)

	Use the static simulation runtime libraries (C++ simulation runtime).

	scodeDep (default: on)

	Does scode dependency analysis prior to instantiation. Defaults to true.

	scodeInst (default: off)

	Enables experimental SCode instantiation phase.

	semiLinear (default: off)

	Enables dumping of the optimization information when optimizing calls to semiLinear.

	shortOutput (default: off)

	Enables short output of the simulate() command. Useful for tools like OMNotebook.

	showDaeGeneration (default: off)

	Show the dae variable declarations as they happen.

	showEquationSource (default: off)

	Display the element source information in the dumped DAE for easier debugging.

	showExpandableInfo (default: off)

	Show information about expandable connector handling.

	showInstCacheInfo (default: off)

	Prints information about instantiation cache hits and additions. Defaults to false.

	showStartOrigin (default: off)

	Enables dumping of the DAE startOrigin attribute of the variables.

	showStatement (default: off)

	Shows the statement that is currently being evaluated when evaluating a script.

	sortEqnsAndVars (default: off)

	Heuristic sorting for equations and variables. Influenced: removeSimpleEquations and tearing.
Deprecated flag: Use --preOptModules+=sortEqnsVars instead.

	stateselection (default: off)

	Enables dumping of selected states. Extends -d=backenddaeinfo.

	static (default: off)

	Enables extra debug output from the static elaboration.

	stripPrefix (default: on)

	Strips the environment prefix from path/crefs. Defaults to true.

	symjacdump (default: off)

	Dumps information about symbolic Jacobians. Can be used only with postOptModules: generateSymbolicJacobian, generateSymbolicLinearization.

	symjacdumpeqn (default: off)

	Dump for debug purpose of symbolic Jacobians. (deactivated now).

	symjacdumpverbose (default: off)

	Dumps information in verbose mode about symbolic Jacobians. Can be used only with postOptModules: generateSymbolicJacobian, generateSymbolicLinearization.

	symjacwarnings (default: off)

	Prints warnings regarding symoblic jacbians.

	tail (default: off)

	Prints out a notification if tail recursion optimization has been applied.

	tearingdump (default: off)

	Dumps tearing information.

	tearingdumpV (default: off)

	Dumps verbose tearing information.

	tplPerfTimes (default: off)

	Enables output of template performance data for rendering text to file.

	transformsbeforedump (default: off)

	Applies transformations required for code generation before dumping flat code.

	types (default: off)

	Prints extra failtrace from Types.

	uncertainties (default: off)

	Enables dumping of status when calling modelEquationsUC.

	updmod (default: off)

	Prints information about modification updates.

	useMPI (default: off)

	Add MPI init and finalize to main method (CPPruntime).

	vectorize (default: off)

	Activates vectorization in the backend.

	visxml (default: off)

	Outputs a xml-file that contains information for visualization.

	writeToBuffer (default: off)

	Enables writing simulation results to buffer.

Flags for Optimization Modules

Flags that determine which symbolic methods are used to produce the causalized equation system.

The --preOptModules flag sets the optimization modules which are used before the
matching and index reduction in the back end. These modules are specified as a comma-separated list.

The --matchingAlgorithm sets the method that is used for the matching algorithm, after the pre optimization modules.

The --indexReductionMethod sets the method that is used for the index reduction, after the pre optimization modules.

The --initOptModules then sets the optimization modules which are used after the index reduction to optimize the system for initialization, specified as a comma-separated list.

The --postOptModules then sets the optimization modules which are used after the index reduction to optimize the system for simulation, specified as a comma-separated list.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Small Overview of Simulation Flags

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Small Overview of Simulation Flags

This chapter contains a short overview of simulation flags
as well as additional details of the numerical integration methods.

OpenModelica (C-runtime) Simulation Flags

The simulation executable takes the following flags:

	-abortSlowSimulation

	Aborts if the simulation chatters.

	-alarm=value or -alarm value

	Aborts after the given number of seconds (default=0 disables the alarm).

	-clock=value or -clock value

	Selects the type of clock to use. Valid options include:

	RT (monotonic real-time clock)

	CYC (cpu cycles measured with RDTSC)

	CPU (process-based CPU-time)

	-cpu

	Dumps the cpu-time into the result-file using the variable named $cpuTime

-csvOstep=value or -csvOstep value
value specifies csv-files for debuge values for optimizer step

	-dasslJacobian=value or -dasslJacobian value

	Selects the type of the Jacobian that is used for the dassl solver:

	coloredNumerical (colored numerical Jacobian, the default).

	internalNumerical (internal dassl numerical Jacobian).

	coloredSymbolical (colored symbolical Jacobian. Only usable if the simulation is compiled with --generateSymbolicJacobian or --generateSymbolicLinearization.

	numerical - numerical Jacobian.

	symbolical - symbolical Jacobian. Only usable if the simulation is compiled with --generateSymbolicJacobian or --generateSymbolicLinearization.

	-dasslnoRestart

	Deactivates the restart of dassl after an event is performed.

	-dasslnoRootFinding

	Deactivates the internal root finding procedure of dassl.

	-emit_protected

	Emits protected variables to the result-file.

	-f=value or -f value

	Value specifies a new setup XML file to the generated simulation code.

	-help=value or -help value

	Get detailed information that specifies the command-line flag
For example, -help=f prints detailed information for command-line flag f.

	-ignoreHideResult

	Emits also variables with HideResult=true annotation.

	-iif=value or -iif value

	Value specifies an external file for the initialization of the model.

	-iim=value or -iim value

	Value specifies the initialization method.

	none (sets all variables to their start values and skips the initialization process)

	symbolic (solves the initialization problem symbolically - default)

	-iit=value or -iit value

	Value [Real] specifies a time for the initialization of the model.

	-ils=value or -ils value

	Value specifies the number of steps for homotopy method (required: -iim=symbolic) or 'start value homotopy' method (required: -iim=numeric -iom=nelder_mead_ex).
The value is an Integer with default value 1.

	-initialStepSize=value or -initialStepSize value

	Value specifies an initial stepsize for the dassl solver.

	-csvInput=value or -csvInput value

	Value specifies an csv-file with inputs for the simulation/optimization of the model

	-exInputFile=value or -exInputFile value

	Value specifies an external file with inputs for the simulation/optimization of the model.

	-stateFile=value or -stateFile value

	Value specifies an file with states start values for the optimization of the model.

	-ipopt_hesse=value or -ipopt_hesse value

	Value specifies the hessematrix for Ipopt(OMC, BFGS, const).

	-ipopt_init=value or -ipopt_init value

	Value specifies the initial guess for optimization (sim, const).

	-ipopt_jac=value or -ipopt_jac value

	Value specifies the jacobian for Ipopt(SYM, NUM, NUMDENSE).

	-ipopt_max_iter=value or -ipopt_max_iter value

	Value specifies the max number of iteration for ipopt.

	-ipopt_warm_start=value or -ipopt_warm_start value

	Value specifies lvl for a warm start in ipopt: 1,2,3,...

	-l=value or -l value

	Value specifies a time where the linearization of the model should be performed.

	-logFormat=value or -logFormat value

	Value specifies the log format of the executable:

	text (default)

	xml

	-ls=value or -ls value

	Value specifies the linear solver method

	lapack (method using lapack LU factorization)

	lis (method using iterativ solver Lis)

	klu (method using klu sparse linear solver)

	umfpack (method using umfpack sparse linear solver)

	totalpivot (method using a total pivoting LU factorization for underdetermination systems)

	default (default method - lapack with total pivoting as fallback)

	-ls_ipopt=value or -ls_ipopt value

	Value specifies the linear solver method for Ipopt, default mumps.
Note: Use if you build ipopt with other linear solver like ma27

	-lv=value or -lv value

	Value (a comma-separated String list) specifies which logging levels to
enable. Multiple options can be enabled at the same time.

	LOG_DASSL (additional information about dassl solver)

	LOG_DASSL_STATES (outputs the states at every dassl call)

	LOG_DEBUG (additional debug information)

	LOG_DSS (outputs information about dynamic state selection)

	LOG_DSS_JAC (outputs jacobian of the dynamic state selection)

	LOG_DT (additional information about dynamic tearing)

	LOG_EVENTS (additional information during event iteration)

	LOG_EVENTS_V (verbose logging of event system)

	LOG_INIT (additional information during initialization)

	LOG_IPOPT (information from Ipopt)

	LOG_IPOPT_FULL (more information from Ipopt)

	LOG_IPOPT_JAC (check jacobian matrix with Ipopt)

	LOG_IPOPT_HESSE (check hessian matrix with Ipopt)

	LOG_IPOPT_ERROR (print max error in the optimization)

	LOG_JAC (outputs the jacobian matrix used by dassl)

	LOG_LS (logging for linear systems)

	LOG_LS_V (verbose logging of linear systems)

	LOG_NLS (logging for nonlinear systems)

	LOG_NLS_V (verbose logging of nonlinear systems)

	LOG_NLS_HOMOTOPY (logging of homotopy solver for nonlinear systems)

	LOG_NLS_JAC (outputs the jacobian of nonlinear systems)

	LOG_NLS_JAC_TEST (tests the analytical jacobian of nonlinear systems)

	LOG_NLS_RES (outputs every evaluation of the residual function)

	LOG_NLS_EXTRAPOLATE (outputs debug information about extrapolate process)

	LOG_RES_INIT (outputs residuals of the initialization)

	LOG_SIMULATION (additional information about simulation process)

	LOG_SOLVER (additional information about solver process)

	LOG_SOLVER_CONTEXT (context information during the solver process)

	LOG_SOTI (final solution of the initialization)

	LOG_STATS (additional statistics about timer/events/solver)

	LOG_STATS_V (additional statistics for LOG_STATS)

	LOG_UTIL (???)

	LOG_ZEROCROSSINGS (additional information about the zerocrossings)

	-maxIntegrationOrder=value or -maxIntegrationOrder value

	Value specifies maximum integration order, used by dassl solver.

	-maxStepSize=value or -maxStepSize value

	Value specifies maximum absolute step size, used by dassl solver.

	-measureTimePlotFormat=value or -measureTimePlotFormat value

	Value specifies the output format of the measure time functionality

	svg

	jpg

	ps

	gif

	...

	-newton=value or -newton value

	Value specifies the damping strategy for the newton solver.

	damped (Newton with a damping strategy)

	damped2 (Newton with a damping strategy 2)

	damped_ls (Newton with a damping line search)

	damped_bt (Newton with a damping backtracking and a minimum search via golden ratio method)

	pure (Newton without damping strategy)

	-nls=value or -nls value

	Value specifies the nonlinear solver:

	hybrid

	kinsol

	newton

	mixed

	hybrid (Modification of the Powell hybrid method from minpack - former default solver)

	kinsol (sundials/kinsol - prototype implementation)

	newton (Newton Raphson - prototype implementation)

	homotopy (Damped Newton solver if failing case fixed-point and Newton homotopies are tried.)

	mixed (Mixed strategy. First the homotopy solver is tried and then as fallback the hybrid solver.)

	-nlsInfo

	Outputs detailed information about solving process of non-linear systems into csv files.

	-noemit

	Do not emit any results to the result file.

	-noEquidistantTimeGrid

	Output the internal steps given by dassl instead of interpolating results
into an equidistant time grid as given by stepSize or numberOfIntervals.

	-noEquidistantOutputFrequency=value or -noEquidistantOutputFrequency value

	Integer value n controls the output frequency in noEquidistantTimeGrid mode
and outputs every n-th time step

	-noEquidistantOutputTime=value or -noEquidistantOutputTime value

	Real value timeValue controls the output time point in noEquidistantOutputTime
mode and outputs every time>=k*timeValue, where k is an integer

	-noEventEmit

	Do not emit event points to the result file.

	-optDebugeJac=value or -optDebugeJac value

	Value specifies the number of itereations from the dynamic optimization, which
will be debugged, creating .csv and .py files.

	-optimizerNP=value or -optimizerNP value

	Value specifies the number of points in a subinterval.
Currently supports numbers 1 and 3.

	-optimizerTimeGrid=value or -optimizerTimeGrid value

	Value specifies external file with time points.

	-output=value or -output value

	Output the variables a, b and c at the end of the simulation to the standard
output: time = value, a = value, b = value, c = value

	-override=value or -override value

	Override the variables or the simulation settings in the XML setup file
For example: var1=start1,var2=start2,par3=start3,startTime=val1,stopTime=val2

	-overrideFile=value or -overrideFile value

	Will override the variables or the simulation settings in the XML setup file
with the values from the file.
Note that: -overrideFile CANNOT be used with -override.
Use when variables for -override are too many.
overrideFileName contains lines of the form: var1=start1

	-port=value or -port value

	Value specifies the port for simulation status (default disabled).

	-r=value or -r value

	Value specifies the name of the output result file.
The default file-name is based on the model name and output format.
For example: Model_res.mat.

	-s=value or -s value

	Value specifies the solver (integration method).

	euler - Explicit Euler (order 1)

	rungekutta - Runge-Kutta (fixed step, order 4)

	dassl - BDF solver with colored numerical jacobian, with interval root finding - default

	optimization - Special solver for dynamic optimization

	radau5 - Radau IIA with 3 points, "Implicit Runge-Kutta", order 5 [sundial/kinsol needed]

	radau3 - Radau IIA with 2 points, "Implicit Runge-Kutta", order 3 [sundial/kinsol needed]

	impeuler - Implicit Euler (actually Radau IIA, order 1) [sundial/kinsol needed]

	trapezoid - Trapezoidal rule (actually Lobatto IIA with 2 points) [sundial/kinsol needed]

	lobatto4 - Lobatto IIA with 3 points, order 4 [sundial/kinsol needed]

	lobatto6 - Lobatto IIA with 4 points, order 6 [sundial/kinsol needed]

	symEuler - symbolic implicit euler, [compiler flag +symEuler needed]

	symEulerSsc - symbolic implicit euler with step-size control, [compiler flag +symEuler needed]

	heun - Heun's method (Runge-Kutta fixed step, order 2)

	qss - A QSS solver [experimental]

	-keepHessian=value or -keepHessian value

	Value specifies the number of steps, which keep hessian matrix constant.

	-w

	Shows all warnings even if a related log-stream is inactive.

Integration Methods

This section contains additional information about the different
integration methods in OpenModelica, selected by the method flag
of the simulate command or the -s simflag.

dassl

Default integration method in OpenModelica.
Adams Moulton; the default uses a colored numerical Jacobian and interval root finding.
To change settings, use simulation flags such as
dasslJacobian,
dasslNoRootFinding,
dasslNoRestart,
initialStepSize,
maxStepSize,
maxIntegrationOrder,
noEquidistantTimeGrid.

	Order:
	1-5

	Step Size Control:
	true

	Order Control:
	true

	Stability Region:
	variable; depend from order

euler

Explicit Euler.

	Order:
	1

	Step Size Control:
	false

	Order Control:
	false

	Stability Region:
	|(1,0) Padé | ≤ 1

rungekutta

Classical Runge-Kutta method.

	Order:
	4

	Step Size Control:
	false

	Order Control:
	false

	Stability Region:
	|(4,0) Padé | ≤ 1

radau1

Radau IIA with one point.

	Order:
	1

	Step Size Control:
	false

	Order Control:
	false

	Stability Region:
	|(0,1) Padé | ≤ 1

radau3

Radau IIA with two points.

	Order:
	3

	Step Size Control:
	false

	Order Control:
	false

	Stability Region:
	|(1,2) Padé | ≤ 1

radau5

Radau IIA with three points.

	Order:
	5

	Step Size Control:
	false

	Order Control:
	false

	Stability Region:
	|(2,3) Padé | ≤ 1

lobatto2

Lobatto IIIA with two points.

	Order:
	2

	Step Size Control:
	false

	Order Control:
	false

	Stability Region:
	|(2,2) Padé | ≤ 1

lobatto4

Lobatto IIIA with three points.

	Order:
	4

	Step Size Control:
	false

	Order Control:
	false

	Stability Region:
	|(3,3) Padé | ≤ 1

lobatto6

Lobatto IIIA with four points.

	Order:
	6

	Step Size Control:
	false

	Order Control:
	false

	Stability Region:
	|(4,4) Padé | ≤ 1

Notes

Simulation flags
maxStepSize and
maxIntegrationOrder
specifiy maximum absolute step size and maximum integration order used by
the dassl solver.

General step size without control [image: \approx \cfrac{\mbox{stopTime} - \mbox{startTime}}{\mbox{numberOfIntervals}}].
Events change the step size (see Modelica spec 3.3 p. 88 [https://www.modelica.org/documents/ModelicaSpec33.pdf]).

For (a,b) Padé see wikipedia [http://en.wikipedia.org/wiki/Pad%C3%A9_table].

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Frequently Asked Questions (FAQ)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Frequently Asked Questions (FAQ)

Below are some frequently asked questions in three areas, with
associated answers.

OpenModelica General

	
	Q: OpenModelica does not read the MODELICAPATH environment variable,

	even though this is part of the Modelica Language Specification.

	
	A: Use the OPENMODELICALIBRARY environment variable instead. We have

	temporarily switched to this variable, in order not to interfere
with other Modelica tools which might be installed on the same
system. In the future, we might switch to a solution with a
settings file, that also allows the user to turn on the
MODELICAPATH functionality if desired.

	
	Q: How do I enter multi-line models into OMShell since it evaluates

	when typing the Enter/Return key?

	
	A: There are basically three methods: 1) load the model from a file

	using the pull-down menu or the loadModel command. 2) Enter the
model/function as one (possibly long) line. 3) Type in the model
in another editor, where using multiple lines is no problem, and
copy/paste the model into OMShell as one operation, then push
Enter. Another option is to use OMNotebook instead to enter and
evaluate models.

OMNotebook

	Q: OMNotebook hangs, what to do?

	
	A: It is probably waiting for the omc.exe (compiler) process. (Under

	windows): Kill the processes omc.exe, g++.exe (C-compiler),
as.exe (assembler), if present. If OMNotebook then asks whether
to restart OMC, answer yes. If not, kill the process
OMNotebook.exe and restart manually.

	
	Q: After a previous session, when starting OMNotebook again, I get a

	strange message.

	
	A: You probably quit the previous OpenModelica session in the wrong

	way, which left the process omc.exe running. Kill that process,
and try starting OMNotebook again.

	
	Q: I copy and paste a graphic figure from Word or some other

	application into OMNotebook, but the graphic does not appear.
What is wrong?

	
	A: OMNotebook supports the graphic picture formats supported by Qt 4,

	including the .png, .bmp (bitmap) formats, but not for example
the gif format. Try to convert your picture into one of the
supported formats, (e.g. in Word, first do paste as bitmap
format), and then copy the converted version into a text cell in
OMNotebook.

	
	Q: I select a cell, copy it (e.g. Ctrl-C), and try to paste it at

	another place in the notebook. However, this does not work.
Instead some other text that I earlier put on the clipboard is
pasted into the nearest text cell.

	
	A: The problem is wrong choice of cursor mode, which can be text

	insertion or cell insertion. If you click inside a cell, the
cursor become vertical, and OMNotebook expects you to paste text
inside the cell. To paste a cell, you must be in cell insertion
mode, i.e., click between two cells (or after a cell), you will
get a vertical line. Place the cursor carefully on that vertical
line until you see a small horizontal cursor. Then you should
past the cell.

	
	Q: I am trying to click in cells to place the vertical character

	cursor, but it does not seem to react.

	
	A: This seems to be a Qt feature. You have probably made a selection

	(e.g. for copying) in the output section of an evaluation cell.
This seems to block cursor position. Click again in the output
section to disable the selection. After that it will work
normally.

	
	Q: I have copied a text cell and start writing at the beginning of

	the cell. Strangely enough, the font becomes much smaller than it
should be.

	
	A: This seems to be a Qt feature. Keep some of the old text and start

	writing the new stuff inside the text, i.e., at least one
character position to the right. Afterwards, delete the old text
at the beginning of the cell.

OMDev - OpenModelica Development Environment

	
	Q: I get problems compiling and linking some files when using OMDev

	with the MINGW (Gnu) C compiler under Windows.

	
	A: You probably have some Logitech software installed. There is a

	known bug/incompatibility in Logitech products. For example, if
lvprcsrv.exe is running, kill it and/or prevent it to start again
at reboot; it does not do anything really useful, not needed for
operation of web cameras or mice.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Major OpenModelica Releases

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Major OpenModelica Releases

This Appendix lists the most important OpenModelica releases and a brief
description of their contents. Right now the versions from 1.3.1 to
1.9.3 are described.

OpenModelica 1.9.3, September 2015

The most important enhancements in the OpenModelica 1.9.3 release:

	Enhanced collaborative development and testing of OpenModelica by moving to the GitHub [https://github.com/OpenModelica/OpenModelica] framework for versioning and parallel development.

	More accessible and up-to-date automatically generated documentation provided in both html [https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/] and pdf [https://openmodelica.org/doc/OpenModelicaUsersGuide/OpenModelicaUsersGuide-latest.pdf].

	Further improved simulation speed and coverage of several libraries.

	OMEdit graphic connection editor improvements.

	OMNotebook improvements.

OpenModelica Compiler (OMC)

This release mainly includes improvements of the OpenModelica Compiler (OMC), including, but not restricted to the following:

	Further improved simulation speed and coverage for several libraries.

	Faster generated code for functions involving arrays, factor 2 speedup for many power generation models.

	Better initialization.

	An implicit inline Euler solver available.

An implicit inline Euler solver with adaptive step size control available.

	Code generation to enable vectorization of for-loops.

	Improved non-linear, linear and mixed system solving.

	Cross-compilation for the ARMhf architecture.

	A prototype state machine implementation.

	Improved performance and stability of the C++ runtime option.

	More accessible and up-to-date automatically generated documentation provided in both html and .pdf.

OpenModelica Notebook (OMNotebook)

Several improvements:

	Support for moving cells from one place to another in a notebook.

	A button for evaluation of whole notebooks.

	A new cell type called Latex cells, supporting Latex formatted input that provides mathematical typesetting of formulae when evaluated.

OpenModelica Shell (OMShell)

No changes.

OpenModelica Eclipse Plug-in (MDT)

No changes apart from bug fixing.

OpenModelica Development Environment (OMDev)

A big change: version handling and parallel development has been improved
by moving from SVN to GIThub.
This makes it easier for each developer to test his/her fixes and
enhancements before committing the code.
Automatic mirroring of all code is still performed to the OpenModelica
site.

Graphic Editor OMEdit

There are several improvements to the OpenModelica graphic connection editor OMEdit:

	Support for uses annotations.

	Support for declaring components as vectors.

	Faster messages browser with clickable error messages.

	Support for managing the stacking order of graphical shapes.

	Several improvements to the plot tool and text editor in OMEdit.

Optimization

Several improvements of the Dynamic Optimization module with collocation, using Ipopt:

	Better performance due to smart treatment of algebraic loops for optimization.

	Improved formulation of optimization problems with an annotation approach which also allows graphical problem formulation.

	It is now possible to formulate final constraints.

FMI Support

Further improved FMI 2.0 co-simulation support.

OpenModelica 1.9.2, February 2015

The most important enhancements in the OpenModelica 1.9.2 release:

	The OpenModelica compiler has moved to a new development and release
platform: the bootstrapped OpenModelica compiler. This gives
advantages in terms of better programmability, maintenance,
debugging, modularity and current/future performance increases.

	The OpenModelica graphic connection editor OMEdit has become 3-5
times faster due to faster communication with the OpenModelica
compiler linked as a DLL. This was made possible by moving to the
bootstrapped compiler.

	Further improved simulation coverage for a number of libraries.

	OMEdit graphic connection editor improvements

OpenModelica Compiler (OMC)

This release mainly includes improvements of the OpenModelica Compiler
(OMC), including, but not restricted to the following:

	The OpenModelica compiler has moved to a new development and release
platform: the bootstrapped OpenModelica compiler. This gives
advantages in terms of better programmability, maintenance,
debugging, modularity and current/future performance increases.

	Further improved simulation coverage for a number of libraries
compared to OpenModelica 1.9.1, October 2014. For example:
	MSL 3.2.1 100% compilation, 97% simulation (3% increase)

	MSL Trunk 99% compilation (1% increase), 93% simulation (3%
increase)

	ModelicaTest 3.2.1 99% compilation (2% increase), 95% simulation
(6% increase)

	ThermoSysPro 100% compilation, 80% simulation (17% increase)

	ThermoPower 97% compilation (5% increase), 85% simulation (5%
increase)

	Buildings 80% compilation (1% increase), 73% simulation (1%
increase)

	Further enhanced OMC compiler front-end coverage, scalability, speed
and memory.

	Better initialization.

	Improved tearing.

	Improved non-linear, linear and mixed system solving.

	Common subexpression elimination support - drastically increases
performance of some models.

OpenModelica Notebook (OMNotebook)

No changes apart from bug fixing.

OpenModelica Shell (OMShell)

No changes.

OpenModelica Eclipse Plug-in (MDT)

No changes apart from bug fixing.

OpenModelica Development Environment (OMDev)

No changes apart from bug fixing.

Graphic Editor OMEdit

	The OpenModelica graphic connection editor OMEdit has become 3-5
times faster due to faster communication with the OpenModelica
compiler linked as a DLL. This was made possible by moving to the
bootstrapped compiler.

	Enhanced simulation setup window in OMEdit, which among other things
include better support for integration methods and dassl options.

	Support for running multiple simultaneous simulation.

	Improved handling of modifiers.

	Re-simulate with changed options, including history support and
re-simulating with previous options possibly edited.

	More user friendly user interface by improved connection line
drawing, added snap to grid for icons and conversion of icons
from PNG to SVG, and some additional fixes.

Optimization

Some smaller improvements of the Dynamic Optimization module with
collocation, using Ipopt.

FMI Support

Further improved for FMI 2.0 model exchange import and export, now
compliant according to the FMI compliance tests. FMI 1.0 support has
been further improved.

OpenModelica 1.9.1, October 2014

The most important enhancements in the OpenModelica 1.9.1 release:

	Improved library support.

	Further enhanced OMC compiler front-end coverage and scalability

	Significant improved simulation support for libraries using Fluid and
Media.

	Dynamic model debugger for equation-based models integrated with
OMEdit.

	Dynamic algorithm model debugger with OMEdit; including support for
MetaModelica when using the bootstrapped compiler.

New features: Dynamic debugger for equation-based models; Dynamic
Optimization with collocation built into OpenModelica, performance
analyzer integrated with the equation model debugger.

OpenModelica Compiler (OMC)

This release mainly includes improvements of the OpenModelica Compiler
(OMC), including, but not restricted to the following:

	Further improved OMC model compiler support for a number of libraries
including MSL 3.2.1, ModelicaTest 3.2.1, PetriNet, Buildings,
PowerSystems, OpenHydraulics, ThermoPower, and ThermoSysPro.

	Further enhanced OMC compiler front-end coverage, scalability, speed
and memory.

	Better coverage of Modelica libraries using Fluid and Media.

	Automatic differentiation of algorithms and functions.

	Improved testing facilities and library coverage reporting.

	Improved model compilation speed by compiling model parts in parallel
(bootstrapped compiler).

	Support for running model simulations in a web browser.

	New faster initialization that handles over-determined systems,
under-determined systems, or both.

	Compiler back-end partly redesigned for improved scalability and
better modularity.

	Better tearing support.

	The first run-time Modelica equation-based model debugger, not
available in any other Modelica tool, integrated with OMEdit.

	Enhanced performance profiler integrated with the debugger.

	Improved parallelization prototype with several parallelization
strategies, task merging and duplication, shorter critical paths,
several scheduling strategies.

	Some support for general solving of mixed systems of equations.

	Better error messages.

	Improved bootstrapped OpenModelica compiler.

	Better handling of array subscripts and dimensions.

	Improved support for reduction functions and operators.

	Better support for partial functions.

	Better support for function tail recursion, which reduces memory
usage.

	Partial function evaluation in the back-end to improve solving
singular systems.

	Better handling of events/zero crossings.

	Support for colored Jacobians.

	New differentiation package that can handle a much larger number of
expressions.

	Support for sparse solvers.

	Better handling of asserts.

	Improved array and matrix support.

	Improved overloaded operators support.

	Improved handling of overconstrained connection graphs.

	Better support for the cardinality operator.

	Parallel compilation of generated code for speeding up compilation.

	Split of model files into several for better compilation scalability.

	Default linear tearing.

	Support for impure functions.

	Better compilation flag documentation.

	Better automatic generation of documentation.

	Better support for calling functions via instance.

	New text template based unparsing for DAE, Absyn, SCode, TaskGraphs,
etc.

	Better support for external objects.

	Improved C++ runtime.

	Improved testing facilities.

	New unit checking implementation.

	Support for model rewriting expressions via rewriting rules in an
external file.

OpenModelica Notebook (OMNotebook)

No changes apart from bug fixing.

OpenModelica Shell (OMShell)

No changes.

OpenModelica Eclipse Plug-in (MDT)

No changes apart from bug fixing.

OpenModelica Development Environment (OMDev)

No changes apart from bug fixing.

Graphic Editor OMEdit

	Convenient editing of model parameter values and re-simulation
without recompilation after parameter changes.

	Improved plotting.

	Better handling of flags/units/resources/crashes.

	Run-time Modelica equation-based model debugger that provides both
dynamic run-time debugging and debugging of symbolic transformations.

	Run-time Modelica algorithmic code debugger; also MetaModelica
debugger with the bootstrapped OpenModelica compiler.

Optimization

A builtin integrated Dynamic Optimization module with collocation, using
Ipopt, is now available.

FMI Support

Support for FMI 2.0 model exchange import and export has been added. FMI
1.0 support has been further improved.

OpenModelica 1.9.0, October 2013

The three most important enhancements in the OpenModelica 1.9.0 release:

	OpenModelica compiler support for most of the Fluid library.

	Support for the significantly updated library MSL 3.2.1 final
version.

	Significantly enhanced graphical user interface in OMEdit.

New features: integration of the PySimulator analysis package; Dynamic
Optimization with CasADi.

OpenModelica Compiler (OMC)

This release mainly includes improvements of the OpenModelica Compiler
(OMC), including, but not restricted to the following:

	A more stable and complete OMC model compiler. The 1.9.0 final
version simulates many more models than the previous 1.8.1
version and OpenModelica 1.9.0 beta versions.

	Much better simulation support for MSL 3.2.1, now 270 out of 274
example models compile (98%) and 247 (90%) simulate, compared to
30% simulating in the 1.9.0 beta1 release.

	Much better simulation for the ModelicaTest 3.2.1 library, now 412
out of 428 models compile (96%), and 380 (88%) simulate, compared
to 32% in November 2012.

	Improved tearing algorithm for the compiler backend. Tearing is by
default used.

	Much faster matching and dynamic state selection algorithms for the
compiler backend.

	New index reduction algorithm implementation.

	New default initialization method that symbolically solves the
initialization problem much faster and more accurately. This is
the first version that in general initialize hybrid models
correctly.

	Better class loading from files. The package.order file is now
respected and the file structure is more thoroughly examined.

	Basic support for pure/impure functions.

	It is now possible to translate the error messages in the omc kernel.

	Enhanced ModelicaML version with support for value bindings in
requirements-driven modeling available for the latest Eclipse and
Papyrus versions. GUI specific adaptations. Automated model
composition workflows (used for model-based design verification
against requirements) are modularized and have improved in terms
of performance.

	FMI for co-simulation with OMC as master. Improved FMI import/export,
model exchange.

	Checking (when possible) that variables have been assigned to before
they are used in algorithmic code.

	Full version of Python scripting.

	3D graphics visualization using the Modelica3D library.

	The PySimulator package from DLR for additional analysis is
integrated with OpenModelica (see Modelica2012 paper), and
included in the OpenModelica distribution.

	Prototype support for uncertainty computations, special feature
enabled by special flag.

	Parallel algorithmic Modelica support (ParModelica) for efficient
portable parallel algorithmic programming based on the OpenCL
standard, for CPUs and GPUs.

	Support for optimization of semiLinear according to semiLinear [https://modelica.readthedocs.org/en/latest/operators.html#operator-semilinear].

OpenModelica Notebook (OMNotebook)

The DrModelica interactive document has been updated and the models
tested. Almost all models now simulate with OpenModelica.

OpenModelica Shell (OMShell)

No changes.

OpenModelica Eclipse Plug-in (MDT)

Enhanced debugger for algorithmic Modelica code, supporting both
standard Modelica algorithmic code called from simulation models, and
MetaModelica code.

OpenModelica Development Environment (OMDev)

Migration of version handling and configuration management from
CodeBeamer to Trac.

Graphic Editor OMEdit

	General GUI: backward and forward navigation support in Documentation
view, enhanced parameters window with support for Dialog
annotation. Most of the images are converted from raster to
vector graphics i.e PNG to SVG.

	Libraries Browser: better loading of libraries, library tree can now
show protected classes, show library items class names as middle
ellipses if the class name text is larger, more options via the
right click menu for quick usage.

	ModelWidget: add the partial class as a replaceable component, look
for the default component prefixes and name when adding the
component.

	GraphicsView: coordinate system manipulation for icon and diagram
layers. Show red box for models that do not exist. Show default
graphical annotation for the components that doesn’t have any
graphical annotations. Better resizing of the components.
Properties dialog for primitive shapes i.e Line, Polygon,
Rectangle, Ellipse, Text and Bitmap.

	File Opening: open one or more Modelica files, allow users to select
the encoding while opening the file, convert files to UTF-8
encoding, allow users to open the OpenModelica result files.

	Variables Browser: find variables in the variables browser, sorting
in the variables browser.

	Plot Window: clear all curves of the plot window, preserve the old
selected variable and update its value with the new simulation
result.

	Simulation: support for all the simulation flags, read the simulation
output as soon as is is obtained, output window for simulations,
options to set matching algorithm and index reduction method for
simulation. Display all the files generated during the simulation
is now supported. Options to set OMC command line flags.

	Options: options for loading libraries via loadModel and loadFile
each time GUI starts, save the last open file directory location,
options for setting line wrap mode and syntax highlighting.

	Modelica Text Editor: preserving user customizations, new search &
replace functionality, support for comment/uncomment.

	Notifications: show custom dialogs to users allowing them to choose
whether they want to see this dialog again or not.

	Model Creation: Better support for creating new classes. Easy
creation of extends classes or nested classes.

	Messages Widget: Multi line error messages are now supported.

	Crash Detection: The GUI now automatically detects the crash and
writes a stack trace file. The user is given an option to send a
crash report along with the stack trace file and few other useful
files via email.

	Autosave: OMEdit saves the currently edited model regularly, in order
to avoid losing edits after GUI or compiler crash. The save
interval can be set in the Options menu.

Optimization

Dynamic optimization with XML export to the CaSAdi package is now
integrated with OpenModelica. Moreover, a native integrated Dynamic
Optimization prototype using Ipopt is now in the OpenModelica release,
but currently needs a special flag to be turned on since it needs more
testing and refinement before being generally made available.

FMI Support

FMI co-simulation with OpenModelica as master. Improved FMI Import and
export for model exchange. Simulation of multiple instances of the FMU
is now possible. Partial support for FMI 2.0 model exchange.

OpenModelica 1.8.1, March 2012

The OpenModelica 1.8.1 release has a faster and more stable OMC model
compiler. It flattens and simulates more models than the previous 1.8.0
version. Significant flattening speedup of the compiler has been
achieved for certain large models. It also contains a New ModelicaML
version with support for value bindings in requirements-driven modeling
and importing Modelica library models into ModelicaML models. A beta
version of the new OpenModelica Python scripting is also included.

OpenModelica Compiler (OMC)

This release includes bug fixes and improvements of the flattening
frontend part of the OpenModelica Compiler (OMC) and several
improvements of the backend, including, but not restricted to:

	A faster and more stable OMC model compiler. The 1.8.1 version
flattens and simulates more models than the previous 1.8.0
version.

	Support for operator overloading (except Complex numbers).

	New ModelicaML version with support for value bindings in
requirements-driven modeling and importing Modelica library
models into ModelicaML models.

	Faster plotting in OMNotebook. The feature sendData has been removed
from OpenModelica. As a result, the kernel no longer depends on
Qt. The plot3() family of functions have now replaced to plot(),
which in turn have been removed. The non-standard visualize()
command has been removed in favour of more recent alternatives.

	Store OpenModelica documentation as Modelica Documentation
annotations.

	Re-implementation of the simulation runtime using C instead of C++
(this was needed to export FMI source-based packages).

	FMI import/export bug fixes.

	Changed the internal representation of various structures to share
more memory. This significantly improved the performance for very
large models that use records.

	Faster model flattening, Improved simulation, some graphical API bug
fixes.

	More robust and general initialization, but currently time-consuming.

	New initialization flags to omc and options to simulate(), to control
whether fast or robust initialization is selected, or
initialization from an external (.mat) data file.

	New options to API calls list, loadFile, and more.

	Enforce the restriction that input arguments of functions may not be
assigned to.

	Improved the scripting environment. cl :=
$TypeName(Modelica);getClassComment(cl); now works as expected.
As does looping over lists of typenames and using reduction
expressions.

	Beta version of Python scripting.

	Various bugfixes.

	NOTE: interactive simulation is not operational in this release. It
will be put back again in the near future, first available as a
nightly build. It is also available in the previous 1.8.0
release.

OpenModelica Notebook (OMNotebook)

Faster and more stable plottning.

OpenModelica Shell (OMShell)

No changes.

OpenModelica Eclipse Plug-in (MDT)

Small fixes and improvements.

OpenModelica Development Environment (OMDev)

No changes.

Graphic Editor OMEdit

Bug fixes.

New OMOptim Optimization Subsystem

Bug fixes.

FMI Support

Bug fixes.

OpenModelica 1.8, November 2011

The OpenModelica 1.8 release contains OMC flattening improvements for
the Media library – it now flattens the whole library and simulates
about 20% of its example models. Moreover, about half of the Fluid
library models also flatten. This release also includes two new tool
functionalities – the FMI for model exchange import and export, and a
new efficient Eclipse-based debugger for Modelica/MetaModelica
algorithmic code.

OpenModelica Compiler (OMC)

This release includes bug fixes and improvements of the flattening
frontend part of the OpenModelica Compiler (OMC) and several
improvements of the backend, including, but not restricted to:

	A faster and more stable OMC model compiler. The 1.8.1 version
flattens and simulates more models than the previous 1.7.0
version.

	Flattening of the whole Media library, and about half of the Fluid
library. Simulation of approximately 20% of the Media library
example models.

	Functional Mockup Interface FMI 1.0 for model exchange, export and
import, for the Windows platform.

	Bug fixes in the OpenModelica graphical model connection editor
OMEdit, supporting easy-to-use graphical drag-and-drop modeling
and MSL 3.1.

	Bug fixes in the OMOptim optimization subsystem.

	Beta version of compiler support for a new Eclipse-based very
efficient algorithmic code debugger for functions in
MetaModelica/Modelica, available in the development environment
when using the bootstrapped OpenModelica compiler.

	Improvements in initialization of simulations.

	Improved index reduction with dynamic state selection, which improves
simulation.

	Better error messages from several parts of the compiler, including a
new API call for giving better error messages.

	Automatic partitioning of equation systems and multi-core parallel
simulation of independent parts based on the shared-memory OpenMP
model. This version is a preliminary experimental version without
load balancing.

OpenModelica Notebook (OMNotebook)

No changes.

OpenModelica Shell (OMShell)

Small performance improvements.

OpenModelica Eclipse Plug-in (MDT)

Small fixes and improvements. MDT now also includes a beta version of a
new Eclipse-based very efficient algorithmic code debugger for functions
in MetaModelica/Modelica.

OpenModelica Development Environment (OMDev)

Third party binaries, including Qt libraries and executable Qt clients,
are now part of the OMDev package. Also, now uses GCC 4.4.0 instead of
the earlier GCC 3.4.5.

Graphic Editor OMEdit

Bug fixes. Access to FMI Import/Export through a pull-down menu.
Improved configuration of library loading. A function to go to a
specific line number. A button to cancel an on-going simulation. Support
for some updated OMC API calls.

New OMOptim Optimization Subsystem

Bug fixes, especially in the Linux version.

FMI Support

The Functional Mockup Interface FMI 1.0 for model exchange import and
export is supported by this release. The functionality is accessible via
API calls as well as via pull-down menu commands in OMEdit.

OpenModelica 1.7, April 2011

The OpenModelica 1.7 release contains OMC flattening improvements for
the Media library, better and faster event handling and simulation, and
fast MetaModelica support in the compiler, enabling it to compiler
itself. This release also includes two interesting new tools – the
OMOptim optimization subsystem, and a new performance profiler for
equation-based Modelica models.

OpenModelica Compiler (OMC)

This release includes bug fixes and performance improvements of the
flattening frontend part of the OpenModelica Compiler (OMC) and several
improvements of the backend, including, but not restricted to:

	Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1),
except Media and Fluid.

	Progress in supporting the Media library, some models now flatten.

	Much faster simulation of many models through more efficient handling
of alias variables, binary output format, and faster event
handling.

	Faster and more stable simulation through new improved event
handling, which is now default.

	Simulation result storage in binary .mat files, and plotting from
such files.

	Support for Unicode characters in quoted Modelica identifiers,
including Japanese and Chinese.

	Preliminary MetaModelica 2.0 support. (use
setCommandLineOptions({"+g=MetaModelica"})). Execution is as
fast as MetaModelica 1.0, except for garbage collection.

	Preliminary bootstrapped OpenModelica compiler: OMC now compiles
itself, and the bootstrapped compiler passes the test suite. A
garbage collector is still missing.

	Many bug fixes.

OpenModelica Notebook (OMNotebook)

Improved much faster and more stable 2D plotting through the new OMPlot
module. Plotting from binary .mat files. Better integration between
OMEdit and OMNotebook, copy/paste between them.

OpenModelica Shell (OMShell)

Same as previously, except the improved 2D plotting through OMPlot.

OpenModelica Eclipse Plug-in (MDT)

Same as previously.

OpenModelica Development Environment (OMDev)

No changes.

Graphic Editor OMEdit

Several enhancements of OMEdit are included in this release. Support for
Icon editing is now available. There is also an improved much faster 2D
plotting through the new OMPlot module. Better integration between
OMEdit and OMNotebook, with copy/paste between them. Interactive on-line
simulation is available in an easy-to-use way.

New OMOptim Optimization Subsystem

A new optimization subsystem called OMOptim has been added to
OpenModelica. Currently, parameter optimization using genetic algorithms
is supported in this version 0.9. Pareto front optimization is also
supported.

New Performance Profiler

A new, low overhead, performance profiler for Modelica models has been
developed.

OpenModelica 1.6, November 2010

The OpenModelica 1.6 release primarily contains flattening, simulation,
and performance improvements regarding Modelica Standard Library 3.1
support, but also has an interesting new tool – the OMEdit graphic
connection editor, and a new educational material called DrControl, and
an improved ModelicaML UML/Modelica profile with better support for
modeling and requirement handling.

OpenModelica Compiler (OMC)

This release includes bug fix and performance improvemetns of the
flattening frontend part of the OpenModelica Compiler (OMC) and some
improvements of the backend, including, but not restricted to:

	Flattening of the whole Modelica Standard Library 3.1 (MSL 3.1),
except Media and Fluid.

	Improved flattening speed of a factor of 5-20 compared to
OpenModelica 1.5 for a number of models, especially in the
MultiBody library.

	Reduced memory consumption by the OpenModelica compiler frontend, for
certain large models a reduction of a factor 50.

	Reorganized, more modular OpenModelica compiler backend, can now
handle approximately 30000 equations, compared to previously
approximately 10000 equations.

	Better error messages from the compiler, especially regarding
functions.

	Improved simulation coverage of MSL 3.1. Many models that did not
simulate before are now simulating. However, there are still many
models in certain sublibraries that do not simulate.

	Progress in supporting the Media library, but simulation is not yet
possible.

	Improved support for enumerations, both in the frontend and the
backend.

	Implementation of stream connectors.

	Support for linearization through symbolic Jacobians.

	Many bug fixes.

OpenModelica Notebook (OMNotebook)

A new DrControl electronic notebook for teaching control and modeling
with Modelica.

OpenModelica Shell (OMShell)

Same as previously.

OpenModelica Eclipse Plug-in (MDT)

Same as previously.

OpenModelica Development Environment (OMDev)

Several enhancements. Support for match-expressions in addition to
matchcontinue. Support for real if-then-else. Support for if-then
without else-branches. Modelica Development Tooling 0.7.7 with small
improvements such as more settings, improved error detection in console,
etc.

New Graphic Editor OMEdit

A new improved open source graphic model connection editor called
OMEdit, supporting 3.1 graphical annotations, which makes it possible to
move models back and forth to other tools without problems. The editor
has been implemented by students at Linköping University and is based on
the C++ Qt library.

OpenModelica 1.5, July 2010

This OpenModelica 1.5 release has major improvements in the OpenModelica
compiler frontend and some in the backend. A major improvement of this
release is full flattening support for the MultiBody library as well as
limited simulation support for MultiBody. Interesting new facilities are
the interactive simulation and the integrated UML-Modelica modeling with
ModelicaML. Approximately 4 person-years of additional effort have been
invested in the compiler compared to the 1.4.5 version, e.g., in order
to have a more complete coverage of Modelica 3.0, mainly focusing on
improved flattening in the compiler frontend.

OpenModelica Compiler (OMC)

This release includes major improvements of the flattening frontend part
of the OpenModelica Compiler (OMC) and some improvements of the backend,
including, but not restricted to:

	Improved flattening speed of at least a factor of 10 or more compared
to the 1.4.5 release, primarily for larger models with
inner-outer, but also speedup for other models, e.g. the robot
model flattens in approximately 2 seconds.

	Flattening of all MultiBody models, including all elementary models,
breaking connection graphs, world object, etc. Moreover,
simulation is now possible for at least five MultiBody models:
Pendulum, DoublePendulum, InitSpringConstant, World,
PointGravityWithPointMasses.

	Progress in supporting the Media library, but simulation is not yet
possible.

	Support for enumerations, both in the frontend and the backend.

	Support for expandable connectors.

	Support for the inline and late inline annotations in functions.

	Complete support for record constructors, also for records containing
other records.

	Full support for iterators, including nested ones.

	Support for inferred iterator and for-loop ranges.

	Support for the function derivative annotation.

	Prototype of interactive simulation.

	Prototype of integrated UML-Modelica modeling and simulation with
ModelicaML.

	A new bidirectional external Java interface for calling external Java
functions, or for calling Modelica functions from Java.

	Complete implementation of replaceable model extends.

	Fixed problems involving arrays of unknown dimensions.

	Limited support for tearing.

	Improved error handling at division by zero.

	Support for Modelica 3.1 annotations.

	Support for all MetaModelica language constructs inside OpenModelica.

	OpenModelica works also under 64-bit Linux and Mac 64-bit OSX.

	Parallel builds and running test suites in parallel on multi-core
platforms.

	New OpenModelica text template language for easier implementation of
code generators, XML generators, etc.

	New OpenModelica code generators to C and C# using the text template
language.

	Faster simulation result data file output optionally as
comma-separated values.

	Many bug fixes.

It is now possible to graphically edit models using parts from the
Modelica Standard Library 3.1, since the simForge graphical editor (from
Politecnico di Milano) that is used together with OpenModelica has been
updated to version 0.9.0 with a important new functionality, including
support for Modelica 3.1 and 3.0 annotations. The 1.6 and 2.2.1 Modelica
graphical annotation versions are still supported.

OpenModelica Notebook (OMNotebook)

Improvements in platform availability.

	Support for 64-bit Linux.

	Support for Windows 7.

	Better support for MacOS, including 64-bit OSX.

OpenModelica Shell (OMShell)

Same as previously.

OpenModelica Eclipse Plug-in (MDT)

Minor bug fixes.

OpenModelica Development Environment (OMDev)

Minor bug fixes.

OpenModelica 1.4.5, January 2009

This release has several improvements, especially platform availability,
less compiler memory usage, and supporting more aspects of Modelica 3.0.

OpenModelica Compiler (OMC)

This release includes small improvements and some bugfixes of the
OpenModelica Compiler (OMC):

	Less memory consumption and better memory management over time. This
also includes a better API supporting automatic memory management
when calling C functions from within the compiler.

	Modelica 3.0 parsing support.

	Export of DAE to XML and MATLAB.

	Support for several platforms Linux, MacOS, Windows (2000, Xp, Vista).

	Support for record and strings as function arguments.

	Many bug fixes.

	(Not part of OMC): Additional free graphic editor SimForge can be
used with OpenModelica.

OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the plotting functionality and
platform availability.

	A number of improvements in the plotting functionality: scalable
plots, zooming, logarithmic plots, grids, etc.

	Programmable plotting accessible through a Modelica API.

	Simple 3D visualization.

	Support for several platforms Linux, MacOS, Windows (2000, Xp,
Vista).

OpenModelica Shell (OMShell)

Same as previously.

OpenModelica Eclipse Plug-in (MDT)

Minor bug fixes.

OpenModelica Development Environment (OMDev)

Same as previously.

OpenModelica 1.4.4, Feb 2008

This release is primarily a bug fix release, except for a preliminary
version of new plotting functionality available both from the OMNotebook
and separately through a Modelica API. This is also the first release
under the open source license OSMC-PL (Open Source Modelica Consortium
Public License), with support from the recently created Open Source
Modelica Consortium. An integrated version handler, bug-, and issue
tracker has also been added.

OpenModelica Compiler (OMC)

This release includes small improvements and some bugfixes of the
OpenModelica Compiler (OMC):

	Better support for if-equations, also inside when.

	Better support for calling functions in parameter expressions and
interactively through dynamic loading of functions.

	Less memory consumtion during compilation and interactive evaluation.

	A number of bug-fixes.

OpenModelica Notebook (OMNotebook)

Test release of improvements, primarily in the plotting functionality
and platform availability.

	Preliminary version of improvements in the plotting functionality:
scalable plots, zooming, logarithmic plots, grids, etc.,
currently available in a preliminary version through the plot2
function.

	Programmable plotting accessible through a Modelica API.

OpenModelica Shell (OMShell)

Same as previously.

OpenModelica Eclipse Plug-in (MDT)

This release includes minor bugfixes of MDT and the associated
MetaModelica debugger.

OpenModelica Development Environment (OMDev)

Extended test suite with a better structure. Version handling, bug
tracking, issue tracking, etc. now available under the integrated
Codebeamer

OpenModelica 1.4.3, June 2007

This release has a number of significant improvements of the OMC
compiler, OMNotebook, the MDT plugin and the OMDev. Increased platform
availability now also for Linux and Macintosh, in addition to Windows.
OMShell is the same as previously, but now ported to Linux and Mac.

OpenModelica Compiler (OMC)

This release includes a number of improvements of the OpenModelica
Compiler (OMC):

	Significantly increased compilation speed, especially with large
models and many packages.

	Now available also for Linux and Macintosh platforms.

	Support for when-equations in algorithm sections, including elsewhen.

	Support for inner/outer prefixes of components (but without type
error checking).

	Improved solution of nonlinear systems.

	Added ability to compile generated simulation code using Visual
Studio compiler.

	Added "smart setting of fixed attribute to false. If initial
equations, OMC instead has fixed=true as default for states due
to allowing overdetermined initial equation systems.

	Better state select heuristics.

	New function getIncidenceMatrix(ClassName) for dumping the incidence
matrix.

	Builtin functions String(), product(), ndims(), implemented.

	Support for terminate() and assert() in equations.

	In emitted flat form: protected variables are now prefixed with
protected when printing flat class.

	Some support for tables, using omcTableTimeIni instead of
dymTableTimeIni2.

	Better support for empty arrays, and support for matrix operations
like a*[1,2;3,4].

	Improved val() function can now evaluate array elements and record
fields, e.g. val(x[n]), val(x.y) .

	Support for reinit in algorithm sections.

	String support in external functions.

	Double precision floating point precision now also for interpreted
expressions

	Better simulation error messages.

	Support for der(expressions).

	Support for iterator expressions such as {3*i for i in 1..10}.

	More test cases in the test suite.

	A number of bug fixes, including sample and event handling bugs.

OpenModelica Notebook (OMNotebook)

A number of improvements, primarily in the platform availability.

	Available on the Linux and Macintosh platforms, in addition to
Windows.

	Fixed cell copying bugs, plotting of derivatives now works, etc.

OpenModelica Shell (OMShell)

Now available also on the Macintosh platform.

OpenModelica Eclipse Plug-in (MDT)

This release includes major improvements of MDT and the associated
MetaModelica debugger:

	Greatly improved browsing and code completion works both for standard
Modelica and for MetaModelica.

	Hovering over identifiers displays type information.

	A new and greatly improved implementation of the debugger for
MetaModelica algorithmic code, operational in Eclipse. Greatly
improved performance – only approx 10% speed reduction even for
100 000 line programs. Greatly improved single stepping, step
over, data structure browsing, etc.

	Many bug fixes.

OpenModelica Development Environment (OMDev)

Increased compilation speed for MetaModelica. Better if-expression
support in MetaModelica.

OpenModelica 1.4.2, October 2006

This release has improvements and bug fixes of the OMC compiler,
OMNotebook, the MDT plugin and the OMDev. OMShell is the same as
previously.

OpenModelica Compiler (OMC)

This release includes further improvements of the OpenModelica Compiler
(OMC):

	Improved initialization and index reduction.

	Support for integer arrays is now largely implemented.

	The val(variable,time) scripting function for accessing the value of
a simulation result variable at a certain point in the simulated
time.

	
	Interactive evalution of for-loops, while-loops, if-statements,

	if-expressions, in the interactive scripting mode.

	Improved documentation and examples of calling the Model Query and
Manipulation API.

	Many bug fixes.

OpenModelica Notebook (OMNotebook)

Search and replace functions have been added. The DrModelica tutorial
(all files) has been updated, obsolete sections removed, and models
which are not supported by the current implementation marked clearly.
Automatic recognition of the .onb suffix (e.g. when double-clicking) in
Windows makes it even more convenient to use.

OpenModelica Eclipse Plug-in (MDT)

Two major improvements are added in this release:

	Browsing and code completion works both for standard Modelica and for
MetaModelica.

	The debugger for algorithmic code is now available and operational in
Eclipse for debugging of MetaModelica programs.

OpenModelica Development Environment (OMDev)

Mostly the same as previously.

OpenModelica 1.4.1, June 2006

This release has only improvements and bug fixes of the OMC compiler,
the MDT plugin and the OMDev components. The OMShell and OMNotebook are
the same.

OpenModelica Compiler (OMC)

This release includes further improvements of the OpenModelica Compiler
(OMC):

	Support for external objects.

	OMC now reports the version number (via command line switches or
CORBA API getVersion()).

	Implemented caching for faster instantiation of large models.

	Many bug fixes.

OpenModelica Eclipse Plug-in (MDT)

Improvements of the error reporting when building the OMC compiler. The
errors are now added to the problems view. The latest MDT release is
version 0.6.6 (2006-06-06).

OpenModelica Development Environment (OMDev)

Small fixes in the MetaModelica compiler. MetaModelica Users Guide is
now part of the OMDev release. The latest OMDev was release in
2006-06-06.

OpenModelica 1.4.0, May 2006

This release has a number of improvements described below. The most
significant change is probably that OMC has now been translated to an
extended subset of Modelica (MetaModelica), and that all development of
the compiler is now done in this version..

OpenModelica Compiler (OMC)

This release includes further improvements of the OpenModelica Compiler
(OMC):

	Partial support for mixed system of equations.

	New initialization routine, based on optimization (minimizing
residuals of initial equations).

	Symbolic simplification of builtin operators for vectors and
matrices.

	Improved code generation in simulation code to support e.g. Modelica
functions.

	Support for classes extending basic types, e.g. connectors (support
for MSL 2.2 block connectors).

	Support for parametric plotting via the plotParametric command.

	Many bug fixes.

OpenModelica Shell (OMShell)

Essentially the same OMShell as in 1.3.1. One difference is that now all
error messages are sent to the command window instead of to a separate
log window.

OpenModelica Notebook (OMNotebook)

Many significant improvements and bug fixes. This version supports
graphic plots within the cells in the notebook. Improved cell handling
and Modelica code syntax highlighting. Command completion of the most
common OMC commands is now supported. The notebook has been used in
several courses.

OpenModelica Eclipse Plug-in (MDT)

This is the first really useful version of MDT. Full browsing of
Modelica code, e.g. the MSL 2.2, is now supported. (MetaModelica
browsing is not yet fully supported). Full support for automatic
indentation of Modelica code, including the MetaModelica extensions.
Many bug fixes. The Eclipse plug-in is now in use for OpenModelica
development at PELAB and MathCore Engineering AB since approximately one
month.

OpenModelica Development Environment (OMDev)

The following mechanisms have been put in place to support OpenModelica
development.

	A separate web page for OMDev (OpenModelica Development Environment).

	A pre-packaged OMDev zip-file with precompiled binaries for
development under Windows using the mingw Gnu compiler from the
Eclipse MDT plug-in. (Development is also possible using Visual
Studio).

	All source code of the OpenModelica compiler has recently been
translated to an extended subset of Modelica, currently called
MetaModelica. The current size of OMC is approximately 100 000
lines All development is now done in this version.

	A new tutorial and users guide for development in MetaModelica.

	Successful builds and tests of OMC under Linux and Solaris.

OpenModelica 1.3.1, November 2005

This release has several important highlights.

This is also the first release for which the New BSD (Berkeley)
open-source license applies to the source code, including the whole
compiler and run-time system. This makes is possible to use OpenModelica
for both academic and commercial purposes without restrictions.

OpenModelica Compiler (OMC)

This release includes a significantly improved OpenModelica Compiler
(OMC):

	Support for hybrid and discrete-event simulation (if-equations,
if-expressions, when-equations; not yet if-statements and
when-statements).

	Parsing of full Modelica 2.2

	Improved support for external functions.

	Vectorization of function arguments; each-modifiers, better
implementation of replaceable, better handling of structural
parameters, better support for vector and array operations, and
many other improvements.

	Flattening of the Modelica Block library version 1.5 (except a few
models), and simulation of most of these.

	Automatic index reduction (present also in previous release).

	Updated User's Guide including examples of hybrid simulation and
external functions.

OpenModelica Shell (OMShell)

An improved window-based interactive command shell, now including
command completion and better editing and font size support.

OpenModelica Notebook (OMNotebook)

A free implementation of an OpenModelica notebook (OMNotebook), for
electronic books with course material, including the DrModelica
interactive course material. It is possible to simulate and plot from
this notebook.

OpenModelica Eclipse Plug-in (MDT)

An early alpha version of the first Eclipse plug-in (called MDT for
Modelica Development Tooling) for Modelica Development. This version
gives compilation support and partial support for browsing Modelica
package hierarchies and classes.

OpenModelica Development Environment (OMDev)

The following mechanisms have been put in place to support OpenModelica
development.

	Bugzilla support for OpenModelica bug tracking, accessible to
anybody.

	A system for automatic regression testing of the compiler and
simulator, (+ other system parts) usually run at check in time.

	Version handling is done using SVN, which is better than the
previously used CVS system. For example, name change of modules
is now possible within the version handling system.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Contributors to OpenModelica

 Navigation

 	
 index

 	
 previous |

 	OpenModelica User's Guide v1.9.4 documentation

Contributors to OpenModelica

This Appendix lists the individuals who have made significant
contributions to OpenModelica, in the form of software development,
design, documentation, project leadership, tutorial material, promotion,
etc. The individuals are listed for each year, from 1998 to the current
year: the project leader and main author/editor of this document
followed by main contributors followed by contributors in alphabetical
order.

OpenModelica Contributors 2015

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.

Volker Waurich, TU Dresden, Dresden, Germany.

Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Anders Andersson, VTI, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Robert Braun, IEI, Linköping University, Linköping, Sweden.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Daniel Bouskela, EDF, Paris, France.

Lena Buffoni, PELAB, Linköping University, Linköping, Sweden.

Francesco Casella, Politecnico di Milano, Milan, Italy.

Atiyah Elsheikh, AIT, Vinnea, Austria.

Rüdiger Franke, ABB, Germany

Jens Frenkel, TU Dresden, Dresden, Germany.

Mahder Gebremedhin, PELAB, Linköping University, Linköping, Sweden.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Alf Isaksson, ABB Corporate Research, Västerås, Sweden.

Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Henning Kiel, Bocholt, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Petter Krus, IEI, Linköping University, Linköping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Leonardo Laguna, Wolfram MathCore AB, Linköping, Sweden.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

Ariel Liebman, Energy Users Association of Australia, Victoria, Australia.

Alachew Mengist, PELAB, Linköping University, Linköping, Sweden.

Abhir Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

Lars Mikelsons, Bosch Rexroth, Lohr am Main, Germany.

Afshin Moghadam, PELAB, Linköping University, Linköping, Sweden.

Kannan Moudgalya, IIT Bombay, Mumbai, India.

Kenneth Nealy, USA.

Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemistö, VTT, Espoo, Finland.

Peter Nordin, IEI, Linköping University, Linköping, Sweden.

Arunkumar Palanisamy, PELAB, Linköping University, Linköping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech Republic.

Vitalij Ruge, Fachhochschule Bielefeld, Bielefeld, Germany.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Roland Samlaus, Bosch, Stuttgart, Germany.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Jan Šilar, Charles University, Prague, Czech Republic

Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.

Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.

Bernhard Thiele, PELAB, Linköping University, Linköping, Sweden

Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Gustaf Thorslund, PELAB, Linköping University, Linköping, Sweden.

Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.

Marcus Walther, TU Dresden, Dresden, Germany

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

OpenModelica Contributors 2014

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

Jens Frenkel, TU Dresden, Dresden, Germany.

Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.

Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.

Robert Braun, IEI, Linköping University, Linköping, Sweden.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Stefan Brus, PELAB, Linköping University, Linköping, Sweden.

Lena Buffoni, PELAB, Linköping University, Linköping, Sweden.

Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Mahder Gebremedhin, PELAB, Linköping University, Linköping, Sweden.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Zoheb Hossain, PELAB, Linköping University, Linköping, Sweden.

Alf Isaksson, ABB Corporate Research, Västerås, Sweden.

Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Petter Krus, IEI, Linköping University, Linköping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Abhinn Kothari, PELAB, Linköping University, Linköping, Sweden.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

Ariel Liebman, Energy Users Association of Australia, Victoria,
Australia.

Henrik Magnusson, Linköping, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

Tuomas Miettinen, VTT, Espoo, Finland.

Afshin Moghadam, PELAB, Linköping University, Linköping, Sweden.

Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemistö, VTT, Espoo, Finland.

Peter Nordin, IEI, Linköping University, Linköping, Sweden.

Arunkumar Palanisamy, PELAB, Linköping University, Linköping, Sweden.

Karl Pettersson, IEI, Linköping University, Linköping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech
Republic.

Jhansi Remala, PELAB, Linköping University, Linköping, Sweden.

Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Alachew Shitahun, PELAB, Linköping University, Linköping, Sweden.

Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linköping University, Linköping, Sweden.

Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.

Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.

Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.

Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Azam Zia, PELAB, Linköping University, Linköping, Sweden.

OpenModelica Contributors 2013

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

Jens Frenkel, TU Dresden, Dresden, Germany.

Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.

Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.

Robert Braun, IEI, Linköping University, Linköping, Sweden.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Stefan Brus, PELAB, Linköping University, Linköping, Sweden.

Lena Buffoni, PELAB, Linköping University, Linköping, Sweden.

Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Mahder Gebremedhin, PELAB, Linköping University, Linköping, Sweden.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Zoheb Hossain, PELAB, Linköping University, Linköping, Sweden.

Alf Isaksson, ABB Corporate Research, Västerås, Sweden.

Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Petter Krus, IEI, Linköping University, Linköping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Abhinn Kothari, PELAB, Linköping University, Linköping, Sweden.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

Ariel Liebman, Energy Users Association of Australia, Victoria,
Australia.

Henrik Magnusson, Linköping, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

Tuomas Miettinen, VTT, Espoo, Finland.

Afshin Moghadam, PELAB, Linköping University, Linköping, Sweden.

Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemistö, VTT, Espoo, Finland.

Peter Nordin, IEI, Linköping University, Linköping, Sweden.

Arunkumar Palanisamy, PELAB, Linköping University, Linköping, Sweden.

Karl Pettersson, IEI, Linköping University, Linköping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech
Republic.

Jhansi Remala, PELAB, Linköping University, Linköping, Sweden.

Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Alachew Shitahun, PELAB, Linköping University, Linköping, Sweden.

Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linköping University, Linköping, Sweden.

Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.

Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.

Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.

Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Azam Zia, PELAB, Linköping University, Linköping, Sweden.

OpenModelica Contributors 2012

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

Jens Frenkel, TU Dresden, Dresden, Germany.

Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.

Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.

Mikael Axin, IEI, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.

Robert Braun, IEI, Linköping University, Linköping, Sweden.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Stefan Brus, PELAB, Linköping University, Linköping, Sweden.

Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Mahder Gebremedhin, PELAB, Linköping University, Linköping, Sweden.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Zoheb Hossain, PELAB, Linköping University, Linköping, Sweden.

Alf Isaksson, ABB Corporate Research, Västerås, Sweden.

Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Petter Krus, IEI, Linköping University, Linköping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Abhinn Kothari, PELAB, Linköping University, Linköping, Sweden.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

Ariel Liebman, Energy Users Association of Australia, Victoria,
Australia.

Henrik Magnusson, Linköping, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

Tuomas Miettinen, VTT, Espoo, Finland.

Afshin Moghadam, PELAB, Linköping University, Linköping, Sweden.

Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemistö, VTT, Espoo, Finland.

Peter Nordin, IEI, Linköping University, Linköping, Sweden.

Arunkumar Palanisamy, PELAB, Linköping University, Linköping, Sweden.

Karl Pettersson, IEI, Linköping University, Linköping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech
Republic.

Jhansi Remala, PELAB, Linköping University, Linköping, Sweden.

Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Alachew Shitahun, PELAB, Linköping University, Linköping, Sweden.

Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linköping University, Linköping, Sweden.

Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.

Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.

Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.

Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Azam Zia, PELAB, Linköping University, Linköping, Sweden.

OpenModelica Contributors 2011

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

Jens Frenkel, TU Dresden, Dresden, Germany.

Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.

Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.

Mikael Axin, IEI, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.

Robert Braun, IEI, Linköping University, Linköping, Sweden.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Stefan Brus, PELAB, Linköping University, Linköping, Sweden.

Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Anand Ganeson, PELAB, Linköping University, Linköping, Sweden.

Mahder Gebremedhin, PELAB, Linköping University, Linköping, Sweden.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Zoheb Hossain, PELAB, Linköping University, Linköping, Sweden.

Alf Isaksson, ABB Corporate Research, Västerås, Sweden.

Kim Jansson, PELAB, Linköping University, Linköping, Sweden.

Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Linköping University, Linköping, Sweden.

Petter Krus, IEI, Linköping University, Linköping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Abhinn Kothari, PELAB, Linköping University, Linköping, Sweden.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Oliver Lenord, Siemens PLM, California, USA.

Ariel Liebman, Energy Users Association of Australia, Victoria,
Australia.

Rickard Lindberg, PELAB, Linköping University, Linköping, Sweden

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Henrik Magnusson, Linköping, Sweden.

Abhi Raj Metkar, CDAC, Trivandrum, Kerala, India.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

Tuomas Miettinen, VTT, Espoo, Finland.

Afshin Moghadam, PELAB, Linköping University, Linköping, Sweden.

Maroun Nemer, CEP Paristech, Ecole des Mines, Paris, France.

Hannu Niemistö, VTT, Espoo, Finland.

Peter Nordin, IEI, Linköping University, Linköping, Sweden.

Kristoffer Norling, PELAB, Linköping University, Linköping, Sweden.

Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Karl Pettersson, IEI, Linköping University, Linköping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech
Republic.

Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Klas Sjöholm, PELAB, Linköping University, Linköping, Sweden.

Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linköping University, Linköping, Sweden.

Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.

Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.

Hubert Thierot, CEP Paristech, Ecole des Mines, Paris, France.

Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.

Parham Vasaiely, EADS, Hamburg, Germany.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Björn Zachrisson, MathCore Engineering AB, Linköping, Sweden.

Azam Zia, PELAB, Linköping University, Linköping, Sweden.

OpenModelica Contributors 2010

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.

Per Östlund, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

Adeel Asghar, PELAB, Linköping University, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.

Simon Björklén, PELAB, Linköping University, Linköping, Sweden.

Mikael Blom, PELAB, Linköping University, Linköping, Sweden.

Robert Braun, IEI, Linköping University, Linköping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Stefan Brus, PELAB, Linköping University, Linköping, Sweden.

Francesco Casella, Politecnico di Milano, Milan, Italy.

Filippo Donida, Politecnico di Milano, Milan, Italy.

Henrik Eriksson, PELAB, Linköping University, Linköping, Sweden.

Anders Fernström, PELAB, Linköping University, Linköping, Sweden.

Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Alf Isaksson, ABB Corporate Research, Västerås, Sweden.

Kim Jansson, PELAB, Linköping University, Linköping, Sweden.

Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany.

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Linköping University, Linköping, Sweden.

Petter Krus, IEI, Linköping University, Linköping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland.

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden.

Magnus Leksell, Linköping, Sweden.

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany.

Ariel Liebman, Energy Users Association of Australia, Victoria,
Australia.

Rickard Lindberg, PELAB, Linköping University, Linköping, Sweden

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Henrik Magnusson, Linköping, Sweden.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

Hannu Niemistö, VTT, Espoo, Finland.

Peter Nordin, IEI, Linköping University, Linköping, Sweden.

Kristoffer Norling, PELAB, Linköping University, Linköping, Sweden.

Lennart Ochel, Fachhochschule Bielefeld, Bielefeld, Germany.

Atanas Pavlov, Munich, Germany.

Karl Pettersson, IEI, Linköping University, Linköping, Sweden.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech
Republic.

Reino Ruusu, VTT, Espoo, Finland.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Wladimir Schamai, EADS, Hamburg, Germany.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany.

Klas Sjöholm, PELAB, Linköping University, Linköping, Sweden.

Anton Sodja, University of Ljubljana, Ljubljana, Slovenia

Ingo Staack, IEI, Linköping University, Linköping, Sweden.

Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.

Sonia Tariq, PELAB, Linköping University, Linköping, Sweden.

Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany.

Robert Wotzlaw, Goettingen, Germany.

Björn Zachrisson, MathCore Engineering AB, Linköping, Sweden.

OpenModelica Contributors 2009

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.

Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

Simon Björklén, PELAB, Linköping University, Linköping, Sweden.

Mikael Blom, PELAB, Linköping University, Linköping, Sweden.

Willi Braun, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Stefan Brus, PELAB, Linköping University, Linköping, Sweden.

Francesco Casella, Politecnico di Milano, Milan, Italy

Filippo Donida, Politecnico di Milano, Milan, Italy

Henrik Eriksson, PELAB, Linköping University, Linköping, Sweden.

Anders Fernström, PELAB, Linköping University, Linköping, Sweden.

Jens Frenkel, TU Dresden, Dresden, Germany.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Michael Hanke, NADA, KTH, Stockholm

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Alf Isaksson, ABB Corporate Research, Västerås, Sweden

Kim Jansson, PELAB, Linköping University, Linköping, Sweden.

Daniel Kanth, Bosch-Rexroth, Lohr am Main, Germany

Tommi Karhela, VTT, Espoo, Finland.

Joel Klinghed, PELAB, Linköping University, Linköping, Sweden.

Juha Kortelainen, VTT, Espoo, Finland

Alexey Lebedev, Equa Simulation AB, Stockholm, Sweden

Magnus Leksell, Linköping, Sweden

Oliver Lenord, Bosch-Rexroth, Lohr am Main, Germany

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Henrik Magnusson, Linköping, Sweden

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

Hannu Niemistö, VTT, Espoo, Finland

Kristoffer Norling, PELAB, Linköping University, Linköping, Sweden.

Atanas Pavlov, Munich, Germany.

Pavol Privitzer, Institute of Pathological Physiology, Praha, Czech
Republic.

Per Sahlin, Equa Simulation AB, Stockholm, Sweden.

Gerhard Schmitz, University of Hamburg, Hamburg, Germany

Klas Sjöholm, PELAB, Linköping University, Linköping, Sweden.

Martin Sjölund, PELAB, Linköping University, Linköping, Sweden.

Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.

Mohsen Torabzadeh-Tari, PELAB, Linköping University, Linköping, Sweden.

Niklas Worschech, Bosch-Rexroth, Lohr am Main, Germany

Robert Wotzlaw, Goettingen, Germany

Björn Zachrisson, MathCore Engineering AB, Linköping, Sweden

OpenModelica Contributors 2008

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Vasile Baluta, PELAB, Linköping University, Linköping, Sweden.

Mikael Blom, PELAB, Linköping University, Linköping, Sweden.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Henrik Eriksson, PELAB, Linköping University, Linköping, Sweden.

Anders Fernström, PELAB, Linköping University, Linköping, Sweden.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Kim Jansson, PELAB, Linköping University, Linköping, Sweden.

Joel Klinghed, PELAB, Linköping University, Linköping, Sweden.

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

Kristoffer Norling, PELAB, Linköping University, Linköping, Sweden.

Anders Sandholm, PELAB, Linköping University, Linköping, Sweden.

Klas Sjöholm, PELAB, Linköping University, Linköping, Sweden.

Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.

Simon Bjorklén, PELAB, Linköping University, Linköping, Sweden.

Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

OpenModelica Contributors 2007

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Henrik Eriksson, PELAB, Linköping University, Linköping, Sweden.

Anders Fernström, PELAB, Linköping University, Linköping, Sweden.

Pavel Grozman, Equa AB, Stockholm, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Ola Leifler, IDA, Linköping University, Linköping, Sweden.

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Eric Meyers, Pratt & Whitney Rocketdyne, Palm City, Florida, USA.

Kristoffer Norling, PELAB, Linköping University, Linköping, Sweden.

Anders Sandholm, PELAB, Linköping University, Linköping, Sweden.

Klas Sjöholm, PELAB, Linköping University, Linköping, Sweden.

William Spinelli, Politecnico di Milano, Milano, Italy

Kristian Stavåker, PELAB, Linköping University, Linköping, Sweden.

Stefan Vorkoetter, MapleSoft, Waterloo, Canada.

Björn Zachrisson, MathCore Engineering AB, Linköping, Sweden.

Constantin Belyaev, Bashpromavtomatika Ltd., Ufa, Russia

OpenModelica Contributors 2006

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

David Akhvlediani, PELAB, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Anders Fernström, PELAB, Linköping University, Linköping, Sweden.

Elmir Jagudin, PELAB, Linköping University, Linköping, Sweden.

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Kaj Nyström, PELAB, Linköping University, Linköping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linköping, Sweden.

Andreas Remar, PELAB, Linköping University, Linköping, Sweden.

Anders Sandholm, PELAB, Linköping University, Linköping, Sweden.

OpenModelica Contributors 2005

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, PELAB, Linköping University and MathCore Engineering AB,
Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Ingemar Axelsson, PELAB, Linköping University, Linköping, Sweden.

David Broman, PELAB, Linköping University, Linköping, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Kaj Nyström, PELAB, Linköping University, Linköping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

OpenModelica Contributors 2004

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Peter Bunus, PELAB, Linköping University, Linköping, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Emma Larsdotter Nilsson, PELAB, Linköping University, Linköping, Sweden.

Kaj Nyström, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

OpenModelica Contributors 2003

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, Linköping University, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

Peter Bunus, PELAB, Linköping University, Linköping, Sweden.

Vadim Engelson, PELAB, Linköping University, Linköping, Sweden.

Daniel Hedberg, Linköping University, Linköping, Sweden.

Eva-Lena Lengquist-Sandelin, PELAB, Linköping University, Linköping,
Sweden.

Susanna Monemar, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Erik Svensson, MathCore Engineering AB, Linköping, Sweden.

OpenModelica Contributors 2002

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, Linköping University, Linköping, Sweden.

Daniel Hedberg, Linköping University, Linköping, Sweden.

Henrik Johansson, PELAB, Linköping University, Linköping, Sweden

Andreas Karström, PELAB, Linköping University, Linköping, Sweden

OpenModelica Contributors 2001

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, Linköping University, Linköping, Sweden.

OpenModelica Contributors 2000

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

OpenModelica Contributors 1999

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden

Peter Rönnquist, PELAB, Linköping University, Linköping, Sweden.

OpenModelica Contributors 1998

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

David Kågedal, PELAB, Linköping University, Linköping, Sweden.

Vadim Engelson, PELAB, Linköping University, Linköping, Sweden.

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

 Index

 Navigation

 	
 index

 	OpenModelica User's Guide v1.9.4 documentation

Index

 Copyright 2016, Open Source Modelica Consortium.
 Created using Sphinx 1.3.6.

_images/casadi-input.png
5.0

4.5

4.0

35

3.0

25

2.0

15

1.0

0.%.

Input

0.2

0.4

0.6

0.8

1.0

_images/mdt-console-simulate.png
File Edit Na Run_ Wind

R St 0o S - ‘ on | €
B | &3ava (B vogelca
{6 Modelica Projects 2~ = B [BouncingBal.mo 52 =g
o g = [imedel souncingsall

2 parameter Real e=0.7 "coefficient of restitution’;
3 parameter Real g=9.81 "gravity acceleration’;
4 Real h(start=1) "height of ball’;
5 Real v "velocity of ball’;

» B VanDerPoLmo 5 Boolean flying(start=true) "true, if ball is flying";
7
8
9

v & demo

» B BouncingBallmo

[project Boolean impact;
Real v_new;
> A Libraries ERESR R FieOpions

10 Zoom | Pan | Auto Scale | FitinView | »|
11 equation
12 impact = h <= 6.0;

13 foo = if impact then 1 else 2;
14 der(v) = if flying then -g else 0; i
15 der(n) = v; 083
15 063
17 when {n <= 0.6 and v <= 0.0, impact} then 043
18 V_new = if edge(impact) then -e*pre(v) else & o 3
19 lying = v_new > ©; o3
20 reinit(v, v_new); L A A
21 end when; 0 05 1 15 2 25 3
2= Outline =8 2 time
AN SR
v M BouncingBall [22 Problems B console 52 [l Bookmarks =g Progress B o My =08
oe OpenModelica Console
o fiying ome> simulate(BouncingBall, stopTime=3.0) &
o fo0 record SimulationResult
resultFile = "/tmp/BouncingBall_res.mat”,
°g simulationOptions = "startTime = 0.6, stopTime = 3.0, number0fIntervals = 500, toler
oh messages = ",
o impact timeFrontend = 0.010819273,
timeBackend = 0.001910553,
°v timeSimCode = 0.011109793,
o vnew timeTemplates = 6.007479943,
- timeCompile = 1.035183591,
timeSimulation = 0.013519222,

timeTotal = 1.080146115
end SimulationResult;
omc> plot(h) -

_images/omoptim-define-new-problem.png
i e
Oiploy Toos Aot
List of variables | optinzatonresuk | optcoongresuk | optCooingresk @) |

Hame =1 oo | esaption [0 [oPt
(T —"
(Ev—r R
nshcusonagei foge boh

[—T—
[Feem——
amAcusorsmOun

ehcusorsepty

[Rares——
iawhcusorsptbosi
ashausospingOingen o s
eAcusorsiogoanpain o
nhcusorspiangezion
(rewAcusoprngD ooz aseseecion

o
0
0
P —— 0
o
o n Selected objectives

ehcusorpiDanpez o s

L pddmo || vrsbes | Optimastion |

<

_images/mdt-assist-mm-record.png
® &ava | Modelica)

=
end FuncT; e

6462 algorithm

6463 outArgs := match outArgs

6464 case FUNCTTONARGS()

6465 algorithn

6466 outArgs.args := list(inFunc(arg, inArg) for arg in outArgs.args);

6467 then

6468 outArgs;

6469 [FOR_ITER_FARG(Exp exp. Reductioniierlype terlype. Forteralors ierators)

6470 case FOR_ITER_FARG(
6471 algorithn

6472 outArgs.exp := inFunc(outArgs.exp, inArg);
6473 outArgs . iterators := List(traverseExpShallowlterator(it, inArg, inFunc
o474 for it in outArgs.iterators);

6475 then

6475 outargs;

6478 end match;
6479 end traverseExpShallowFuncArgs;

_images/omedit-attach-to-process.png
@ OMEdit - Attach to Running Process

Attach to Process ID:
Fiter Processes

Process 1D Name B g
o750 AAM Updates Notifierexe

2164 AESTS64.exe

2288 AppleMobileDeiceService.exe

3806 BTStackServerexe

1612 BTTryee

7696 BluctoothHeadsetProny.exe

2 ccCee

7580 Cs5.5ServiceManagerexe

6628 ComRecorderere

4960 Cembrec.exe

B CmReService.exe

o8 Conversionervice.exe

oK

_images/omoptim-setup-model.png
o

Reload model

®
,@ f Recompile model Read functions
B Read variables
® Read connections
#- iner Set parameters... Set parameters (e.g. finalTime, solver)
- tore
@ Dymola Select simulator
ref| Opentodelica
sur

LinearActuatc

_images/mdt-code-completion-call.png
S Modelica - DCEngine.mo - Eclipse SDK.

Fle Edt Refactor Nevigate Search Run Project Window Help

N EHeBla- P ee-
[Modelica Projects 5% =0 *DCEngine.mo
=22 EngineSimulation model DCEngine
% & ocengremo mport. Hodelica. Mach. t;
E project output Real x;
B S brary cquation
= i Modelica eal sin(S1. Angle U}
- i Blocks x = sin(|

% 83 Constants
%) 63 Elctrical -

& Eleatr end DCEngine;

_images/profiling-results.png
Equations Browser Defines

Index Type Equation Executions Max time Time Fraction ~ || Variable
regular linear, size 2 0.0 0.0582 g “| damper.a_rel
836 regular (assignment) revolute2.R_rel.T[2,2] = cos(revolute2.phi) 1534 825e-05 0.000491 0. revolute2.frame_b.f[2]
837 regular (assignment) revolute2.R_relT[2,1] = -sin(revolute2.phi) 1534 7.29e-05 0.000422
841 regular (assignment) boxBody1.frame._...[2,1] = -sin(damper.phi_rel) 1534 7.1e05 0.000395
840 regular (assignment) boxBody1.frame_...T[2,2] = cos(damper.phi_rel) 1534 7.08e-05 0.000361
839 regular (assignment) revolute2.R_rel.T[1,1] = cos(revolute2.phi) 1534 7.33e-05 0.000303
842 regular (assignment) boxBody1.frame_b.RT[1,2] = sin(damper.phi_rel) 1534 7.45e-05 0.000303
838 regular (assignment) revolute2.R_rel.T[1,2] = sin(revolute2.phi) 1534 7.11e05 0.0003
849 regular (assignment) boxBody1.frame_...T[1,1] = cos(damper.phi_rel) 1534 7.29e-05 0.000286

827 regular (assignment) revolute1.tau = (-damper.d) * revolute1.w 1534 6.84e05 0.000274

_images/omoptim-loaded.png
(07—
~ ouoptim [E]
File Models Problem Display Tools About

Project | Optimization | OptCoolng | Optimization resuk (3) | Optimizationresuk | OptCoolingresut | OptCodir P
Project name : testlinearActuator

Project fle: Ci/Documents and Settings{SayahjMes documentsiMinesiModOpt Testlinear ActuatortestlinearActuatormin

(CifDocuments and Settings;Sayahiles documents{HinesiHodOptModelicaTotal.mo.
Loaded mo files : Ci/Documents and Settings/SayahiMes documentsilines|ModOpt{TestLinearActuatorLinearactuatormo.

Log

Loading project (C:/Documents and Settings{Saysh/Mes documents{Mines{ModOptTestLinearActuatortestUinearActustormin) ...
Loading il : Ci/Documents and SettingsiSayahilMes documentsilinesiModOptModelcaTotal.mo

Model loaded successfully”C:/Documents and Settings;Sayahites documents{hinesiModOptModelcaTotal.mo"

Loading il : C:/Documents and Settings{SayahiMes documentsiMines]ModOptTestLinearActuatorLinearactuatormo.

Podel loaded successfully”C:/Documents and SettingsiSayahMes documentsMinesModOp TestLinearActuator Linearactustormo’

Loading mode il (C:/Documents and SettingsSayahiMes documents{Mines{HodOptTestLinearctuatorModels{LinearfctuatorfLinearActustormo) ..
Loading mode il (C:/Documents and Settings(Sayah/Mes

‘documents{Mines{ModOpt TestLinearActustor Models{Modsiica. Thermal. FiidHe atFlow. Examples. SmpleCoolngtestLinearActustor o) ..

Problem "Optinization" added to project

Problem "OptCooling" added to project

mo_| omc | pebug |

_images/mdt-switch-perspective.png
> M BouncingBall

> @ Multiallmo
> @ VanDerPolmo
[project
> A Libraries
> G > OpenModelica [OpenModelic

New Window 0w
Editor »
Hide Toolbar

teomin

Show View +| B Modelica

G b=

Save Perspective As.
Reset Perspective.
Close Perspective
Close All Perspectives

Navigation ’

Preferences

_images/omedit-model-widget.png
[A/S @ |witsble |vodel | pagram view | c:users/adeas31/pesktop/pcmotor Line: 1,C0k0 | 10
cmo 1, Col:0
st st
e v

Signdvatagel

roundt

_images/omedit-debug-more.png
Running Simulation of Debugging.Chattering.ChatteringEvents1
Please waitfor a while.

Cancel Simulation

© OMEdit - Debugging.Chattering.ChatteringEvents1 Simulation Output - o

Output | Compilation |

/ohp/Openiodelica/OMEdL ¢ /Debugging . Chattering . ChatteringEventsl —
port=s0212 -logFormat=xal -w -1v=L0G_STATS

stdout | info | Chattering detected around time
0500000005 0500000995001 (100 state events in a row with a total time
delta less than the step size 0.002). This can be a performance
bottleneck. Use -lv LOG EVENTS for more information. The zero-crossing

S x> 0.0 D%g more

_images/emscripten-result.png
T

ASEAN&Ying &

& - rage= soey= Tods- @~ WE D

OpenModelica simulation example.

Modelica Mechanics MuliBody Examples Systems RobotR3 fullRobot

_images/mdt-switch-workspace.png
- Eclipse

New hiteAeN > P @S A v
Open File.

&) Refresh F:
Convert Line Delimiters To

Restart

g Import
24 Export
Properties Alt+Enter
1BouncingBallmo [demo]
2Absynmo [OpenModelica/OMCompiler/.]
3 MultiBallmo [demo]
4BouncingBallmo [demo]

Exit

_images/omedit-transformationsbrowser.png
ransformational Debugger

&2 | /tmp/OpenModel

Variables

Source Browser

Variables Browser

Defined In Equations

Used In Equations.

Find Variables Incv Type Equation

Incv Type Equation

7] CaseSensitive | Regular Expression :| L2 initial (assignmen.

ExpandAll | CollapseAll | 5 regular (assignmen.
Variables

v Comment
x 7

y 8
z 9

Line Location

Oelse 1.0

t3 initial
Oelse 1.0

6 regular (assignment)

(assignment) y=2.0*z
20*z

Variable Operations

Operations

e D

Equations

Equations Browser Defines

Depends

Inc v Type Equation Variable

~ | Variable

1 initial (assignment)
initial ~ (assignmen
initial (assignment)
initial _(assignment) der(x) =y

regular (assignment)
regular (assignment) der(x) =y

So AN

L)(

Equation Operations

Operations

tsolved:

original: =i x> 0 then -1 else

=ifx>0.0 then-1.0 else 1.0

> Flattened: z = if x > 0.0 then -1.0 else 1.0;

/home/marsj/trunktestsuite/openmodelica
1 within ;
2 package Debugging “Test
cases for debugging of
declarative models”

4 package Chattering "Models
with chattering behaviour”
5 model ChatteringEventsl
6 “Exhibits chattering

after t = 0.5, with

generated events”

Real x(star

fixed=true);

8 Real y;

9 Real z;

10 equation

1 z=if x> 0 then -1
else 1;

2 y = 2%

13 der(x)

14 annotation
(Documentation (info="<html>

15 <p>After t = 0.5, chattering
takes place, due to the
discontinuity in the right
hand side of the first
equation.</p>

16 <p>Chattering can be
detected because lots of
tightly spaced events are
generated. The feedback to
the user should allow to
identify the equation from
which the zero crossing
function that generates the
events originates.</p>

17 </htal>"),
experiment (StopTime=1));

18 end ChatteringEventsl;

19

20 model ChatteringEvents2

21 “Exhibits chattering
after t = 0.422, with
nenerated eventst =

_images/mdt-create-class.png
New Modelica Class.

Modelica Class

Create a new Modelica class.

Source folder: [PPCO70/Core | [Browse.|

Name: (AL |

Type: block

Modifers:

include iitial equation block
[lis partial class
[have external b

_images/omedit_splashscreen.png

_images/mdt-debugger-config-1.png
& Modelica SDK
Fle Edt Navgate Search Project Run FeldAssst Windon Heb

- Ble-0-2-|8|2|G-[8]@]F -5 -me-0-

PRSP 77,1 10.oevcl

7% 209 pantrans

77,308 panded

Bl ooone- I
am
& extermalToos Lt 7
77,505 advenced

[Functons.mo
Manmo TH80%. modsssiantuotype
Typesmo 7,7 04a_sssanthotype
Proect | 9% 803 assignment

Functons.c 22001 experiment

Functons.h
02 et

Functons.o
B Functons.sz | pebughs »

~hia Organize Favories,

vanh

B main.o
Vanz

Lo Wakemk

o wskefe

B respvE txt

B,

< >

BF outine 33 =0

i outine s ot aveiabe robiens [ool 23 ookmars | Progress

<terminated> OVDeu-MINGW [Progran] C: OMDevtooksimsysbnimake.exe

compiling/linking in debug mode wich LISRMI=rwl g and RMLARGS= -fdebug

1 /bin/zmie -3 -

_images/mdt-debugger-perspective.png
Fie £t Rl o Sewdh s An Fedis a1
ci- ole e -$-0-8-%- 0|75 |99

R

B oms 11 PR W YT

5720 o e 5]

o1 st o Devserent T 067

_images/omnotebook-drmodelica-ch9.png
MNotebook: drmodel
Fle Edt Col Fomat Insert Window Help

onb.

=lalx]|

Algorithms and Functions
Algorithms

In Modelica, algorithmic statements can only occur within Algorithm Sections (p. 285).
starting with the keyword algorithm. Simple Assignment Statements (p. 287) is the
most common kind of statements in algorithm sections. There is a special form of
assigument statement that is only used when the right hand side contains a call to a

Function with Mulfiple Results (p. 267).

The for-Statement (also called For-loop) is a convenient way of expressing iteration (p.
288). When using the For-loop for iferation we must be able o express the range of
values over which the iteration variable should iterate in a closed form as an iteration
expression. For cases where this is not feasible there is also a While-loop iteration
construct in Modelica (p. 200). For conditional expressions the if-Statement (p. 202) is
used. When-Statements (p. 293) are used to express actions at event instants and are
closely related to when-equations. The Reinit (p. 296) statement can be used in
when-statements to define new values for continuous-time state variables of a model at
an event.

The Assert (p. 208) statement provides a convenient means for specifying checks on
model validity within a model.
of Terminate (p. 298) s to give more appropriate stopping

The most common usa;
criteria for terminating a simulation than a fixed point in time.

Exercises

Exercise 1
Exel

Exel
Exer
Exel

Functions

The body of a Modelica function is a kind of algorithm section that contains procedural
algorithmic code to be executed when the function is Called (p. 300). Since a function is

a restricted and enhanced kind of class_ it is nossible to inherit an existing finction
Ready

_images/mdt-create-package.png
New Modelica Package
Modelica Package ¢
Create a new Modelica package.

Source folder: [PPCO70 | [Browse.|

[core]

[This package contains the core stuf |

[Jis encapsulated package

_images/omedit-documentation-browser.png
Documentation Browser [=]
Prevous) [Next
Modelica -

Modelica Standard Library - Version 3.2.1 (Build 3)
Information

Package Modelica® is 2 standardized and free packags that iz devaloped togathr vith the Modalica® languags from the Modelica
Association, ses hitps:)/umiModslica.ora. 1t i< alsa called Modelica Standard Library. It provides model components in many.
domains that are based on standardized interface definitions. Some typical examples ara shown in the next figure:

T subo-0 o

i Y S %
T = EE

For an introduction, have especially 3 look at:

Overview providss an overvisw of the Modlica Standard Library insids the User's Guids.
Feleass lotes summarizes the changes of new versions of this package.

Contac lists the contributors of the Modslica Standard Library.

The Examples packages in the various libraries, demonsirate hov to use the components of the corresponding sublibrary.

This vrsion of the Modslica Standard Library consists of

1360 models and blocks, and
2 1280 functions

that are directly usable (= number of public, non-partial classes). It s fully compliant to Modslica Specification Version 3.2 Revision 2
2nd it haz baen tasted vith Modalica tools fram different vendors.

Licensed by the Modelica Association under the Modelica License 2

Copyright © 1998-2013, ABB, AIT, T. Badrich, DLR, Dassault Systémes A8, Fraunhofer, A. Haumer, ITL, C. Kral, Modslon, TU

_images/emscripten-model.png
5 v

A=afisY

o - o v Tocie @0 XN O

" xo

‘Openhodelica simulation example
Modelca Mecharics MtBody Examples.Systers RobolR3 ulRobot

Comments

_images/omedit-algorithmic-debugger.png
6 ot torinic Do N ==

Simulation..Function 1 5
Simulation..[Equations 90
symbolic_intilization
initalzation

initializeModel

Cfusers/...iModel.mo
Ci/users/a...el O6inzc

Debug View

StockFramessrowser 8 x| Bearonstonr 8 x 8 x
DB [E S e[) st e Type g ol

Function Line File +|| ® 5 C/Users..ByTwo.mo Real 1

=P getValueMultipliedByTwo 5 C:/users/...dbytwo.mo Real 5.11434..23e-295

C:Users/adeas31/Desktop/oetialucMutpledByTwo.mo.

* function getValueMultipliedByTwo
input Real inValue;
output Real outValue;
algorichm
5 outValue := invValue *
 end getValueMultipliedByTwo:

@ 8 x Ouputronser ax|:
Todaaevaiuane 2 &

rmreasion (gaw

e o o

_images/mdt-debugger-start-2.png
Flo Edt

-

Run Fiskdassist

Novigate Search Project

ol ls-0-a-]

Window Help

ol

1 Modelcs Projects 52

& 01_experiment

1 02a_exp1

B 02b_exp2.

1 03_assignment

T 04a_sssigntwotype
B 04_modassigntuotype
3 05_advanced

123 05_OMCAndCorba
& 07_pam

1 08_pamded

& 09_pamtrans

@ 10_petrol

B doaumentation
=3

outine 5 -

Loy gy

5 //impors Types;
4 impore Tunevions;

fanction main
input 1istes
& algorithm

o>

Lo | maschcontine szg

1 | “ase nserii

12| teem

Lo inmeger 1, m

s seeing ser, nsens
o euacion

This kind of launch s configured to open the Debug perspective nhen it
suspencs.

e | eeeniar
17 | prine (vracceriar o NP

B b fo ey This Debug perspective i designed to support applcaton debuggng, 1t
- i incorporates views for displaying the debug stack, varizbles and breakpoint
20 2 management.

= ceio D0 you want to open this perspective now?

s prins("\nCalling %

21 princ("\nCalling 2

T~ Remember my decision

B & Man
F mainfist<String> arc)
© import Functons;

probiems | E console 22

Bookmar|

(01 experiment [Modslca Developement

_images/omedit-plotting-perspective.png
(OMEdit - OpenModelica Connection Editor - [Plot : 1]

&\
o
Ie‘
Io\
/
8
[
(]
=
]
m

Lbraries Browser 8 X/ [200m| Pen | AutoScale | FitinView | Save Print = Grd Detaed Grid| | Variables Erowser 8 x

[eotdeses 1 &

emfphi [rad]

|

-0.12

0.4

0 02 04 06

[Frdveritles | &

X:-11199 ¥:26.17

_images/omedit-add-breakpoint.png
& OMEdit - OpenModelica Connection Editor - [Simu

i oA [E[G] | writeable | Model | Text view | C:fusers/adeas31/..imulationiodel.mo

model SimulacionModel
Real x(start = 1);
Real y(start = 1);

algorichm
x etValueMuleipliedByTuo (x) :
v 3

end SimulacionModel;

X968 110083 | G Wekome | of Modeling | &5 Pltting

_images/modelica3d.png
e CTRL or SHIFT plus right-click to pull menu

Modelica3D 2012

_images/omedit-variables-browser.png
Variables Browser & X
o Vbl [
] Case ensitve Regular Expression S

_images/casadi-state.png
1.0

0.8

0.6

0.4

0.2

0. %

State

0.2

0.4

0.6

0.8

1.0

_images/omedit-user-defined-shapes.png
Rectangle Tool Text Tool

N/

C lneTosl_ D +—"0BOEN —»C_sitmapTool

/ N\

Polygon Tool Ellipse Tool

_images/omedit-libraries-browser.png
(OMEdit - OpenModelica Connection Editor =

Recent Files

@ C/Useryadeas3i/Desktop/EigenTes

Latest News

&) September 8, 2015: OpenModelica 1.9.3 released

2N

® UePVvOOM

W

View Class.
View Documentation

[

10,2015 SV 2015 registration open
16,2015 New version scheme or ightly builds
13,2015 OpenModelica migrted from Subversion to
kb 17, 2015: OpenModelica 192 reessed

ary 0, 2015: Openodelica 192 BetaT eleased

vam OpenModelica Annual Workshop 2015

ram OpenModelica Annual Workshop 2016
>

"

_images/mdt-disable-automatic-build.png
® Modelica - Eclipse

File Edit Nay Run Wing

£

» @ BouncingBall.mo

» B MutiBall mo

¥ il vanDerPol mo
B project

» B Libraries

» @f> OpenModelica [OpenModelice

_images/math/e3a3235b7b843dafc94e1ff989d381d9e50e1b0e.png
stoplime — start lume
S T umberOflntervals

_images/profiling-setup.png
General | Output | Simulation Flags

Model Setup File (Optional): [Browse... |
Initialization Method (Optional): (g
Optimization Method (Optional): (S
Equation System Initialization File (Optional): [Browse... |
Equation System Initialization Time (Optional):

Clock (Optional): (B

Linear Solver (Optional): (2

Non Linear Solver (Optional): [-1
none

Linearization Time (Optional): B

Output Variables (Optional): el

Profling enable performance measurement) |1

[J cpuTime
& Enable All Warnings

() save simulation settings inside model ([Simulate)] | cancel

_images/math/ae6d6ff16675b5900c948d139c9abf9c3f1bf6e6.png
y=~0Cr+ Du

_images/math/00df3a0404500bb8fb0cf94dde2819c99c8153fa.png
9"y o™
WJr +%y:buaT:+ +b7..71%+bmu

_images/math/aac96cacc88657e713274ecf5efcbf2978824a47.png
+ a1y + ay

_images/math/b05ce54e136732bf75c5c4dc6c6ed93c1fba26b7.png

_images/omnotebook-theory-kalman.png
File

Edit Cell Format Insert Window Help
N-EH | = » @ ClaQ =L v @

1 Kalman Filter

Often we don't have access to the internal states of a system and can only measure the outputs of the system and
have to reconstruct the state of the system based on these measurements. This is normally done with an observer.
The idea with an observer is that we feedback the difference of the measured output with the estimated output. If
the estiamtion is correct then the difference should be zero.

Another difficulty is that the measured quantities often contain disturbance, i.e. noise.

{§=A2+Bu+e
P=Cx+v

Here are e denoting a disturbance in the input signal and v is a measurement error. The quality of the estimate can
be evaluated by the difference

K(@(2) — c2(6) — Du(t))
By using this quantity as feedback we obtain the observer
% = AR() + Bu(®) + K(y(¢) — C2(®) — Du(®))

Now form the error as

The differential error is

_images/math/3faac705f67df0fdbdf9e986952896649711eac2.png
ty = Cr+ Du

_images/omnotebook-drmodelica.png
I oMNotebook: DrModelica.onb*

Fie.

Edt Col Format Insert Window Help

Version 2006-04-11

DrModelic amedstica edition

Copyright. (c) Linksping University, PELAB, 2003-2006, Wiley-IEEE Press, Modelica Association.
Contact: OpenModelica@ida linse, OpenModelica Project web site

www.ida v sefprojects/OpendModelica

Book web page: www.matheore. com/diModelica; Book anthor: Peter Fritzson(@ida ln.se

Dibadelica Authors: (2003 version) Susanna Monemar, EvaLena Lengaist Sandelin, Peter Fritzson, Peter Bunus
Dibadelica Authors: (2005 and later updates): Peter Fritzson

This DrModelica notebook has been develeped to fucilitate learning the Modelica language as well as
providing an infroduction o object-oriented modeling and simulation. It is based on and is
supplementary material to the Modslica book: Peter Fritzson: “Principles of Object-Oriented
Modeling and Simulation with Modslica" (2004), 940 pages, Wiley-IEEE Press, ISBN 0-471-471631.
All of the examples and exercises in DrModelica and the page references are from that book. Most of
the text in DrModelica is also based on that book.

Detailed Copyright and Acknowledgment Information

Getting Started Using OMNotebook

OpenModelica commands

Berkeley license OpenModelica

A Quick Tour of Modelica

Getting Started - First Basic Examples

printing the string "Hello World" (p. 19 in Peter Fritzson's book). Since Modelica is an equation based
language, printing a string does not make much sence. Instead, our Hello World Modelica program solves
a trivial differential equation. The second example shows how you can write a model that solves
Differential Algebraic Equation System (p. 19). In the Van der Pol (p. 22) example declaration as well as

initalization and prefix usage are shown in a sightly more complicated way.

Classes and Instances

In Modelica objects are created impliciy just by Declaring Instances of Classes (p. 26). Almost anything
in Modelica s a class, but there are some keywords for specific use of the class concept, called

There is a long tradition that the first sample program in any computer language is a trivial program l

_images/math/d43d05e2b6c57953b33f708da3527a5f32dfbe9c.png

_images/math/c8c7a1f6f0063800b00e121576ec57b980969de8.png

_images/omedit-mainwindow-browsers.png
A

(OMEdit - OpenModelica Connection Editor

Fle Edit View Simulation

braresBrowser 5 x
[eotdenes 1 &

Libraries

» [B] opentodetcs

ModelicaServices

» Il complex
73 Modeica

I R —

Export Tools Help

< Previous

© Next

Browser

[Frdveritles | &

8 x

Variables

Value

8 x

X 10862 Y:-16.9

[woame

Amodeing | B plottng |

_images/mdt-build-project.png
* Modelica - Eclipse

File Edit Navigate Search Project Run Window Help

Close Project

B Buid Al
Buid Project
Build Working Set
Clean

Build Automatically

Properties

_images/mdt-debugger-config-2.png
delica - HelloWorld/Script.mos - Edlipse SDK =101 %]

Fle Edt Nagas Sewch Proct Run Window Felp
03~ & [$-0-@- |-~

5 Modelica Projects £ = 0 HeloWorldmo
|

G v 0+ | Corectneiaton || ukdproct 5 %5 oens »

& 00_sim
i oteq Create. manage. and run configurations

E1022 ¢/ Run or Debug a MetaModelica program

Sope
035y
£ 04 as: g Name: [New_configuraton
Dot | Fome (8 sore]] Comren | 8 o]
= Clc++ Application
g Z:’:dw % C//E++ ﬁm to Appication penModelca\trunk\buid binlome.exe Workspace... | Fie System...
£ 08.par [E] C/c++ Postmortem Debugger +\Users \adeas31norkspaceMDT HelloWorld Workspace... | Fie System...
B 09_par [2] cfc++Remote Appication GDB path: ‘${env_var:OMDEV} tools ymingw bin\gcb. exe. Workspace... | Fie System...
B 10 par | & DSFPDA Appication
T t1pe | ~© Ecipse Applcation
2 Helow {] GDB Hardware Debugging I [Debug C source fles:
[tel| -~ Java Appet
or | (] Java Aopication Avguments:
@ he Ju Junit SCRIPT.mos|
T e e
[@ He B Launch Group
[rl| 8 Modeica Developement Tookng (4oT)
te|| £ Modelca Developement Tooling (MDT) GDB
Bre 77 MO Debusger Test .
7% New_configuration
7 Stndrd ocelca Test =9
4 05Gi Framework
@ push Down Automata
17, Remote Java Application
B Snapshot Album
) REvart
Filter matched 21 of 21 items L2
®

0 Wiitable: Insert FTens

_images/mdt-debugger-start-1.png
R e e o
P £t ovgwe Sevch o Run Fadusst linion Heb

"0-Q-|0|#]|G-8 |9 -

& e
St Browe
oo

EEL T

[8-05

scserss)

8 Overviodelcn Compier 1.4.35 Orive.

_images/mdt-info-on-hover.png
=4

& 32va | Modelca

B Bouncinggallmo |)

1-model MultiBall

2
3 er

BouncingBall balls[3];

model BouncingBall "A simple bouncing ball”
parameter Real e = 0.7 "coefficient of restitution”;
parameter Real g = 9.81 "gravity acceleration”;
Real h(start = 1) “height of ball";
Real v "velocity of ball";
Boolean flying(start = true) “true, if ball is flying";
Boolean impact;
Real v_new;
Integer foo;

equation
impact = h <= 0.0;

Press F21to focus.

_images/mdt-debugger-switch-perspective.png
£ A s S P P o e
£330~ 0u- Q= |5)@ # |5 | @)@ B -5 o2 o - comeiernn

(oems i PR O I Uhdale) (o

& T8 0 owmer s Sepeer o 0571 =

Siffvor T
tr— RS
Mannon o 7,517
3 oo s eatedscs s marinn e a3 P 0] e

CEIIF I B i)

_images/omedit-welcome.png
A
Fie

@B E

UbrariesBrowser 5 x
[eotdeses 1 &

OpenModelica

Lbrares
*[B]
3
0
4 |
44

Complex
Modelica

(OMEdit - OpenModelica Connection Editor =
Edit View Smulation FM| Export Tools Help

EBeee \oHOTH -5~

OMEdit - OpenModelica Connection Editor

Recent Files

[crvseraaeosi/pestaop/Egentest.
& C/Users/adeas1/Desktop/getlueh
& C/Users/adeas1/Desktop/Simulaton
& C/Users/adeas3/Desktop/Compone
& C/OpenModelca/build/lib/omibrr

& C/Opentodelca/OMCompiler/Ban

Latest News
September 8, 2015: OpenModelica 1.9.3 released
= a
& July 10, 2015:SIMS 201 registraton open
June 18, 2015: New version scheme for nightly builds
ghtly
& May 13, 2015: OpenModelca migrated rom Subversion to
& March 17, 2015: OpenModelica 192 relessed
February 02, 2015: OpenModelica 1.9.2 Betal released
¥ a
& Program OpenModelica Annual Workshop 2015

& Program OpenModelica Annual Workshop 2016

< >

For more detais visit our website waw.openmodelca.orq

_images/omedit-modeling-perspective.png
A 'OMEdit - OpenModelica Connection Editor -8
File Edit View Simulation FMI Export Tools Help

?blH Hoee \OHNOTH -E-H- 9~ ¢~
]

& x| A DCvotor
Search Classes: © | [AS @ |witeble [Mose pisgram view [pcvotor Line: 1, Col: 0 | (5
Liraries

» [] openModelica

+ () Modeesserices
» [complex
'+ 72) Moddics
» @ WoddicaReterence

X 10862 Y1690 | @ Wekome | of Modeing | B3 Plottng |

_images/mdt-debugger-breakpoint.png
elslp-0-a-]

- | consarsensin

BIPIE- I8 |@ il G
=

Double click on the

ruler to set/delete
breakpoints

= e

_images/omoptim-window-regions.png
0
1
2
3
H
s
6
7
s
9

Lowogerlec (Clooaumrts s et Sorh s drcmants eSO skOmctaloorca .
C:fDocuments and SettngsfSayshiMes documents(Mnes/ModOptTestOsycakalosycakamo

oot e e osamnts st Saaean b

Problem “Optinization” sddedto

_images/mdt-debugger-overview.png
Fie Edt Nevigate Search Project Run Window Hep.

=101]

Jcs- | |3-0-a-|®5- 5[% Debug >
35 Debug 22) FEIEEE G
778 MDT GDB [Modelca Developement Tooing (4OT) CDE] = =
i mor @ cache record<Env.Cache.CACHE> record<Env.Cache.CACHE
of® Main Thread (stepping) @ e record<SCode Restriction.R... record<SCode Restriction.
instClassdef2 at Inst.mo: 3494 % pre record<Prefix.PrefixNOPRE> record<PrefixPrefix NOPR
nstClassdef at Inst mo: 3076 ERY™ list<record<SCode Equaio... <2 tems>
nstClassin_dspatch t Inst.mo:2140 Eeq record<SCode Equation EQ... record<SCode Equation £
instClassln at Inst.mo: 1813 B @ eEquation record<SCode EEquation ... _record<SCode EEquation.t
instClass at Inst.mo: 1238 B @ epleft record<AbsynExp.CREF> record<Absyn.Exp.CREF>
B @ componentRe record<Absyn.Component... record<Absyn.Componen
 name String L
@ subscripts list<Any> <0 item>
5 % ophight record<AbsynExp.CALL> _ record<Absyn Exp.CALL>
@ function_ _ record<Absyn.Component... record<Absyn.Componen
@ functionArgs record<Absyn FunctionArg... record<Absyn FunctionAr
normalAlgorithmlst = alg, initialAlgorithml.al % comment Option<Any> NONEQ
re,vis,_,_,inst_ dins, impl,callscope, graph, csets, instSingl & info record<AbsynInfoINFO> record<Absyninfo NFO>.
cmnion T aem record<SCode Equation EQ... record<SCode Equation £
false = Util.gecStatefulBoolean (stopInst)s 5 & efquation record<SCode EEquation.E.. | record<SCode EEquation.t
UnitParserExt. checkpoint ()7 @ epleft record<AbsynExp.CREF> record<AbsynExp.CREF> _|
//Debug.traceln (" Instclassdef for: " +& PrefixUtil.print @ epRight record<Absyn.Exp.CALL> record<Absyn.Exp.CALL>
ci_statel = ClassInf.trans(ci_state, ClassInf.NEWDEE()): @ comment Option<Any> NONEQ
13 = extractConstantPlusDeps (els, instSingleCret, (), class E & info record<AbsynInfoINFO> | record<Absyn.InfoINFO>
@ fileName _ String "Absmo”
// split elements % lineNumberst Integer 12
(caefelts, extendsclasselts, extendselts, compelts) = Splitk @ columnNumt Integer 3
@ lineNumberEr Integer o)
extendselts = SCodeUtil.addRedeclareAsElementsToExtends (e @ columnNum Integer u
B B @ buidTimes _ record<Absyn TimeStamp... record<Absyn TimeStamp
@ lastBuilaT Real)
= @ lstEditTin Real 3
B Console 33\ 1 Tasks| £ Problems | 3 Executables| Ollme list<record<SCode Flement... <2 tems>
IMOT GDB [Modelca Developement Toolng (MDT) GDE] C:\Openifodslca frurk\testuitebootstrappingmain.exe | £ & record< Classin. StateMOD..._ record<Classinf State.MOL
® % I EE R T tecord<AbsynPathIDENT> _ record<Absyn.Path.DENT
= @ name String "Abs"
@ csets record<Connect.Sets.SETS> record<Connect.Sets.SETS.
ol @ nitlg list<Any> <0 tem> .
] _>l_I KT _ |) _>l_I
[| virtatie: | mnsert | 34527 | openvodeicac...c0ionine |

_images/omnotebook-helloworld.png
File Edit Cell Format Inset Window Help

cHh s ey CQAEB=gRvyvEiToO

First Basic Class

1 HelloWorld

The program contains a declaration of a class called He 1 1oWoz 1 with two fields and one equation. The first field
is the variable x which i initalized to a start value 2 at the time when the simulation starts. The second field s the
variable a, which is a constant that i iniiaized to 2 at the beginning of the simulation. Such a constantis prefixed by
the keyword parameter in order to indicate that it is constant during simulation but is a model parameter that can be
changed between sinmiations.

The Modclica program solves a trivial differential equation: %' = ~ a * x. The variable x s a state variable
that can change value over time. The x 'is the time derivative of x.

class HelloWorld
Real x(start = 1,fixed=true);
parameter Real a = 1;

equation

der(x) = - a * x;
end HelloWorld;
{Heloviorld)

2 Simulation of HelloWorld

simulate(HelloWorld, startTime=0, stopTime=3)

record SmulationResult
resutFie = HeloWorld_res.mat’,

messages
end SmilatonResut;
Plot the results
plot(x)
[done]
Zoom| Pan AutoScale FitinView Save Print Grid |DetaledGrid | NoGrid [logX [Jlog¥ Setup
Plot by OpenModelica
1
08
06
04
02
] —
0]
T T T T T T T T |
0 os 1 15 2 25 3 35 4
time

_images/mdt-syntax-checking.png
Modelica - ALU.mo - Eclipse SDI o/x
File Edit Navigate Search Project SWT Hierarchy Run Window Help

jo-ie|eeela-|s o [Modeica] >

% v o

o 33 = 0 (URINED, =6

> @ppcoro block ALY (s

ore :
equation

[ALU.mo |

[package.mo || @ imital. equation

roject end ALU; =

> EhSystem lbrary || — \»1
Console. ng Problems 52 » =8
2 errors, 0 warings, 0 infos
Description Resource | In Folder Location

© unexpectedtoken ALU.mo PPCO70/Core line 5
© unexpectedtoken ALU.mo PPCO70/Core line 5

G I 170 |GT I I D)

_images/Add.png

_images/omedit-debug-config.png
@ OMEdit-Debug Configurations

[* %

@ New_configurationl Name: [New_configuration1
Program: I [romse...
Working Directory: [Bromse.
(DB Path: [C:/0MDev tookfmingwbinjgdb.exe | _Browse...

_static/file.png

_static/minus.png

_images/mdt-console.png
Model

Project Run Wind

Moy [1 E
B &ava [© Modelica|
(il Modelica Projects = O [Bouncinggallmo =g
& » [1°model BouncingBall
8% 2 parameter Real e=0.7 "coefficient of restitution”;
> & demo 3 parameter Real g=0.81 "gravity acceleration";
4 Real n(start=1) "height of ball";
5 Real v "velocity of ball’;
5 Boolean flying(start=true) “true, if ball is flying";
7 Boolean impact;
8 Real v_new;
9 Integer foo;
10
11 equation
12 impact = h <= 6.0;
13 foo = if impact then 1 else 2;
14 der(v) = if flying then -g else 0;
15 der(n) = v;
15
17 when {n <= 0.6 and v <= 0.0, impact} then
18 V_new = 1f edge(impact) then -e*pre(v) else ©;
19 lying = v_new > ©;
20 reinit(v, v_new);
21 end when;
2= Outline 52 =8 2

An outiine is not available.

[22 Problems B console 2 [l Bookmarks =g Progress Cv =8

No consoles to display at this time. 1 Java Stack Trace Console

m2 2 Maven Console
Bscvs
4 New Console View

_images/omnotebook-mathematical-modeling-with-characteristic-equation.png
File Edit Cell Format Insert Window Help

ol W | = S Clx|=

Mathematical Modeling

In most systems the relation between the inputs and outputs can be approximated by a linear differential
equation.

d® dnt dam™ d
ZEVO + 0 (O 4t @3 (0) = o S ot B O+ u(e)
where the coefficients , and b, are constants. The above differential equation has a homogeneous and a
particular solution:
Y=YtV
‘The homogeneous solution where u is set to zero has the form:

Y= Crett b ot Creint

‘where

e ety +a,=0

1 Example

Consider the following model.
d? dt
F027® +agay® tamy© =1

Examine the behavior of the system for different values on a, and a,
1.1 Characteristic Equation with Negative Real Roots, A=-1,-2

model negRoots
Real y;
Real der_y;
parameter Real al
parameter Real a2
equation
der_y = der(y);
der(der_y) + al*der_y + a2y = 1;
end negRoots;

{negRoots}
simulate(neaRoots. stonTime=10)

_images/mdt-build-log.png
2] Problems B Console %% [lBookmarks =g Progre = g

<terminated> make [Program] /usr/bin/make.
/usr/bin/make -f Makefile --no-print-directory -C /home/marsj/OpenModelica/OMCompiler/
make[5]: Nothing to be done for 'all'.

/usr/bin/make -T Makefile --no-print-directory -C /home/marsj/OpenModelica/OMCompiler/
make[5]: Nothing to be done for 'all'.

/usr/bin/make -T Makefile Makefile.sources

make[4]: 'Makefile.sources' is up to date.

/usr/bin/make -f Makefile interfaces INCLUDESOURCES=1

/home/mars j /0penModelica/build/bin/ome +n=1 build/Absyn.Stamp.mo.mos

/usr/bin/make -T Makefile Makefile.depends INCLUDESOURCES=1

make[4]: 'Makefile.depends' is up to date.

/usr/bin/make -f Makefile generate-files INCLUDESOURCES=1 INCLUDEDEPENDS=1

/home/mars j/0penModelica/build/bin/ome +n=1 build/Absyn.stamp.mos

/usr/bin/make -T Makefile --no-print-directory install INCLUDESOURCES=1

clang -g -02 -fno-stack-protector -fPIC -I"/home/marsj/Opentodelica/build/include/omc/
clang -shared -Wl,-z,origin -Wl,-rpath, 'SORIGIN/../1ib/x86_64-1inux-gnu/omc’ -Wl,-rpat
test ! ".so" = ".dylib" || install_name_tool -id @rpath/libOpenModelicaCompiler.dylib
clang build/_main.o -Wl,-Z,origin -Wl,-rpath, 'SORIGIN/../1ib/x86_64-1inux-gnu/omc’ -Wl
cp -a build/OpenModelicaScriptingAPI.h /home/mars]/Opentodelica/build/include/ome/scri
cp -a build/omc /home/mars]/OpenModelica/build/bin/

_images/omnotebook-drmodelica-ex1-answer.png
~=lolx|

Fle Edt Col Fomat Insert Window Help

Answer

Sum

function Sum
input Reall:] x;
output Real sum;
algorithm
for i in 1:

ize (x,1) loop
sum + x[il;

end for;
end Sun;

Average

function Average

input Reall:] x;

output Real average;
protected

Real sum;

algorithm

average := Sum(x) / size(x,1);
end Average;

LargestAverage

class LargestAverage
parameter Integer(:] AL = (1, Z, 3, 4, 5};
parameter Integer[:] AZ = (7, 8, 9};
Real averageAl, averageAZ;
Boolean AllLargest(start = false);

algorithm
averageAl := Average(al);
averageAZ := Average(AZ);
if averageAl > averageAZ then
AlLargest := true;
else
AlLargest := false;
end if;

end Largestaverage;

Simulation of LargestAverage

simulate(Largesthverage);

When we look at the values in the variables we see that A2 has the largest average (8) and therefore the
variable A1Largestis false (= 0). =

Ready 7

_images/omnotebook-drmodelica-ex1.png
|OMNotebook: Exercise1.nb.

Fle Edt Col Fomat Insert Window Help

~=lolx|

Exercise 1

Jsing Algorithm Sections

Wi a finction, Sum, which caleulates the sum of mumbers, in an array of arbilrary size.

Wie a finction, Ave rage, which calculates the average of numbers, in an array of arbitrary size. Average
should use make a function call fo Sum.

Wie a class, LargestAverage, that has two arrays and calculates the average of each of them. Then it
compares the averages and sefs a variable to true if the first array s larger than the second and otherwise false.

Answer

Ready

_images/omnotebook-step-pulse.png
File Edit Cell Format Insert Window Help

oM~ |[=|® » [CHE ||« | @
1 Example
Consider a tank system with the following transfer function
1
G(S)ZH%
T

‘What is the weight function? Can you plot the step response of the tank?
1.1 Tank Transfer Function

loadModel (Modelica.Blocks)

model Tank
Modelica.Blocks.Continuous. TransferFunction G(b={1/A},
a={1,1/T},y_start(fixed=true)=1/A);
Modelica.Blocks.Continuous.TransferFunction GStep(b={1/A}, a={1,1/T});
parameter Real T = 15;
parameter Real A = 5;
Real u = if (time > O or time<d) then © else Modelica.Constants.inf;
Real uStep = if (time > O or time<o) then 1 else 0;
equation
G.u = if time > O then 0 else 1e10;
GStep.u = uStep;
end Tank;

{Tank}
simulate(Tank, startTime=-1e-10, number0fInterval.

plot({G.y,GStep.y})
true

Plot by OpenModelica

14
12
1 oGy
08
06
04 @Gstepy

02

0 2 2 3) 10 -
Ready Lns,Coll

_images/mdt-code-completion.png
'S Modelica - DCEngine.mo - Eclipse SDK

Fle Edt Refactor Nevigate Search Run Project Window Help

oES
1 Modelca Projects 57

= 2 EngneSimulation
%[DCEngine.mo
[project
= A Standard Library
= Modslca
£ Blocks
£ Constants
£ Electrical
£ Ieons
£ Math

R

b Q- | e

atan
atanz
baselcont,

=0

DCEngine.mo £

“model DCEngine
import. HoeLtca.|

equation

end DCEngine;

i Blocks

3 Constants
3 Electrical
i Icons

i Math

i Mechanics
8 Slunits
i Thermal

_static/down-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment.png

_static/up-pressed.png

_static/down.png

_images/math/c00c9733095d54f1e9f96d9bb6d276177ff173c0.png
miy = u — ay — mq* sin(f)

_static/plus.png

_static/comment-close.png

_static/up.png

_images/omnotebook-feedback.png
File Edit Cell Format Insert Window Help

0:4N'H‘E‘ o Clsl=

=

[vlo

1

11

Feedback

One important method in designing control system is a feedback loop. It can be used to eliminate the
influence of noise or to decrease the output error.

Example

Assume that we want to control the speed of a car on the road. The car has a mass m, velocity y, and
aerodynamic coefficient . The 0 i the road slope, which in this case can be regarded as noise.

my = u—ay —mgsin(9)

If we want a reference speed of 20 ms for a car with m=1500 kg, a=250 Ns/m, 8=0 rad, how high should
the amplification factor be in the regulator?
Try with u = 250*r.

it =meaniB)=0

Open Loop
loadModel (Modelica)

true

model noFeedback
import SI = Modelica.STunits;

SI.Velocity y; // output signal without
noise, theta = 0 -> v(t) = 0
QT Ualarity uNnica: 77 outnut cinnal with noica

\ [

_images/bb-japanese.png
08

06

0.4

02

0.0

Special

Plot by OpenModelica

0.0

0.5

1.0

1.5

2.0

2.