Overview of the Modelica-based System Dynamics Library

Prof. Dr. Rodrigo Castro
rcastro@dc.uba.ar
This lecture borrows several pieces of content from presentations on global modeling and the Modelica-based library for System Dynamics kindly made available by Prof. Dr. François E. Cellier (emeritus), ETH Zurich.
The System Dynamics methodology

- Introduced in the late sixties by J.W. Forrester
 - A tool for visually organizing partial knowledge about models of poorly understood systems in phenomenological sciences
 - Biology, Ecology, Macro economy, Sociology, etc.
- Low-level modeling paradigm: “Stocks and Flows”
 - **Stock** elements connected by material or non-material (e.g., information) **Flows**
 - **Flows** regulated by input-output **Rates**
 - A simplified way of dealing with differential equations
 - Shuns traditional calculus
- In this talk we shall learn about an **SD library** built with the **Modelica language** for equation-based modeling, and why it can be of help
The System Dynamics methodology

- Physical systems call for **deductive modeling**
 - Well established *meta laws exist*. These are preserved:
 - across a wide range of spatio-temporal scales
 - under system composition/decomposition procedures
 - Very reliably modeled
 - *Example: a car* *(mechanical-electro-computerized system)*

- Ill-defined systems call for **inductive modeling**
 - Much more complex to model in a reliable way
 - Very weak, narrowly applicable, or totally *inexistent meta laws*
 - Difficult decomposability into subsystems (densely connected)
 - Submodel parameters are influenced by many system’s variables *in similar orders of magnitude*
 - *Example: an ecosystem* *(bio-geo-chemical system)*

- System Dynamics
 - Applicable in both deductive and inductive modeling
 - Useful only when used carefully (avoid to incur in a “modern reductionism”)
The System Dynamics methodology

- Explore dynamic behavior of systems lacking universal laws
- Think visually in terms of:
 - Basic system structures as positive and negative feedback loops
 - Patterns of behavior
- Loops forming complex interdependent networks
 - Opposed to simplistic independent unidirectional cause-effect relations
- Also accounts for:
 - Time delays in internal system flows
 - Nonlinear effects
Simple exponential generation/depletion model

Example with two loops: 1 negative, 1 positive

Levels and Rates

Sources and Sinks

- Provided for optical purposes only (System Dynamics modelers are used to them)
 - These models do not represent equations.

E.g.: The Modelica-based SD Library + OpenModelica Tool

Population Dynamics

E.g. The Stella SD-based Tool
Mod-SD: The SystemDynamics library for Modelica

OpenModelica tool’s GUI

SD Library

Levels

Rates

Modelica code (Text View)
Simple exponential generation/depletion model

- Required **model** parameters:
 - Level: initial condition
 - Rates: constant coefficients

- Required **simulation** parameters:
 - Initial and final simulation time
 - Numerical accuracy desired

Required model parameters:

- Level: initial condition
- Rates: constant coefficients

Required simulation parameters:

- Initial and final simulation time
- Numerical accuracy desired

- **Rate of Level change**
 \[\dot{S} = G_R - D_R \]
 \[S(t=0) = x_0 \]

- **Generation Rate**
 \[G_R = k_{GR} \cdot S \]

- **Depletion Rate**
 \[D_R = k_{DR} \cdot S \]

- **Initial Stock** \(x_0 \)
 \[S(t) \]
 \[G_D(t) \]
 \[G_R(t) \]
Mod-SD: Levels

Levels represent the state variables of the System Dynamics modeling methodology.

\[\dot{y} = + \ u_1 - \ u_2 \]
Levels represent the state variables of the System Dynamics modeling methodology.

\[\dot{y} = + u_1 - u_2 \]

- The integration operation is defined in an independent standard block
- It is not required to decide on the time step for the numerical solution
- Model is separated from simulation
Rates define the state derivatives of the System Dynamics modeling methodology.

- No “dynamics” defined in this model
- Only a wiring of information delivered to other components connected to it
Mod-SD: Extended convenience models

Controlling Level

Outputs logical information on whether minimum or maximum thresholds are crossed

Controlled Inflow Rate, with saturation

Saturates at certain lower and upper values, and can switch to a constant if commanded so
Mod-SD: Extended convenience models

Example results
Mod-SD: Extended convenience models

- New advanced/handy basic elements can be designed
 - Relying on the Modelica language and its block-oriented graphical paradigm
- The standard Mod-SD library comes with a bunch of such options
 - Rates
 - Controlled/Saturated Rates
 - Multiplicative Rate with several inputs
 - Additive Rate with several inputs
 - Levels
 - Controlled/Saturated Levels
 - Discrete time Level
 - Reverse time Level
 - Multiple inputs/Multiple outputs Level
 - Interfaces, Auxiliary, Functions
 - Delays
 - Dead Time
 - Smoothers
 - Tabular, Linear and Non Linear Functions
 - Gains, Constants, Multi-input products
A simple World Model with Mod-SD: World2

- 5 Levels
- 10 Rates
- 21 Parameters
- 22 Tabular Functions
A complex World Model with Mod-SD: World3

- 13 “aspects”
- 12+5 Levels
- 26 Rates
- 70 Parameters
- 54 Tabular Functions
A complex World Model with SD: World3

Population

NR Resources

Pollution

Capital

Agriculture
Simple exponential generation/depletion model (again)

“Pure Modelica” code required for our simple growth model

\[
\dot{S} = +GR - DR
\]
\[
S(t=0) = S_0
\]
\[
GR = k_{GR} \cdot S
\]
\[
DR = k_{DR} \cdot S
\]

Much more compact! Exactly the same results

So... why Mod-SD? What do we gain?
The tool-centered approach to System Dynamics

- No separation between GUI, Model and Simulation
- At the very heart of System Dynamics there is a tight bind between the models and the numerical simulation aspects
- Textual model specifications are not standardized
 - Different tools lead to different code
A Modelica-based System Dynamics Library

- System Dynamics is a fairly low-level modeling paradigm
 - Its implementation does not place heavy demands on the modeling software
 - Modelica may be an overkill for dealing with System Dynamics models
 - Levels, Rates and Transformations are the core of System Dynamics
 - Are so simple that their implementation in Modelica requires very little time and effort
- The value of the Mod-SD library is not in its basic models, but rather in the resulting standard and open application codes
- Methodologically it offers a sound bridge between deductive and inductive modeling
 - Combination of System Dynamics models with the vast object-oriented, multi-formalism, cyber-physical modeling capabilities of Modelica
- Sound integrated treatment of heterogeneous socio-technical systems
 - Continuous-time, discrete-time, and discrete-event aspects
A Modelica-based System Dynamics Library

Key issues: scalability, flexibility, modularity, robustness

- For entry level systems we can be well off with almost any tool for SD
- When the complexity of systems grows (dynamics/structure/size) we need scale up safely and flexibly: we need more robust tools
 - A MUST in serious interdisciplinary global modeling. E.g. the MOSES collaboration

Modelica is currently the most advanced technology for equation-based systems modeling

Mod-SD can accommodate flexibly different levels of expertise:

- High level modeling: Graphical reasoning on complex systems (out-of-the-box “usual SD”)
- Low level modeling: New/advanced models, structures (“extended SD”)
- Advanced simulation: performance, optimization, sensitivity analysis, etc.
Conclusions

- Based on the **Modelica ecosystem of technologies**, we can leverage the pre-existing knowledge base of System Dynamics to cope with the requirements of the next generation of global models.

- System dynamics was introduced as a methodology that allows us to formulate and capture partial knowledge about any soft-science application, knowledge that can be refined as more information becomes available.

- Systems dynamics is the most widely used modeling methodology in all of soft sciences. Tens of thousands of scientists have embraced and used this methodology in their modeling endeavors.
Questions

Contact: rcastro@dc.uba.ar
http://dc.uba.ar/People/rcastro