On-line simulation with Modelica

in a Simulink environment

Elena Tomás-Aparicio
PhD student
elena.tomas.aparicio@mdh.se

Process efficiency improvement research group
www.mdh.se/hst/research/research_areas/mero

Department of Energy Engineering
School of Sustainable Development of Society and Technology
Mälardalen University
Contents

• Introduction
• Why *Modelica*?
• Why *Dymola*?
• Why *Simulink*?
• Applications
Introduction

Modeling and simulation are valuable tools that contribute throughout the lifecycle of any industrial process

• Process Design
 – It can be used during feasibility studies to quantify process parameters
 – It can be used to test concepts and designs

• Existing processes
 – It can be used to determine the impact of modifications

• Process Control
 – Useful tool for testing and commissioning of base level control
 – Modeling provide useful basis for development of advanced control systems
 • reduce time of development, reduce time of commissioning and reduce risk by using offline

• Process Optimization

• Training
• Diagnostic
Introduction
Application development

- Dynamic model using Modelica language
- Model validation
- Connection to process database, on-line
Introduction
Application Overview

- Measured values
- Simulated values
- Modelica
- SIMULINK
- OPC/DDE
- Process Control
- Process Optimization
- Diagnostics
- BN
- Decision Support
Introduction
Running on-line at...

Power Boiler

Pulp Digester

- Wood Chips and Strong White Liquor
- Upper Cooking Screens
- Lower Cooking Screens
- Extraction Screens
- Weak Black Liquor to Evaporators
- Strong White Liquor
- Filtrate Flow
- Direction of liquor flows
- Steam
- Weak Black Liquor to Evaporators
- Filtrate
- Pulp Out
Why Modelica?

• Acausal modeling
 – Reuse of classes
• Modeling dynamic physical systems feels easy
• Dynamicity by differential equations, avoid complicated loops
Why Modelica?

der(outlet_chip_concentration[Dissolved_organics_reference]) =
(inlet_chip_volumetric_flowrate*inlet_chip_concentration[
 Dissolved_organics_reference] - outlet_chip_volumetric_flowrate*
 outlet_chip_concentration[Dissolved_organics_reference] +
 reaction_rate[Dissolved_organics_reference]) / chip_inventory;
Why Dymola?

- Graphical interface
- Open Modelica in mind but still more difficult to work with for process engineers (more for computer scientist today)
Why Dymola?
Continuous digester
Why Dymola?
CFB Boiler
Why Simulink?

- Control the signal processing between simulator and process database
- Easy to embed compiled Modelica model
- Graphical interface
 - Drag and Drop
Why Simulink?
Applications
Running on-line at...

Power Boiler

Pulp Digester
Validated towards process data-step change in feed temperature

- MI_uoh.M2.1.K0.top/Max_upper_tree_liquor_temperature
- Upper_EXTRACTION1_Recr_distill_EA
- Bottom_EXTRACTION1_Recr_distill_EA
- Bottom1_Bottom_Kappa_number
Validated towards process data

<table>
<thead>
<tr>
<th>C5 EA (g/L)</th>
<th>EA average (g/L)</th>
<th>Kappa</th>
<th>Kappa average</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4</td>
<td>13</td>
<td>42.9</td>
<td>47.7</td>
</tr>
<tr>
<td>11.4</td>
<td>12</td>
<td>46</td>
<td>48.1</td>
</tr>
<tr>
<td>11.7</td>
<td>12</td>
<td>47.5</td>
<td>49.4</td>
</tr>
<tr>
<td>11.2</td>
<td>12</td>
<td>49.8</td>
<td>49</td>
</tr>
</tbody>
</table>
Control Purposes

• Simulation results of the quality and chemical consumption during a wood species swing show that reducing the chemical addition at an earlier will improve quality as well as save chemicals.

• The simulations also show that it is necessary to ramp the temperature decrease faster to avoid the dip in the kappa that is caused by the difference in velocity and reaction rate between species (due to difference in density).
Process behavior during a swing
Process behavior during a swing
Diagnostics purposes

- To predict upsets early to take necessary actions to avoid them will make the quality variations smaller saving chemicals and energy usage.

- A good on-line simulation tool will indicate if it is instrumentation or process problem. The output will be used as decision support for the operators.
Detection of problems
BN for decision support

Temperature in extraction top pos 2
Temperature in extraction bottom pos 3
Wood quality pos 1
Residual alkali in extraction top pos 2
Kappanumber pos 4
Channelling top extraction pos 2
Fault in temp meter top extraction pos 2
Fault in kappa meter pos 4

- Lift bed.....
- Replace meter

- K = 5
- K = 1
- K = 0
- K = 1
- K = 0
Ongoing work

• Model improvement
• Work towards model validation
• Addition of features like NIR-meter
• Bayesian Network model
Thank you!

Questions?
Fiberline optimization

\[
\frac{\partial m}{\partial t} = \sum_{i=1}^{i=n} \dot{m}_{in}(i) - \sum_{i=1}^{i=n} \dot{m}_{ut}(i)
\]

\[
\frac{\partial c, i}{\partial t} = \frac{\left(\sum_{j} \dot{m}_{j, in} \cdot \sum_{i} c_i \cdot \dot{m}_{k, ut}\right)}{m_{\text{inventory}}}
\]

\[
\frac{\partial T}{\partial t} = \frac{\left(\sum_{j} T_j \cdot \dot{m}_{j, in} - \sum_{k} T_k \cdot c_i \cdot \dot{m}_{k, ut}\right) + \Delta H - U \cdot A \cdot (T_{\text{block}} - T_{\text{utsida}})}{m_{\text{block}} \cdot \left(\sum c_i \cdot cp_i\right)}
\]

dL(i)/dt = \text{reactivity}_\text{const} *[\text{OH}^-]^{0.5}*[\text{HS}^-]^{0.5}\exp(A-B/T)
Applications
Continuous digester

Steps:
Impregnation
Cooking
Washing

Reaction rate depends on:
Temperature
Chemical concentration
Geometry (of chips)
Chemical composition of the wood