
Comparison of Numerical Integration Methods in OpenModelica
Status and Plans on Integration methods

Willi Braun Bernhard Bachmann

University of Applied Sciences Bielefeld
Bielefeld, Germany

February 6, 2017

1 / 8

Motivation

Basic criteria

Stability vs. Performance.

2 / 8

Motivation

Basic criteria

Stability vs. Performance.

2 / 8

Motivation

Basic criteria

Stability vs. Performance.

2 / 8

Motivation

We are 2 times slower, but we want to get 3 times faster.
Rüdiger

Outline:
I Overview of the current available solver
I Comparision of IDA and DASSL
I Improved Symbolic Inline Solver
I Comparison of DAEMode vs. ODEMode

3 / 8

Motivation

We are 2 times slower, but we want to get 3 times faster.
Rüdiger

Outline:
I Overview of the current available solver
I Comparision of IDA and DASSL
I Improved Symbolic Inline Solver
I Comparison of DAEMode vs. ODEMode

3 / 8

Solver in OpenModelica

0 = f (x(t), ẋ(t), y(t), u(t), t)

↓

0 = f (x(t), z (t), u(t), t), z (t) =

(
ẋ(t)
y(t)

)

z (t) =

(
ẋ(t)
y(t)

)
= g(x(t), u(t), p, t)

↓

ẋ(t) = h(x(t), u(t), p, t)

y(t) = k(x(t), u(t), p, t)

General Characteristic

explicit vs. implicit

higher order

with step size control

multi-step methods

4 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

5 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

Explicit Euler

ẋ ≈ x (tn+1)− x (tn)

hn

x (tn+1) = x (tn) + hn · f (tn , x (tn))

very cheap

poor stability region

solver name: euler

5 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

Implicit Euler

ẋ ≈ x (tn)− x (tn−1)

hn

x (tn) = x (tn−1) + hn · f (tn , x (tn))

very stable

quite expensive

non-linear loop solved by KINSOL

solver name: impeuler

5 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

Explicit Runge-Kutta Methods

Butcher tableau :

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

solver name: heun, rungekutta

5 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

Explicit Runge-Kutta Methods

orders 2 and 4

good performace

still small stability region

solver name: heun, rungekutta

5 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

implicit Runge-Kutta methods

Butcher tableau :

1
3

5
12 − 1

12
1 3

4
1
4

3
4

1
4

solver name: impeuler, trapzoide,
imprungekutta

5 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

implicit Runge-Kutta methods

order 1-6 (-impRKOrder=X)

very stable

quite expensice

non-linear loop solved by KINSOL

solver name: impeuler, trapzoide,
imprungekutta

5 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

Explicit Runge-Kutta Step Size Control

Butcher tableau :
c1 0 0 0 . . . 0 0
c2 a21 0 0 . . . 0 0
c3 a31 a32 0 . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.
cn an1 an2 an3 . . . an(s−1) 0

b1 b2 b3 . . . bs−1 bs
b̂1 b̂2 b̂3 . . . b̂s−1 b̂s

embedded Runge-Kutta formulas

quite fast

better stability region

Current status: experimental

solver name: rungekuttaSsc

5 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

Implicit Runge-Kutta Step Size Control

Butcher tableau :

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
.
.
.

.

.

.

.

.

. . . .

.

.

.
cn an1 an2 . . . ans

b1 b2 . . . bs
b̂ b̂2 . . . b̂s

Own implementation

For now order 1-2

Using own newton solver

Current status: experimental

solver name: irksco
5 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

Multi-Step BDF method: DASSL

implicit

order control

step size control

solver name: dassl, ida

5 / 8

Solver in OpenModelica
General Characteristic

General Characteristic:

explicit vs. implicit

higher order

step size control

multi-step methods

SUNDIALS IDA solver

DASSL re-implementation in C

Interface to fast linear solver (KLU)

usable for large-scale models

solver name: dassl, ida

5 / 8

Solver in OpenModelica
General Characteristic

Selected compared models

model solver steps evalF time

fullRobot
dassl 5475 19363 3.114
ida 5659 19533 3.154

HeatExhanger
dassl 158 1334 5.972
ida 161 1374 6.181

EngineV6
dassl 15179 35622 15.0516
ida 15509 35667 14.9201

Themal.Motor
dassl 896 722167 2.44322
ida 920 722167 2.79349

ScaleableTestSuite DASSL vs. IDA

Get your own impression:
DASSL (2017-01-18) vs. IDA (2017-01-21)

5 / 8

https://test.openmodelica.org/libraries/history/ScalableTestSuite_Experimental/ScalableTestSuite_Experimental-2017-01-18.html
https://test.openmodelica.org/libraries/history/ScalableTestSuite_Experimental/ScalableTestSuite_Experimental-2017-01-21.html

Symbolic Inline Integration

Symbolic Inline

Replaces der(states)
by forward difference quitient:
--symSolver=expEuler

or by backward difference quitient:
--symSolver=impEuler

Symbolical Implications

Result is a pure algebraic system

Apply OpenModelica Backend(e.g.
Tearing, symbolic simplification)

Basic step size control available

Current status: experimental

solver name: symSolver, symSolverSsc

6 / 8

Symbolic Inline Integration

Symbolic Inline

Replaces der(states)
by forward difference quitient:
--symSolver=expEuler

or by backward difference quitient:
--symSolver=impEuler

Symbolical Implications

Result is a pure algebraic system

Apply OpenModelica Backend(e.g.
Tearing, symbolic simplification)

Basic step size control available

Current status: experimental

solver name: symSolver, symSolverSsc

6 / 8

DAE Integration

Skip Matching and Sorting

0 = f (x(t), ẋ(t), y(t), u(t), t)

↓

0 = f (x(t), z (t), u(t), t), z (t) =

(
ẋ(t)
y(t)

)

z (t) =

(
ẋ(t)
y(t)

)
= g(x(t), u(t), p, t)

↓

ẋ(t) = h(x(t), u(t), p, t)

y(t) = k(x(t), u(t), p, t)

⇒ typical ODE transformation

7 / 8

DAE Integration

Skip Matching and Sorting

0 = f (x(t), ẋ(t), y(t), u(t), t)

↓

0 = f (x(t), z (t), u(t), t), z (t) =

(
ẋ(t)
y(t)

)

z (t) =

(
ẋ(t)
y(t)

)
= g(x(t), u(t), p, t)

↓

ẋ(t) = h(x(t), u(t), p, t)

y(t) = k(x(t), u(t), p, t)

⇒ typical ODE transformation

DAE solution

DAE solves also for ẋ , y

No inner algebraic loops -> no tearing

potentially faster compilation phase

7 / 8

DAE Integration

Skip Matching and Sorting

0 = f (x(t), ẋ(t), y(t), u(t), t)

↓

0 = f (x(t), z (t), u(t), t), z (t) =

(
ẋ(t)
y(t)

)

z (t) =

(
ẋ(t)
y(t)

)
= g(x(t), u(t), p, t)

↓

ẋ(t) = h(x(t), u(t), p, t)

y(t) = k(x(t), u(t), p, t)

⇒ typical ODE transformation

Current Status

additional DAE code is generated
(simflags="-daeMode")

Event handling and initialization require
matching and sorting

Two options:
--daeMode=[dynamic|all]

7 / 8

DAE Integration

Selected compared models

model solver steps evalF time

CascadedFirstOrder_N_6400
dae 2510 2766 3.00101
ode 2512 3268 5.78234

DistributionSystemLinear_N_10_M_10
dae 53 149 0.0759903
ode 73 2493 5.01925

ScaleableTestSuite DAE vs. ODE

Get your own impression: ODE mode (2017-01-12) vs. DAE mode (2017-01-13)

7 / 8

https://test.openmodelica.org/libraries/history/ScalableTestSuite_Experimental/ScalableTestSuite_Experimental-2017-01-12.html
https://test.openmodelica.org/libraries/history/ScalableTestSuite_Experimental/ScalableTestSuite_Experimental-2017-01-13.html

Plans and Outlook

Further improvements on the DAEMode

Develop OSI (based on FMI) for the OM runtimes

Include the available methods to FMI/CS

Adding CVODE integrator from SUNDIALS suite

Further development on irksco and symSolver

8 / 8

Plans and Outlook
Questions

Further improvements on the DAEMode

Develop OSI (based on FMI) for the OM runtimes

Include the available methods to FMI/CS

Adding CVODE integrator from SUNDIALS suite

Further development on irksco and symSolver

8 / 8

	Solver in OpenModelica
	Symbolic Inline Integration
	DAE Integration

