Modelling and Simulation of Innovative Power Generation Systems in OpenModelica: The Case of PreFlexMS

Francesco Casella
(francesco.casella@polimi.it)

Stefano Trabucchi
(stetrab@hotmail.com)
A bit of history

- OpenModelica Workshop 2014: *ThermoPower Library Simulation*
 - ThermoPower library mostly covered
 - Modelica.Media models covered, including IF97
 - Test models and examples working
 - Up to 40X slower than Dymola on non-trivial test cases
A bit of history

• OpenModelica Workshop 2014:
 ThermoPower Library Simulation

 – ThermoPower library mostly covered
 – Modelica.Media models covered, including IF97
 – Test models and examples working
 – Up to 40X slower than Dymola on non-trivial test cases

• OpenModelica Workshop 2015:
 Modelling of Energy Systems with OpenModelica

 – Laid out requirements for use of OMC in energy system modelling
 – Some initial interesting results on cryogenic system simulation
A bit of history

- **OpenModelica Workshop 2014:**
 ThermoPower Library Simulation
 - ThermoPower library mostly covered
 - Modelica.Media models covered, including IF97
 - Test models and examples working
 - Up to 40X slower than Dymola on non-trivial test cases

- **OpenModelica Workshop 2015:**
 Modelling of Energy Systems with OpenModelica
 - Laid out requirements for use of OMC in energy system modelling
 - Some initial interesting results on cryogenic system simulation

Where are we now?
Outline

• The Horizon 2020 PreFlexMS project
• The Plant Model
• Dynamic Controllability Analysis
• Dynamic Simulations
• Sharing the model with 3rd parties
• Outlook and conclusions
Solar Power Generation Systems

Photovoltaic (PV) systems

+ Low and decreasing costs
+ Exploit direct and diffuse radiation
+ Trivial operation and maintenance
Solar Power Generation Systems

Photovoltaic (PV) systems

+ Low and decreasing costs
+ Exploit direct and diffuse radiation
+ Trivial operation and maintenance

- Only produce power when the sun is available
- Battery storage too expensive
Solar Power Generation Systems

Solar-Thermal Systems with Thermal Storage

+ Thermal storage can provide 10 hrs or more of full power production
+ Power production decoupled from solar irradiation
+ Steam power generation technology well-known
Solar Power Generation Systems

Solar-Thermal Systems with Thermal Storage

+ Thermal storage can provide 10 hrs or more of full power production
+ Power production decoupled from solar irradiation
+ Steam power generation technology well-known

- Effective system design requires the use of molten salts as working fluid
- Current designs based on flat subsidized rates (no incentives to flexibility)
Energy Markets and Prices
The PreFlexMS Horizon 2020 Project

Predictable, Flexible solar power generation using Molten Salts

- Predictable
 - Advanced meteo forecast of DNI
 - Market price-based dispatch optimization
 - Exploiting thermal storage (production shifting)
The PreFlexMS Horizon 2020 Project

Predictable, Flexible solar power generation using Molten Salts

• Predictable
 – Advanced meteo forecast of DNI
 – Market price-based dispatch optimization
 – Exploiting thermal storage (production shifting)

• Flexible
 – Fast plant start-up (30 min from standby to full load)
 – Fast load changes (> 10% / min)
The PreFlexMS Horizon 2020 Project

Predictable, Flexible solar power generation using Molten Salts

• Predictable
 – Advanced meteo forecast of DNI
 – Market price-based dispatch optimization
 – Exploiting thermal storage (production shifting)

• Flexible
 – Fast plant start-up (30 min from standby to full load)
 – Fast load changes (> 10% / min)

• Molten Salt
 – Working fluid: 60% NaNO₃ 40% KNO₃ (common fertilizer)
 – Solidifies below 245 °C
The PreFlexMS Horizon 2020 Project

Predictable, Flexible solar power generation using **Molten Salts**

- **Predictable**
 - Advanced meteo forecast of DNI
 - Market price-based dispatch optimization
 - Exploiting thermal storage (production shifting)

- **Flexible**
 - Fast plant start-up (30 min from standby to full load)
 - Fast load changes (> 10% / min)

- **Molten Salt**
 - Working fluid: 60% NaNO$_3$, 40% KNO$_3$ (common fertilizer)
 - Solidifies below 245 °C

Competitive with gas-fired flexible CCPPs
The PreFlexMS Horizon 2020 Project

Predictable, Flexible solar power generation using **Molten Salts**

- Main Industrial Partner: GE (formerly Alstom Power)
- 13 Consortium Partners
- Total Budget: 17.8 M€ costs, 14.3 EU funding
- Duration: 2015-2019
- Experimental demonstration on pilot-scale plant in 2019(?)
Focus of our flexibility study

State of the art:

drum-type steam generator
Focus of our flexibility study

State of the art:
- drum-type steam generator

Innovation:
- once-through steam generator
Challenges and research questions

- First design ever of a once-through steam generator using Molten Salt
- No previous operational experience
- Dynamic behaviour of circulation-type MS plants different
- Dynamic behaviour of gas- or coal-fired once-through boilers different
Challenges and research questions

- First design ever of a once-through steam generator using Molten Salt
- No previous operational experience
- Dynamic behaviour of circulation-type MS plants different
- Dynamic behaviour of gas- or coal-fired once-through boilers different

Q1: What is the dynamic behaviour of this plant?
Q2: Is this plant easy or difficult to control?
Q3: Which control strategies are more appropriate?
Q4: Can we start-up the plant from warm stand-by to full load in 30 mins?
Q5: What is the maximum load change rate we can afford?

Dynamic model required
Modelica model of the PreFlexMS power block – Top view
Simplified model with HP part only – Top view
Once-through steam generator model
Single heat exchanger model
Preheater train model
Main Features of the models

• Full model
 – Number of equations: 9655
 – Number of states: 278

• Simplified HP model
 – Number of equations: 6974
 – Number of states: 207

• Heavy use of Modelica.Media IF97 water/steam medium model

• Highly nonlinear, very stiff

• Some flow rates are zero or near zero in certain time intervals → numerically challenging

• Models initially developed in Dymola in 2015

• Tested and used with OpenModelica since Apr 2016
Activity #1:

Dynamic Response Analysis for Control System Design
Outline of activities

• The model is ran to steady-state and checked against design and off-design operating points
• The model is linearized around steady-state points at different load values
• Transfer functions are computed
• Bode plots of the transfer functions are inspected and checked for nonlinear behaviour @ different loads
• RGA matrix is computed to assess controllability with decentralized PID controllers
• Transmission zeros are computed and checked for non-minimum phase behaviour → bandwidth limitations
• PID controllers are tuned based on the transfer functions
• Advanced centralized linear MPC controllers are designed using the state-space linearized models
• Performance of designed controllers is checked by simulation

Quality of linearized models is essential!
Step response around an equilibrium point

Problems with the quality of the numerically linearized model!
OpenModelica to the rescue?

Unstable linearized model!
Use the Source, Luke!
Let’s get to the source of the problem

- Original version of the code
- Changed scaling
- Added parameter for deltaX
Step response around an equilibrium point

Problem solved!
All’s well that end well

• Problem raised Oct 19, 2016
• Problem fixed Oct 20, 2016 (thanks Willi!)

• Advantages for research work
 – All methods are in plain sight
 – Understand exactly what the tool does
 – Improve the code according to one’s need

• Maybe industrial settings prefer turnkey solutions? (not necessarily; hint: Rudiger Franke’s work within ABB)

• What is the value of this aspect of open-source development for industrial partners of the OSMC?
Activity #2:

Evaluation of control performance by simulation
Outline of activities

• Decentralized PID-based control designed based on the results of dynamic analysis
• Control system modelled in Modelica, using the IndustrialControlSystems library (2nd library award winner @ 2012 Modelica Conference)
Control system model
Control system model - cont’d
Outline of activities

• Decentralized PID-based control designed based on the results of dynamic analysis

• Control system modelled in Modelica, using the IndustrialControlSystems library (2nd library award winner @ 2012 Modelica Conference)

• Performance is evaluated in multiple scenarios
 – Warm-keeping
 – Transition to minimum load (20%)
 – 100%-20% load change @10%/min
 – 20%-100% load change @ 10%/min
 – Other ramp load changes (dispatching)
 – Extra power supply for primary frequency control
 – etc…
Outline of activities

- Decentralized PID-based control designed based on the results of dynamic analysis
- Control system modelled in Modelica, using the IndustrialControlSystems library (2nd library award winner @ 2012 Modelica Conference)
- Performance is evaluated in multiple scenarios
 - Warm-keeping
 - Transition to minimum load (20%)
 - 100%-20% load change @10%/min
 - 20%-100% load change @ 10%/min
 - Other ramp load changes (dispatching)
 - Extra power supply for primary frequency control
 - etc…
Performance comparison

- Hardware: Intel i7-4810MQ @ 2.8 GHz 8 GB
- Solver: DASSL on causalized system, tol = 10^{-5}
- Simulation results are matching within the solver tolerance

<table>
<thead>
<tr>
<th></th>
<th>Dymola 2017</th>
<th>OMC 1.11.0 dev163 (*)</th>
<th>OMC 1.12.0 Dev189 (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build code time [s]</td>
<td>12</td>
<td>88 (52 FE)</td>
<td>84 (49 FE)</td>
</tr>
<tr>
<td>Simulation time [s]</td>
<td>115</td>
<td>310</td>
<td>253</td>
</tr>
<tr>
<td># of steps</td>
<td>3978</td>
<td>4310</td>
<td>4178</td>
</tr>
<tr>
<td># of Jac comp.</td>
<td>930</td>
<td>956</td>
<td>815</td>
</tr>
</tbody>
</table>

(*) using wrapFunctionCalls
Performance comparison

- Hardware: Intel i7-4810MQ @ 2.8 GHz 8 GB
- Solver: DASSL on causalized system, tol = 10^{-5}
- Simulation results are matching within the solver tolerance

<table>
<thead>
<tr>
<th></th>
<th>Dymola 2017</th>
<th>OMC 1.11.0 dev163 (*)</th>
<th>OMC 1.12.0 Dev189 (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build code time [s]</td>
<td>12</td>
<td>88 (52 FE)</td>
<td>84 (49 FE)</td>
</tr>
<tr>
<td>Simulation time [s]</td>
<td>115</td>
<td>310</td>
<td>253</td>
</tr>
<tr>
<td># of steps</td>
<td>3978</td>
<td>4310</td>
<td>4178</td>
</tr>
<tr>
<td># of Jac comp.</td>
<td>930</td>
<td>956</td>
<td>815</td>
</tr>
</tbody>
</table>

(*) using `wrapFunctionCalls`

- Acceptable for serious use
- Large margins for improvement
Activity #3:

Sharing the model with other project partners
PreFlexMS partner goals

- Politecnico di Milano
 - Analysis and design of control issues
 - Validation of control performance by simulation
- AGH University of Technology (Krakow)
 - Design of machine-learning systems for performance prediction
 - Need of models to tuning and validation by simulation
- DLR
 - Complete virtual power plant model
 - Development and testing of model-based dispatch optimizer
- EC-Systems (Poland)
 - Software integration and deployment

Re-use Modelica models
Avoid extra license fees
The solution

+

OpenModelica
The solution

• Suitable interfaces added to the power block model
• FMUs 2.0 for ME generated by OMC
• FMUs embedded in Simulink system models using Modelon’s FMI Toolbox
The solution

- Suitable interfaces added to the power block model
- FMUs 2.0 for ME generated by OMC
- FMUs embedded in Simulink system models using Modelon’s FMI Toolbox

- Exported models work and produce the expected results
- Some numerical problems at reduced loads
 - Maybe ode15s worse than DASSL?
 - Generated code can be improved?
 - Modelica models can be made more robust?
- No feedback from the FMU → extensive logging would be helpful
- Work currently in progress to improve the situation
Outlook and Conclusions
#1: OMC can be used for serious work

- Our experience with OMC during the PreFlexMS project was positive
- OMC can handle non-trivial power generation system models without problems
- The performance is acceptable
#2: OMC can work side-by-side with other Modelica tools

- The PreFlexMS model was initially developed in Dymola
- Minor improvement was required to also run in OMC
- Same code base on SVN for use with both tools
- Even for users of commercial tools, OMC can provide advantages without the need of switching to its exclusive use
 - Alternative tool for troubleshooting
 - Generation of royalty-free simulation code (e.g., FMUs)
 - Massive deployment of simulation code on the cloud for optimization purposes
 - ...
#3: OMC can be used as a royalty-free simulation code generator

- FMU/ME compiled with OMC run successfully
- FMUs compiled with OMC carry no license limitations
- The current support of FMU/CS (only forward Euler) is not enough for this kind of models
- Full support of logging in FMUs is absolutely necessary for troubleshooting
#4: Open-Source code allows to better understand problems and solve them

- We faced a (potentially fatal) numerical issue with linearized models
- Access to the code allowed to understand exactly how the current implementation worked and how to fix it
- The (small) fix was implemented and delivered overnight
#4: Open-Source code allows to better understand problems and solve them

• We faced a (potentially fatal) numerical issue with linearized models

• Access to the code allowed to understand exactly how the current implementation worked and how to fix it

• The (small) fix was implemented and delivered overnight

• Alternative model to commercial tool vendors business model
 – Source code is a trade secret
 – As little as possible is revealed about how the code works
 – Turn-key customer care by commercial tool vendors

• Discussion?
#5: Still much work to do to achieve competitive performance

- Simulations of steam-based power generation systems still 2 times slower than using Dymola

- Time to build executable simulation code is still about 7 times larger than using Dymola
 - New front-end will reduce the factor to 3-4 (June? Sept.?)
 - Further optimization of the code generation process required

- The wrapFunctionCalls optimization is crucial for good performance it should be activated by default in 1.12.0

- GUI still not up to the task
 - Too slow when opening models
 - Some problems with rendering of diagrams
 - No replaceable medium support yet
 - No hierarchical model editing yet
Acknowledgements

This work was supported by the European Commission, H2020 program, under Grant 654984

Many thanks to all the OMC developers, particularly Willi Braun, for their support
Thank you for your kind attention!