ThermoPower Library Simulation

Francesco Casella

(francesco.casella@polimi.it)

Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano

- Back in 2002, work started at Politecnico di Milano on the modelling of power plants using the Modelica language
- The tool we used back then was Dymola 5.3, using Modelica 2.0
- Modelica_Media was still under development, so the library used Hubertus Tummescheit's ThermoFluid library for water/steam properties

- Back in 2002, work started at Politecnico di Milano on the modelling of power plants using the Modelica language
- The tool we used back then was Dymola 5.3, using Modelica 2.0
- Modelica_Media was still under development, so the library used Hubertus Tummescheit's ThermoFluid library for water/steam properties

Proceedings of the 3rd International Modelica Conference, Linköping, November 3-4, 2003, Peter Fritzson (editor)

Francesco Casella, Alberto Leva Dipartimento di Elettronica e Informazione, Politecnico di Milano: Modelica open library for power plant simulation: design and experimental validation pp. 41-50

- Back in 2002, work started at Politecnico di Milano on the modelling of power plants using the Modelica language
- The tool we used back then was Dymola 5.3, using Modelica 2.0
- Modelica_Media was still under development, so the library used Hubertus Tummescheit's ThermoFluid library for water/steam properties
- The library evolved together with the Modelica language
 - Modelica.Media
 - Modelica 3.x
 - Stream connectors
 - Homotopy-based initialization
- In the meantime, OpenModelica has evolved
 - from an exotic Computer Science project with lots of limitations
 - to a full-fledged, fully Modelica 3.2r2 compliant tool
- We never thought of investing time to develop a *downgraded* version of ThermoPower to work with OpenModelica
- The tool needs to catch up, not the library!

- Back in 2002, work started at Politecnico di Milano on the modelling of power plants using the Modelica language
- The tool we used back then was Dymola 5.3, using Modelica 2.0
- Modelica_Media was still under development, so the library used Hubertus Tummescheit's ThermoFluid library for water/steam properties
- The library evolved together with the Modelica language
 - Modelica.Media
 - Modelica 3.0
 - Stream connectors
 - Homotopy-based initialization
- In the meantime, OpenModelica has evolved
 - from an exotic Computer Science project with lots of limitations
 - to a full-fledged, fully Modelica 3.2r2 compliant tool
- We never thought of investing time to develop a *downgraded* version of ThermoPower to work with OpenModelica
- The tool needs to catch up, not the library!

Has the moment finally arrived?

The Good News

ThermoPower is handled by OMEdit

ThermoPower is handled by OMEdit (with some glitches...)

Models can be simulated, producing the right results

Models can be simulated, producing the right results

Non-trivial models are simulated correctly

CISE plant model (see Modelica Conference 2003 paper)

Non-trivial models are simulated correctly

- Model with about 40 states and 500 non-trivial algebraic variables compiled and simulated correctly
- Large initialization problem with 132 coupled nonlinear equations solved successfully

The majority of test cases from the test suite now work

Summary of good news

- The ThermoPower library can be handled by OMEdit
 - with some glitches that will be discussed next
- Many models can be simulated, obtaining correct results
 - simple test cases
 - non-trivial examples
- Steady-state initialization works well even for non-trivial examples
 - new initialization solver with symbolic processing in place
 - homotopy transformations supported
 - automatic elimination of redundant & consistent initial equations soon available
- Interactive debugger for equation-based models almost ready for use
 - still missing support for thorough debugging of solver failures for nonlinear equations solved by tearing
 - still missing support for initialization solver failures during homotopy transformations

The Not-So-Good News

CPU time to compute Modelica.Media medium properties

- Results obtained by algebraic models, 10000 steps with Euler's algorithm
- Only pure simulation time reported
- Checked proportionality with number of steps (no one-time overhead)

Test Case	Sim. Time OMC	Sim. Time Dymola
WaterIF97Efficiency.Test1	0.85	0.15
WaterIF97Efficiency.Test2	2.05	0.15
WaterIF97Efficiency.Test3	0.82	0.15
WaterIF97Efficiency.Test4	5.46	1.47
WaterIF97Efficiency.Test5	0.42	0.15
WaterIF97Efficiency.Test6	4.25	1.41
IdealGasEfficiency.Test1	0.08	0.12
IdealGasEfficiency.Test2	0.06	0.13

```
model Test1 "Compute density of water via state record"
   package Water = Modelica.Media.Water.StandardWater;
   Water.ThermodynamicState state;
   Water.AbsolutePressure p;
   Water.Density rho;
   Water.SpecificEnthalpy h;
equation
   p = 1e5;
   h = 1e5 + time*1e5;
   state = Water.setState_ph(p,h);
   rho = Water.density(state);
   a
end Test1;
```

- IF97 properties computed via setState_ph() function
- most of the CPU time spent solving the equations of state when calling setState_ph()
- only density retrieved
- OMC almost 6X slower than Dymola

Test Case	Sim. Time OMC	Sim. Time Dymola
WaterIF97Efficiency.Test1	0.85	0.15

```
model Test2 "Compute multiple properties of water via state record"
    extends Test1;
    Water.Temperature T;
    Water.SpecificEntropy s;
    Water.DerDensityByPressure ddph;
    Water.DerDensityByEnthalpy ddhp;
equation
    T = Water.temperature(state);
    s = Water.specificEntropy(state);
    ddph = Water.density_derp_h(state);
    ddhp = Water.density_derh_p(state);
    a
end Test2;
```

- IF97 properties computed via setState_ph() function
- four more properties retrieved
- most of the CPU time should spent solving the equations of state when calling setState_ph()
- OMC almost 3X slower than previous case \rightarrow unwanted repeated comp.
- probably something goes wrong with Inline/LateInline

Test Case	Sim. Time OMC	Sim. Time Dymola
WaterIF97Efficiency.Test1	0.85	0.15
WaterIF97Efficiency.Test2	2.05	0.15

```
model Test3 "Compute density of water via direct function call"
   package Water = Modelica.Media.Water.StandardWater;
   Water.AbsolutePressure p;
   Water.Density rho;
   Water.SpecificEnthalpy h;
equation
   p = 1e5;
   h = 1e5 + time*1e5;
   rho = Water.density(Water.setState_ph(p,h));
   a
end Test3;
```

• similar to Test1, no significant differences reported

Test Case	Sim. Time OMC	Sim. Time Dymola
WaterIF97Efficiency.Test1	0.85	0.15
WaterIF97Efficiency.Test3	0.82	0.15

```
model Test4
   "Compute multiple properties of water via direct function call"
   extends Test3;
   Water.Temperature T;
   Water.SpecificEntropy s;
   Water.DerDensityByPressure ddph;
   Water.DerDensityByEnthalpy ddhp;
equation
   T = Water.temperature(Water.setState_ph(p,h));
   s = Water.specificEntropy(Water.setState_ph(p,h));
   ddph = Water.density_derp_h(Water.setState_ph(p,h));
   ddhp = Water.density_derh_p(Water.setState_ph(p,h));
   a
end Test4;
```

- if Common Subexpression Elimination was applied correctly, same CPU time as Test 1
- Apparently CSE is applied by neither tool

Test Case	Sim. Time OMC	Sim. Time Dymola
WaterIF97Efficiency.Test3	0.82	0.15
WaterIF97Efficiency.Test4	5.46	1.47

```
model Test5 "Compute density of water via direct function call"
   package Water = Modelica.Media.Water.StandardWater;
   Water.AbsolutePressure p;
   Water.Density rho;
   Water.SpecificEnthalpy h;
equation
   p = 1e5;
   h = 1e5 + time*1e5;
   rho = Water.density_ph(p,h);
   a
end Test5;
```

- Test 5 should be perfectly equivalent to Test1
- For some reason, it works 2X fast as Test1 in OMC
- Still 3X slower than Dymola

Test Case	Sim. Time OMC	Sim. Time Dymola
WaterIF97Efficiency.Test1	0.85	0.15
WaterIF97Efficiency.Test5	0.42	0.15

```
model Test6
  "Compute multiple properties of water via direct function call"
  extends Test3;
  Water.Temperature T;
  Water.SpecificEntropy s;
  Water.DerDensityByPressure ddph;
  Water.DerDensityByEnthalpy ddhp;
equation
  T = Water.temperature_ph(p,h);
  s = Water.specificEntropy(Water.setState_ph(p,h));
  ddph = Water.density_derp_h(Water.setState_ph(p,h));
  ddhp = Water.density_derh_p(Water.setState_ph(p,h));
  a
end Test6;
```

- Slight variation of Test4
- Surprisingly somewhat faster in OMC
- Same considerations apply as for Test4

Test Case	Sim. Time OMC	Sim. Time Dymola
WaterIF97Efficiency.Test1	0.85	0.15
WaterIF97Efficiency.Test4	5.46	1.47
WaterIF97Efficiency.Test6	4.25	1.41

IdealGasEfficiency.Test1 & Test2

```
model Test1 "Compute properties of gas via state record"
  package Gas = Modelica.Media.IdealGases.MixtureGases.CombustionAir;
  Gas.ThermodynamicState state;
 Gas.AbsolutePressure p;
 Gas.Density rho;
 Gas.Temperature T;
                                                     model Test2 "Compute density of gas via BaseProperties"
 Gas.SpecificEnthalpy h;
                                                       package Gas = Modelica.Media.IdealGases.MixtureGases.CombustionAir;
 Gas.MassFraction X[Gas.nX] = Gas.reference X;
                                                       Gas.BaseProperties prop;
eguation
                                                     equation
 p = 1e5;
                                                       prop.p = 1e5;
 T = 300 + time * 100;
                                                       prop.T = 300 + time*100;
  state = Gas.setState_pTX(p,T,X);
                                                       prop.X = Gas.reference X;
  rho = Gas.density(state);
                                                       а
 h = Gas.specificEnthalpy(state);
                                                     end Test2;
  а
end Test1;
```

- Ideal gas property computation
- setState_pTX() and equation-based BaseProperties tested
- OMC is 33% faster than Dymola (different accounting of overheads could be the cause)
- In steam power plant models, the bottleneck are the IF97 water/steam computations, not the ideal gas computations

Test Case	Sim. Time OMC	Sim. Time Dymola
IdealGasEfficiency.Test1	0.08	0.12
IdealGasEfficiency.Test2	0.06	0.13

CPU Time to Simulate Models

Test Case	Sim. Time OMC	Sim. Time Dymola
TestFlow1DFV_A	7.4	0.42
CISESim120501	74.9	2.4

:	0.424 s	econds
:	0.848 m	illi-seconds
:	507	
:	501	
:	332	
:	1962	
:	835	
:	66	
:	3	
:	0	
:	0	
:	0	
:	1.21e-0	07
:	2.88	
:	5	
		: 0.424 s : 0.848 m : 507 : 501 : 332 : 1962 : 835 : 66 : 3 : 0 : 0 : 0 : 1.21e-0 : 2.88 : 5

Dymola

LOG STATS	info	timer
		0.00163591s [0.0%] pre-initialization
		0.112609s [1.5%] initialization
		0.00412725s [0.1%] steps
		0.0271429s [0.4%] creating output-file
		0.00924873s [0.1%] event-handling
		0.00700192s [0.1%] overhead
		7.43596s [97.9%] simulation
		7.59773s [100.0%] total
LOG_STATS	info	events
		3 state events
		0 time events
LOG_STATS	info	solver: DASSL
		344 steps taken
		460 calls of functionODE
		78 evaluations of jacobian
		3 error test failures
		0 convergence test failures

CPU-time for integration	:	0.424 seconds
CPU-time for one GRID interval	.:	0.848 milli-seconds
Number of result points	:	507
Number of GRID points	:	501
Number of (successful) steps	:	332
Number of F-evaluations	:	1962
Number of H-evaluations	:	835
Number of Jacobian-evaluations	3:	66
Number of (model) time events	:	3
Number of (U) time events	:	0
Number of state events	:	0
Number of step events	:	0
Minimum integration stepsize	:	1.21e-007
Maximum integration stepsize	:	2.88
Maximum integration order	:	5

Dymola

LOG STATS	info	timer
		0.00163591s [0.0%] pre-initialization
		0.112609s [1.5%] initialization
		0.00412725s [0.1%] steps
		0.0271429s [0.4%] creating output-file
		0.00924873s [0.1%] event-handling
		0 <mark>.00700192s</mark> [0.1%] overhead
		(7.43596s)[97.9%] simulation
		7.39773s [100.0%] total
LOG_STATS	info	events
		3 state events
		O time events
LOG_STATS	info	solver: DASSL
		344 steps taken
		460 calls of functionODE
		78 evaluations of jacobian
		3 error test failures
		0 convergence test failures

```
CPU-time for integration
                             : 0.424 seconds
CPU-time for one GRID interval: 0.848 milli-seconds
Number of result points
                              : 507
Number of GRID points
                                ....
Number of (successful) steps
                                332
Number of F-evaluations
                              : 835
Number of H-evaluations
Number of Jacobian-evaluations: 66
Number of (model) time events : 3
Number of (U) time events
                              : 0
Number of state
                              : 0
                   events
Number of step
                              : 0
                   events
Minimum integration stepsize : 1.21e-007
Maximum integration stepsize : 2.88
Maximum integration order
                          : 5
```

Dymola

LOG STATS	info	timer
		0.00163591s [0.0%] pre-initialization
		0.112609s [1.5%] initialization
		0.00412725s [0.1%] steps
		0.0271429s [0.4%] creating output-file
		0.00924873s [0.1%] event-handling
		0.00700192s [0.1%] overhead
		7.43596s [97.9%] simulation
		7.59773s [100.0%] total
LOG_STATS	info	events
		3 state events
		0 time events
LOG_STATS	info	solver. DASSL
		🚺 344 steps taken
		400 calls of functionODE
		78 evaluations of jacobian
		3 error test failures
		0 convergence test failures

```
CPU-time for integration
                          : 0.424 seconds
CPU-time for one GRID interval: 0.848 milli-seconds
Number of result points
                             : 507
Number of GRID points
                             : 501
Number of (successful) steps : 332
Number of F-evaluations
                             : 1962
Number of H-evaluations
Number of Jacobian-evaluations: 66
Number of (model) time events : >
Number of (U) time events
                             : 0
Number of state
                             : 0
                  events
Number of step
                             : 0
                 events
Minimum integration stepsize : 1.21e-007
Maximum integration stepsize : 2.88
Maximum integration order
                          : 5
```

Dymola

OMC

LOG STATS	info	timer
_		0.00163591s [0.0%] pre-initialization
		0.112609s [1.5%] initialization
		0.00412725s [0.1%] steps
		0.0271429s [0.4%] creating output-file
		0.00924873s [0.1%] event-handling
		0.00700192s [0.1%] overhead
		7.43596s [97.9%] simulation
		7.59773s [100.0%] total
LOG_STATS	info	events
		3 state events
		0 time events
LOG_STATS	info	solver: DASSL
		344 steps taken
		400 calls of functionODE
		78 evaluations of jacobian
		💙 error test failures
		0 convergence test failures

CPU-time for integration	:	2.4 seconds 🤇
CPU-time for one GRID interval	:	2.4 mini-seconds
Number of result points	:	1013
Number of GRID points	:	1001
Number of (successful) steps	:	243
Number of F-evaluations	:	2294
Number of H-evaluations	:	1249
Number of Jacobian-evaluations	3:	94
Number of (model) time events	:	6
Number of (U) time events	:	0
Number of state events	:	0
Number of step events	:	0
Minimum integration stepsize	:	0.0002
Maximum integration stepsize	:	52.4
Maximum integration order	:	5

Dymola

LOG_STATS	info ### STATISTICS ###
LOG STATS	info timer
_	0.00213257s [0.0%] pre-initialization
	1.40867s [1.8%] initialization
	0.0254833s [0.0%] steps
	0.111198s [0.1%] creating output-file
	0.0591024s [0.1%] event-handling
	0.0296431s [0.0%] overhead
	74.946s 97.9%] simulation
	76.Joz3S [100.0%] total
LOG_STATS	info events
_	6 state events
	0 time events
LOG_STATS	info solver: DASSL
	255 steps taken
	316 calls of functionODE
	88 evaluations of jacobian
	1 error test failures
I	0 convergence test failures

```
CPU-time for integration
                             : 2.4 seconds
CPU-time for one GRID interval: 2.4 milli-seconds
Number of result points
                              : 1013
Number of GRID points
                               100
Number of (successful) steps
                               243
Number of F-evaluations
Number of H-evaluations
                              : 1249
Number of Jacobian-evaluations: 94
Number of (model) time events : 6
Number of (U) time events
                              : 0
Number of state
                              : 0
                  events
Number of step
                 events
                              : 0
Minimum integration stepsize : 0.0002
Maximum integration stepsize : 52.4
Maximum integration order
                          : 5
```

Dymola

LOG_STATS	info ### STATISTICS ###
LOG STATS	info timer
_	0.00213257s [0.0%] pre-initialization
	1.40867s [1.8%] initialization
	0.0254833s [0.0%] steps
	0.111198s [0.1%] creating output-file
	0.0591024s [0.1%] event-handling
	0.0296431s [0.0%] overhead
	74.946s [97.9%] simulation
	76.5823s [100.0%] total
LOG STATS	info events
-	6 state events
	0 time events
LOG STATS	info solver: DASSL
-	255 steps taken
	910 calls of functionODE
	88 evaluations of jacobian
	1 error test failures
	0 convergence test failures

```
CPU-time for integration
                          : 2.4 seconds
CPU-time for one GRID interval: 2.4 milli-seconds
Number of result points
                             : 1013
Number of GRID points
                             : 1001
Number of (successful) steps : 243
                             : 2294
Number of F-evaluations
Number of H-evaluations
                             : 1249
Number of Jacobian-evaluations: 94
Number of (model) time events :
Number of (U) time events
                             : 0
Number of state
                  events
                             : 0
Number of step
                 events
                             : 0
Minimum integration stepsize : 0.0002
Maximum integration stepsize : 52.4
Maximum integration order
                          : 5
```

Dymola

LOG_STATS	info	### STATISTICS ###
LOG STATS	info	timer
_		0.00213257s [0.0%] pre-initialization
		1.40867s [1.8%] initialization
		0.0254833s [0.0%] steps
		0.111198s [0.1%] creating output-file
		0.0591024s [0.1%] event-handling
		0.0296431s [0.0%] overhead
		74.946s [97.9%] simulation
		76.5823s [100.0%] total
LOG STATS	info	events
_		6 state events
		0 time events
LOG STATS	info	solver: DASSL
_		255 steps taken
		246 calls of functionODE
		88 evaluations of jacobian
		Verror test failures
		0 convergence test failures

```
CPU-time for integration
                          : 2.4 seconds
CPU-time for one GRID interval: 2.4 milli-seconds
Number of result points
                             : 1013
Number of GRID points
                             : 1001
Number of (successful) steps : 243
                             : 2294
Number of F-evaluations
Number of H-evaluations
                             : 1249
Number of Jacobian-evaluations: 94
Number of (model) time events :
Number of (U) time events
                             : 0
Number of state
                  events
                             : 0
Number of step
                 events
                             : 0
Minimum integration stepsize : 0.0002
Maximum integration stepsize : 52.4
Maximum integration order
                          : 5
```

Dymola

LOG_STATS	into	### STATISTICS ###
LOG STATS	info	timer
_		0.00213257s [0.0%] pre-initialization
		1.40867s [1.8%] initialization
		0.0254833s [0.0%] steps
		0.111198s [0.1%] creating output-file
		0.0591024s [0.1%] event-handling
		0.0296431s [0.0%] overhead
		74.946s [97.9%] simulation
		76.5823s [100.0%] total
LOG STATS	info	events
_		6 state events
		0 time events
LOG STATS	info	solver: DASSL
		255 steps taken
		Calls of functionODE
		88 evaluations of jacobian
		Verror test failures
		0 convergence test failures

- Some models still generate errors in the back-end stages:
 - Error: Internal error Transformation Module PFPlusExt index Reduction Method Pantelides failed!
 - Errors in the compilation of the C-code, due to incorrect C-code being generated
- Sometimes problem with models that work in Dymola and fail in OMC are due to subtle issues, e.g.:
 - semantics of parameter Real p(fixed = false) = 0
 - earlier versions of Dymola ignored the binding, but OMC did not
 - in this case Dymola was not complying to the specification
 - library and Dymola have been fixed a few months ago
 - semantics of parameter Real p(start = 2);
 - in this case, Modelica 3.3 suggests to add a binding equation p=2 and issue a warning
 - OMC didn't do that \rightarrow underdetermined initialization system
 - error discovered and fixed on Feb 1st, 2014
 - other, still undiscovered problems...

Issues with OMEdit

Main issues with the OMEdit GUI

- OMEdit applies extensive reformatting to the code
 - whitespace and carriage returns
 - numerical literals (e.g. $1e6 \rightarrow 100000$)

Not possible to co-develop with OMC & Dymola

Main issues with the OMEdit GUI

- OMEdit applies extensive reformatting to the code
 - whitespace and carriage returns
 - numerical literals (e.g. $1e6 \rightarrow 100000$)

Not possible to co-develop with OMC & Dymola

- Replaceable models are not handled by OMC
 - they are used for replaceable heat transfer models
 - they are used in many other places in the MSL

Not possible to build heat exchanger models using OMEdit's GUI

Main issues with the OMEdit GUI

- OMEdit applies extensive reformatting to the code
 - whitespace and carriage returns
 - numerical literals (e.g. $1e6 \rightarrow 100000$)

Not possible to co-develop with OMC & Dymola

- Replaceable models are not handled by OMC
 - they are used for replaceable heat transfer models
 - they are used in many other places in the MSL

Not possible to build heat exchanger models using OMEdit's GUI

- It is not possible to apply or edit modifiers in hierarchically structured models using OMEdit's GUI
 - modifiers can only be applied in the textual mode
 - this requires to know the names of modified sub-components and parameters, which is inconvenient

Not possible to handle complex, structured models

Replaceable models

😑 Downcomer in ThermoPo	wer.Examples.CISE.CISEPlant			? 🗙
General Initialisation	Add modifiers			
Component				Icon
Name Downcomer				
Comment				
Comment				Flow1
Model				
Path ThermoPower.Wa	iter.Flow 1DFV2ph			
Comment 1-dimensional nu	u now model for water/steam (ninte volumes, 2-phase)			
wnom	0.23	▶ kg/s	Nominal mass flowrate (total)	*
FFtype	ThermoPower.Choices.Flow 1D.FFtypes.Colebrook 🔻	•	Friction Factor Type	
Kfnom	0	Pa.kg/(m3.kg2/s2)	Nominal hydraulic resistance coefficient	
dpnom	0.01	• bar	Nominal pressure drop (friction term only!)	
rhonom	0	kg/m3	Nominal inlet density	
Dhyd	0.04922	m	Hydraulic Diameter (single tube)	
Cfnom	0.01	•	Nominal Fanning friction factor	
e	6.1e-4	•	Relative roughness (ratio roughness/diameter)	
DynamicMomentum	false 🔻	•	Inertial phenomena accounted for	
HydraulicCapacitance	HCtypes.Downstream 🔻	•	Location of the hydraulic capacitance	
avoidInletEnthalpyDerivativ	e true 🔻	•	Avoid inlet enthalpy derivative	=
allowFlowReversal	system.allowFlowReversal 🔻	•	= true to allow flow reversal, false restricts to design directio	n –
wnf	0.3	•	Fraction of nominal flow rate at which linear friction equals tu	rbulent friction
Kfc	1	•	Friction factor correction coefficient	
heatTransfer	Constant heat transfer coefficient() 🔽 🔝	•	Heat transfer model	
wall	redeclare ThermoPower.Thermal.HeatToefficient heatTransfer(gamma=1800) <remove modifier=""></remove>	•		
	Delta T across the boundary layer is zero (infinite h.t.c.)			Ŧ
	 Constant heat transfer coefficient Constant global thermal conductance (UA value) 			
	Flow-dependent h.t.c. gamma = gamma_nom*(w/wnom)^alpha		OK In	ro Cancel
	Dittus Boelter heat transfer correlation			
	🛥 Dittus-Boeiter 1-phase, constant h.t.c. 2-phase			

Replaceable models

😑 Downcom	er in ThermoPower.Examples.CISE.CIS	EPlant	? 🛛
General	Initialisation Add modifiers		
Component -			Icon
Name	Downcomer		
Comment			
Model Path	ThermoPower.Water.Flow 1DFV2ph	redeclare heatTransfer in ThermoPower.Examples.CISE.CISEPIant	Flow1
Comment	1-dimensional fluid flow model for water/s	General Add modifiers	
wnom		Component Icon	
FFtype		Name redeclare heatTransfer	
Kfnom		Comment	
dpnom		Model Consta term only!)	
rhonom		Path ThermoPower Thermal HeatTransfer ConstantHeatTransferCoefficient	
Dhyd		Comment Constant heat transfer coefficient	
Cfnom		Parameters	
е		hness/diameter)	
DynamicMo	omentum	useAverageTemperature true v = true to use average temperature for heat transfer	
HydraulicC	apacitance	gamma 1800 v W/(m2.K) Constant heat transfer coefficient	
avoidInletE	EnthalpyDerivative		=
allowFlowR	teversal	OK Info Cancel alse restricts to design direction	
wnf		t which linear friction equals turbu	lent friction
Kfc		Friction factor correction coefficient	
heatTransf	fer	Constant heat transfer coefficient()	
wall			_
			· ·
		OK Info	Cancel

😑 hRSG.Hei	atExchangersGr	oup.Ec2_HP.fluidFlow in ThermoPower.Pov	werPlants.Simulators.Stea	mPlant_Sim1		? 🔀
General	Initialisation	Add modifiers				
Component	t					Icon
Name	hRSG.HeatExc	angersGroup.Ec2 HP.fluidElow				
Comment						
commerte						Flow1D
Model						
Path	ThermoPower.V	'ater.Flow1D id flow model for water (steam (finite velumes)				
Comment	1-dimensional fi	ind now model for water/steam (finite volumes)				
Parameters	;					^
N			N_F		Number of nodes for thermal variables	
Nw			N - 1		Number of volumes on the wall interface	
Nt			14		Number of tubes in parallel	
L		exchSur	face_F^2/(fluidVol*pi*4)	m	Tube length	
н			0	m	Elevation of outlet over inlet	E
A		(fluidVol*4	/exchSurface_F)^2/4*pi	m2	Cross-sectional area (single tube)	
omega		fluid	dVol*4/exchSurface_F*pi	m	Perimeter of heat transfer surface (single tube)	
wnom			fluidNomFlowRate •	kg/s	Nominal mass flowrate (total)	
FFtype			FFtype_F 🔻		Friction Factor Type	
Kfnom			Kfnom_F	Pa.kg/(m3.kg2/s2)	Nominal hydraulic resistance coefficient	
dpnom			dpnom_F	bar	Nominal pressure drop (friction term only!)	
rhonom			rhonom_F	kg/m3	Nominal inlet density	
Dhyd		f	fluidVol*4/exchSurface_F	m	Hydraulic Diameter (single tube)	
Cfnom			Cfnom_F		Nominal Fanning friction factor	
e			0		Relative roughness (ratio roughness/diameter)	-
		1			•••	
					ОК	Info Cancel

• This corresponds to applying the following modifier in the textual view

```
HRSG.Examples.HRSG_3LRh hRSG(
    HeatExchangersGroup(Ec2_HP(fluidFlow(Nt=14))))
```

- Possibly mixed up with other pre-existing modifiers
- This feature doesn't need to be implemented in the same way as Dymola,
- But it is essential that OMEdit has way to edit the parameters of hierarchically structured models by using the GUI

- The CISESim120501 model is compiled to executable simulation code
 - by Dymola/Visual Studio in 7 seconds
 - by OMEdit/OMC/gcc in 30 seconds
- It is probably possible to reduce the compilation time gap (currently 4X) by exploiting parallel compilation of the various C source files (is it already done by default?)
- OMEdit should automatically retrieve from the OS the number of parallel threads it can run, and use all of them by default
- Earlier work by Sjolund and Casella regarding the parallelization of the solution of the DAEs into ODEs should also become part of the mainstream implementation of OMEdit
- Also the parallel computation of Jacobians should be investigated, and become part of the mainstream implementation of OMEdit

Conclusions

- After 10 years from the start of the development of ThermoPower, the (open source!) library can now be used in the (open source) OpenModelica environment
- Many models can already be simulated, and produce the correct results
- Steady-state initialization is working nicely on fairly complex models
- Compilation time is still about 4X slower than Dymola
- Simulation time for models involving water/steam properties is still about 10X slower than Dymola
- The OMEdit GUI should be improved regarding replaceable models and parameter editing in hierarchically structured models
- Parallel thread execution should be used more aggressively
- The declarative debugger (once polished up) will be a boon
- We might expect OMC to be a viable alternative to Dymola for the simulation of ThermoPower-based models by the end of 2014!

Thank you for you kind attention!