Open-Source Modelling and Simulation of Innovative Power Generation Systems
Using OpenModelica: The Case of the FlexiCaL Project

Francesco Casella
Politecnico di Milano, Italy
OSMC Vice-Director
(francesco.casella@polimi.it)
Outline

• The issue of climate change
• The FlexiCaL project

• Objectives of the modelling activity
• What are the Modelica models used for
• Relevance for the OSMC and the scientific community
• Presentation of the model

• Current status of OMC support
• Outlook and future work
The Issue of Climate Change
The Keeling Curve

January 29, 2020
Carbon dioxide concentration at Mauna Loa Observatory

Full Record ending January 29, 2020
Global Temperature Rise Scenarios (IPCC 2013)

Global average surface temperature change

- Historical
- RCP2.6
- RCP4.5
- RCP6.0
- RCP8.5

Year:
- 1950
- 2000
- 2050
- 2100

°C:
- -2.0
- 0.0
- 2.0
- 4.0
- 6.0

Values:
- 42
- 32
- 39
The 1.5 °C Scenario (IPCC 2018)

- Global warming relative to 1850-1900 (°C)
 - Observed monthly global mean surface temperature
 - Estimated anthropogenic warming to date and likely range

Likely range of modeled responses to stylized pathways:
- Global CO₂ emissions reach **net zero in 2055** while net non-CO₂ radiative forcing is **reduced after 2030** (grey in b, c & d)
- Faster CO₂ reductions (blue in b & c) result in a **higher probability** of limiting warming to 1.5°C
- No reduction of net non-CO₂ radiative forcing (purple in d) results in a **lower probability** of limiting warming to 1.5°C

- CO₂ emissions decline from 2020 to reach net zero in 2055 or 2040
- Cumulative CO₂ emissions in pathways reaching net zero in 2055 and 2040
- Non-CO₂ radiative forcing reduced after 2030 or not reduced after 2030
The 1.5 °C Scenario (IPCC 2018)

Global warming relative to 1850-1900 (°C)

- Observed monthly global mean surface temperature
- Estimated anthropogenic warming to date and likely range

Likely range of modeled responses to stylized pathways:
- Global CO₂ emissions reach **net zero in 2055** while net non-CO₂ radiative forcing is **reduced after 2030** (grey in b, c & d)
- Faster CO₂ reductions (blue in b & c) result in a **higher probability** of limiting warming to 1.5°C
- No reduction of net non-CO₂ radiative forcing (purple in d) results in a **lower probability** of limiting warming to 1.5°C

CO₂ emissions decline from 2020 to reach net zero in 2055 or 2040

Cumulative CO₂ emissions in pathways reaching net zero in 2055 and 2040

Non-CO₂ radiative forcing reduced after 2030 or not reduced after 2030
The FlexiCaL Project
Calcium Looping Technology (CaL)

- First proposed by Shimizu et al, 1999
- Currently demonstrated at lab and pilot scale (< 1.5 MW)
The FlexiCaL project

• Funded by the EU Research Fund for Coal and Steel (RFCS)

• Five partners from Spain, Italy, Germany, and Poland, 2016-2019
The FlexiCaL project

- Funded by the EU Research Fund for Coal and Steel (RFCS)
- Five partners from Spain, Italy, Germany, and Poland, 2016-2019
- Demonstrate flexible operation of CaL technology at lab/pilot scale
- Design a full-scale plant capable of flexible performance
 - Off design operation
 - Transient operation
The FlexiCaL plant – CaL side
The FlexiCaL plant – Steam side
Build a dynamic model of the FlexiCaL plant

Assess the dynamic behaviour and controllability
Work @ DEIB - Polimi

Build a dynamic model of the FlexiCaL plant

Assess the dynamic behaviour and controllability

Design a suitable plant-wide control strategy

Assess the ability of the controlled FlexiCaL plant to follow ramp load changes of the PCPP and to provide extra power for ancillary services
Modelling Activity
Modelling Activity @ DEIB - PoliMi

• Work in partnership DENER-DEIB (static design – dynamics and control)
• Use Modelica and re-use existing libraries as much as possible (ThermoPower and IndustrialControlSystems)
Modelling Activity @ DEIB - PoliMi

- Work in partnership DENER-DEIB (static design – dynamics and control)
- Use Modelica and re-use existing libraries as much as possible (ThermoPower and IndustrialControlSystems)
- Test individual components in steady state again design data
- Initialize full system in steady state in design conditions
- Initialize fully system in steady state in off-design conditions
Modelling Activity @ DEIB - PoliMi

• Work in partnership DENER-DEIB (static design – dynamics and control)
• Use Modelica and re-use existing libraries as much as possible (ThermoPower and IndustrialControlSystems)
• Test individual components in steady state again design data
• Initialize full system in steady state in design conditions
• Initialize fully system in steady state in off-design conditions
• Linearization of plant model around on- and off-design operating points for dynamic analysis and control design
• Design and implementation of control system in Modelica
Modelling Activity @ DEIB - PoliMi

- Work in partnership DENER-DEIB (static design – dynamics and control)
- Use Modelica and re-use existing libraries as much as possible (ThermoPower and IndustrialControlSystems)
- Test individual components in steady state again design data
- Initialize full system in steady state in design conditions
- Initialize fully system in steady state in off-design conditions
- Linearization of plant model around on- and off-design operating points for dynamic analysis and control design
- Design and implementation of control system in Modelica
- Simulation of closed loop transients
 - PCPP load ramp rate
 - CaO heat exchanger boost
 - Turbine bleed valve throttling
Modelica tools employed

- Models built and analyzed during the project using Dymola
- The model library is currently being polished in view of publication and assessed for use in OpenModelica
Modelica tools employed

- Models built and analyzed during the project using Dymola
- The model library is currently being polished in view of publication and assessed for use in OpenModelica

Perform all the modelling activities with OMC

Publish the model on github.com

Make the model usable with 100% OS toolchain
Value for OpenModelica and OSMC

- Complex, industrial-grade, numerically challenging, open-source model
Value for OpenModelica and OSMC

• Complex, industrial-grade, numerically challenging, open-source model

• Test case for OpenModelica development
 – No confidentiality issues whatsoever (100% public and paid by EU)
 – Improvement of GUI performance for editing
 – Improvement of GUI performance for post-processing (simulation results and debugging information)
 – Improvement of flattening time
 – Improvement of backend/code generation time
 – Improvement of solver robustness (particularly for initialization)
 – Improvement of simulation time
Value for OpenModelica and OSMC

• Complex, industrial-grade, numerically challenging, open-source model

• Test case for OpenModelica development
 – No confidentiality issues whatsoever (100% public and paid by EU)
 – Improvement of GUI performance for editing
 – Improvement of GUI performance for post-processing (simulation results and debugging information)
 – Improvement of flattening time
 – Improvement of backend/code generation time
 – Improvement of solver robustness (particularly for initialization)
 – Improvement of simulation time

• Showcase of the OpenModelica tool capabilities
 – Demonstration of tool performance on real-life industrial case
 – All stakeholders can download and check with their eyes, no restrictions
 – Double-edged sword!
Value for the scientific community

- Companion to forthcoming scientific publications about the FlexiCaL plant dynamic modelling and control (publish the paper and the model)
Value for the scientific community

- Companion to forthcoming scientific publications about the FlexiCaL plant dynamic modelling and control (publish the paper and the model)
- Allows to reproduce the published results with no license restrictions
- Allows other people to reuse the model for further research
Value for the scientific community

- Companion to forthcoming scientific publications about the FlexiCaL plant dynamic modelling and control (publish the paper and the model)
- Allows to reproduce the published results with no license restrictions
- Allows other people to reuse the model for further research
- Provides engineers and researchers with a fully developed example
 - How to organize a complex power plant model in Modelica
 - How to carry out different activities in an efficient way without code duplication
 - Significant tutorial value
Presentation of the Model
Top-level view of the plant model
Calciner exhaust section
Individual steam – fluidized CaO heat exchanger
Carbonator model

[Diagram of a carbonator model with various inputs and outputs, including symbols for pressure, temperature, and flow.]
Turbine – Feedwater train model
Accurate feedwater train model
Accurate water preheater model
Steady-state initialization modes

- Forward on-design steady-state
 - Inputs are fixed to design values
 - Initial equations with zero derivatives on all states
Steady-state initialization modes

- Forward on-design steady-state
 - Inputs are fixed to design values
 - Initial equations with zero derivatives on all states

- Backward on-design steady-state
 - Outputs are fixed to design values in initial equations
 - Inputs assigned to fixed = false parameters
 - Initial equations with zero derivatives on all states
Steady-state initialization modes

• Forward on-design steady-state
 – Inputs are fixed to design values
 – Initial equations with zero derivatives on all states

• Backward on-design steady-state
 – Outputs are fixed to design values in initial equations
 – Inputs assigned to fixed = false parameters
 – Initial equations with zero derivatives on all states

• Backward off-design steady-state
 – Outputs are fixed to off-design values in initial equations, as functions of a load value
 – Inputs assigned to fixed = false parameters
 – Initial equations with zero derivatives on all states
 – Homotopy brings load gradually from 100% to required value
Steady-state initialization modes

• **Forward on-design steady-state**
 – Inputs are fixed to design values
 – Initial equations with zero derivatives on all states

• **Backward on-design steady-state**
 – Outputs are fixed to design values in initial equations
 – Inputs assigned to fixed = false parameters
 – Initial equations with zero derivatives on all states

• **Backward off-design steady-state**
 – Outputs are fixed to off-design values in initial equations, as functions of a load value
 – Inputs assigned to fixed = false parameters
 – Initial equations with zero derivatives on all states
 – Homotopy brings load gradually from 100% to required value

• **Backward off-design steady-state for linearization and open-loop step response computation**
 – As above, but top level inputs and outputs are added
Steady-state initialization modes

• Forward on-design steady-state
 – Inputs are fixed to design values
 – Initial equations with zero derivatives on all states

• Backward on-design steady-state
 – Outputs are fixed to design values in initial equations
 – Inputs assigned to fixed = false parameters
 – Initial equations with zero derivatives on all states

• Backward off-design steady-state
 – Outputs are fixed to off-design values in initial equations, as functions of a load value
 – Inputs assigned to fixed = false parameters
 – Initial equations with zero derivatives
 – Homotopy brings load gradually from 100% to required value

• Backward off-design steady-state for linearization and open-loop step response computation
 – As above, but top level inputs and outputs are added

• Closed-loop steady state
 – Control system is added, with given set points and load level
 – Suitable homotopy introduced on controllers to facilitate convergence
Current Status with OpenModelica 1.16.0-dev
Testing setup

- Lenovo Carbon X1
- CPU: Intel i7-8550, 1.8 Ghz, 8 virtual cores
- RAM: 16 GB
- SSD: 1 TB
- OS: Windows 10 Professional 64 bit
- OMC: 1.16.0-dev nightly build of 31 Jan 2020
GUI

- The diagrams are mostly displayed correctly
- Some glitches with extent
- Editing the models with few components is fine
- Parameter input is fine
- Replaceable Medium missing (→ v. 1.15.0)
- Editing the top model is still too slow (20 s response time)
GUI

- The diagrams are mostly displayed correctly
- Some glitches with extent
- Editing the models with few components is fine
- Parameter input is fine
- Replaceable Medium missing (→ v. 1.15.0)
- Editing the top model is still too slow (20 s response time)

Continue improvement of API used by OMEdit by using the faster new frontend
Performance of full plant model

- Model size: 19325 equations (9244 trivial)
- Flattening time using new front end: 16 s (Dymola: 8 s)
Performance of full plant model

- Model size: 19325 equations (9244 trivial)
- Flattening time using new front end: 16 s (Dymola: 8 s)
- Backend + code generation: 3 m
 - Matching and sorting: 10 s
 - Analyze initial system: 18 s
 - Tearing init system: 36 s
 - Tearing simplified init system: 23 s
 - Remove simple equations: 7.5 s
 - Templates: 27 s
Performance of full plant model

- Model size: 19325 equations (9244 trivial)
- Flattening time using new front end: 16 s (Dymola: 8 s)
- Backend + code generation: 3 m
 - Matching and sorting: 10 s
 - Analyze initial system: 18 s
 - Tearing init system: 36 s
 - Tearing simplified init system: 23 s
 - Remove simple equations: 7.5 s
 - Templates: 27 s
- C-code compilation (gcc): 4 m
- Total compilation time: 7 m 40 s (Dymola: 23 s)
- Max memory usage: 12 GB
- Initialization fails due to wrongly selected initial guesses
 (issue currently under investigation)
Performance of full plant model

- Model size: 19325 equations (9244 trivial)
- Flattening time using new front end: 16 s (Dymola: 8 s)
- Backend + code generation: 3 m
 - Matching and sorting: 10 s
 - Analyze initial system: 18 s
 - Tearing init system: 36 s
 - Tearing simplified init system: 23 s
 - Remove simple equations: 7.5 s
 - Templates: 27 s
- C-code compilation (gcc): 4 m
- Total compilation time: 7 m 40 s (Dymola: 23 s)
- Max memory usage: 12 GB
- Initialization fails due to wrongly selected initial guesses (issue currently under investigation)

Room for improvement in code generation
- Faster selected back-end methods and templates
- Faster compilation (gcc → clang, factor 5)
- Resolve initial guess issues
Smaller case study: Feedwater/turbine unit test
Performance of turbine/feedwater unit test

- Model size: 8650 equations (3731 trivial)
- Flattening time using new front end: 4 s (Dymola: 2.5 s)
- Backend + code generation: 36 s (Dymola: 10 s)
- C-code compilation (gcc): 1 m (Dymola: 6 s)
- Total compilation time: 1 m 40 s (Dymola: 18 s)
- Max memory usage: 3.7 GB
- Initialization time: 70 s (Dymola: 2.5 s)
- Simulation time: 6.5 s (Dymola: 4.2 s)
Performance of turbine/feedwater unit test

- Model size: 8650 equations (3731 trivial)
- Flattening time using new front end: 4 s (Dymola: 2.5 s)
- Backend + code generation: 36 s (Dymola: 10 s)
- C-code compilation (gcc): 1 m (Dymola: 6 s)
- Total compilation time: 1 m 40 s (Dymola: 18 s)
- Max memory usage: 3.7 GB
- Initialization time: 70 s (Dymola: 2.5 s)
- Simulation time: 6.5 s (Dymola: 4.2 s)

Room for improvement at runtime:
- Performe CSE also during init (WiP)
- Improve optimization of Modelica.Media IF97 code
Outlook & Conclusions
Outlook

- Completion of the FlexiCaL model clean up: Feb-Mar 2020
- Model published on github.com afterwards
- Will be included in the OpenModelica library testuite
Outlook

• Completion of the FlexiCaL model clean up: Feb-Mar 2020
• Model published on github.com afterwards
• Will be included in the OpenModelica library testuite
• Paradigmatic case for the assessment and improvement of OpenModelica performance in a tough industrial case
 – Editing by the OMEEdit GUI
 – Flattening time
 – Code generation time
 – C-code compilation time
 – Initialization time
 – Simulation time
Outlook

• Completion of the FlexiCaL model clean up: Feb-Mar 2020
• Model published on github.com afterwards
• Will be included in the OpenModelica library testuite
• Paradigmatic case for the assessment and improvement of OpenModelica performance in a tough industrial case
 – Editing by the OMEdit GUI
 – Flattening time
 – Code generation time
 – C-code compilation time
 – Initialization time
 – Simulation time

Opportunity to improve the quality of OpenModelica for industrial users
Conclusions

• The RFCS FlexiCaL project aimed at designing a novel CCS plant
• Flexible performance from a control viewpoint was studied
• Modelica models of the FlexiCaL plant are publicly available
Conclusions

• The RFCS FlexiCaL project aimed at designing a novel CCS plant
• Flexible performance from a control viewpoint was studied
• Modelica models of the FlexiCaL plant are publicly available
• Uses:
 – Companion of scientific papers, full disclosure and reproducibility of the results
 – Benchmark for OMC performance improvement
 – Showcase for serious industrial use of OMC
• OpenModelica allows to run them and share them w/o licensing issue
• OMC 1.16.0 (release date June 2020) will be up to the task
Conclusions

• The RFCS FlexiCaL project aimed at designing a novel CCS plant
• Flexible performance from a control viewpoint was studied
• Modelica models of the FlexiCaL plant are publicly available
• Uses:
 – Companion of scientific papers, full disclosure and reproducibility of the results
 – Benchmark for OMC performance improvement
 – Showcase for serious industrial use of OMC
• OpenModelica allows to run them and share them w/o licensing issue
• OMC 1.16.0 (release date June 2020) will be up to the task
• On going work
 – Streamlining OMEdit editor response for larger models (nfAPI)
 – Further speed-up of flattening
 – Optimization and speed-up of backend
 – Improve CSE handling in the runtime, part. at initialization
Thank you for your kind attention!