Modelica Extensions for Requirement
Modeling and their Implementation

Lena Buffoni (Linkdping University),
Wladimir Schamai (EADS)

OpenModelica Workshop 2014

WHY DO WE WANT TO MODEL
REQUIREMENTS?

Why are Requirements Important?

 Requirements Engineering is an important part of the early
phases in system design V

* Errorsin system requirements cause large cost increase in
product development, or even completely failed projects

* Requirements engineering should be an integrated part of
Modelica-based model-based system development tools

* Some resources:

— International Requirements engineering conference home page:
http://requirements-engineering.org/

— Example of requirements engineering journal: Requirements Engineering, Springer Verlag,
http://link.springer.com/journal/766

Requirement Engineering Activities

Requirements inception or requirements elicitation
Requirements identification - identifying new requirements

Requirements analysis and negotiation - checking requirements and
resolving stakeholder conflicts

Requirements specification (System Requirements Specification)-
documenting the requirements in a requirements document

System modeling - deriving models of the system

Requirements validation - checking that the documented requirements
and models are consistent and meet stakeholder needs

Requirements management - managing changes to the requirements as
the system is developed and put into use

Some Requirement Engineering

Product

IBM Rational DOORS
IBM Rational RequisitePro
IBM Rational Requirements Composer

TraceCloud

Blueprint Requirements Definition &
Management

Visual Paradigm Requirements Capturing

HP Requirements Management

PTC Integrity for Requirements Engineering

Polarion REQUIREMENTS

RQA Requirements Quality Analyzer for system
engineering projects

Products

http://www-01.ibm.com/software/awdtools/
doors/

http://www-01.ibm.com/software/awdtools/
reqpro

http://www-01.ibm.com/software/awdtools/
rrc/
http://www.tracecloud.com/Gloreelava2/isp/
WebSite/TCHome.jsp

http://www.blueprintsys.com/resources/
product-brochures/

http://www.visual-paradigm.com/product/
vpuml/provides/regmodeling.jsp

http://www8.hp.com/us/en/software-
solutions/software.html?compURI=1172907

http://www.mks.com/solutions/discipline/rm/
requirements-engineering

http://www.polarion.com/products/
requirements/index.php

http://www.reusecompany.com/
requirements-quality-analyzer

Notes

ex. "Telelogic DOORS"; used for system
engineering

Used for software engineering

The followup to IBM Rational RequisitePro

Formerly MKS Integrity for Requirements
Management - optimized for system and
software requirements

Web Requirements Management solution for
any product, process or service

The Requirements Quality Analyzer tool
(RQA) allows you to define, measure,
improve and manage the quality of the
requirements specifications within the
systems engineering proces

Some Requirements Engineering
Literature

Kotonya G. and Sommerville, I. Requirements Engineering: Processes and
Techniques. Chichester, UK: John Wiley & Sons

Software Requirements Engineering Methodology (Development) Alfor,M. W. and
Lawson,J). T. TRW Defense and Space Systems Group. 1979.

Thayer, R.H., and M. Dorfman (eds.), System and Software Requirements
Engineering, IEEE Computer Society Press, Los Alamitos, CA, 1990.

Royce, W.W. 'Managing the Development of Large Software Systems: Concepts
and Techniques', IEEE Westcon, Los Angeles, CA> pp 1-9, 1970. Reprinted in ICSE
'87, Proceedings of the 9th international conference on Software Engineering.

Requirements bibliography Reviewed November 10th 2011

Sommerville, |. Software Engineering, 7th ed. Harlow, UK: Addison Wesley, 2006.

Ralph, Paul (2012). "The lllusion of Requirements in Software Development".
Requirements Engineering.

HOW DO WE REPRESENT
REQUIREMENTS?

Modeling requirements in Modelica

* We need a way of marking requirements

— proposal introduce a new type of specialized
class: requirement

e Alternatives: inherit from a generic class
Requirement or use an annotation

Why are requirements different?

Requirements must have a status
Requirements do not modify the physical model

-or specific uses, we need to know which models
dalre requirements, e.g.

— automatic model composition,

— requirement verification,

Requirement models can (possibly) contain
extensions for expressing requirements in a more
requirement-designer friendly way (FORM-L
macros for example)

Status of a requirement

Example requirement: when the pump is on the flow must be above a minimum
threshold

* The status variable is 3-valued and applies to a
specific instant in time:

— Violated : the requirement is applicable and the
conditions of the requirement are not fulfilled — the
pump is on and the flow is below the minimum required

— Not_violated : the requirement is applicable and the
conditions of the requirement are fulfilled — the pump is
on and the flow is above the minimum required

— Not_applicable : the requirement cannot be applied or is
not relevant - the pumps are off

Status of a requirement (2)

* A set of functions for checking the status over
the course of the system simjulation

— has_been_evaluated() — true if the requirement was
applicable at some point in time

— has_been_violated() — true is the requirement has
been violated at least once

— can_become_applicable() — true if the requirement
can apply in the future (the time locator can be
applicable)

Example 1 - LimitInFlow

requirement LimitInFlow "A2: If pump is on then in-flow is

less than maxLevel"

//qOut from the Source component
input Real liquidFlow;

input Boolean pumpOn;

parameter Real maxLevel = 0.05;

equation

end LimitInFlow;

12

Example (2) : No pump shall cavitate

package Requirements

model Req
/* number of cavitating pumps*/
input Real numberOfCavPumps = 0;

/* min. number of operating pumps */

constant Integer maxNumOfCavPumps = 0;
/*indication of requirement violation, 0 = means not evaluated */
output Status status(start=status not applicable, fixed=true);

algorithm
if numberOfCavPumps > maxNumOfCavPumps then
status := ;
else
status :=
end 1if;
end Reqg;
end Requirements;

13

FORM-L and Modelica

* FORM-L a language for property expression proposed
by EDF

* Needed to represent FORM_L constructs in Modelica:

— A 3-Valued type, e.g. Boolean3 (true, false, undefined)

— A library of types to represent FORM-L concepts
Ex:
type Condition = Boolean3;

— A set of macros to represent FORM-L concepts, that can
be expanded to standard Modelica

Example

Modelica :

// Fgrm—L: during (On and (MPSVoltage > V170)) check no (Off becomes
true);

requirement Reql_on;

input Real MPSVoltage;

input Boolean on;

input Boolean off;

equation

end if;
end Reql;

15

Example — Using if-expression

Modelica :

// Form-L: during (On and (MPSVoltage > V170)) check no (Off becomes
true);

requirement Reqlb_is_on;
input Real MPSVoltage;
input Boolean on;

input Boolean off;
equation

end Reqglbis;

16

Example(3) — Using Macro AFTER

// requirement R9a =

// during (SingleSensorFailure and after (Op.eVReset + s10)) check
NormalPower becomes true;

requirement Req2

input Boolean SingleSensorFailure;
input Boolean eVReset;

input Boolean NormalPower;

equation

end Reqg?l;

17

Example(4) — Standard Modelica

// requirement R9a =

// during (SingleSensorFailure and after (Op.eVReset + s10)) check NormalPower
becomes true;

model Req?2

input Boolean SingleSensorFailure;
input Boolean eVReset;

input Boolean NormalPower;

Boolean wasReset(start=false);
integer tReset;

equation

end ReqZ;

18

Issues

* Terminology:
— Requirements? Properties? Assertions? ...

e Extensions

— New embedded language? Nothing? Something in
between?

USING REQUIREMENTS FOR
VERIFICATION : A CASE STUDY

Requirement Verification vs System
Design
Formalized Requirements that should be verified

System Model, i.e., Design Alternative Model, for which the
requirements should be verified

Application scenarios with the system model for which the
requirements should be verified

Clients (requirement models, scenarios) refer to data from
system model components

Clients and providers do not know each other a priori
Mediators relate a number of clients to a number of providers

Example: System and Requirement

A system contains several pumps,
Requirement: “No pump within the system shall cavitate at any time”

System model. Formalized requirement:

model SRI
Machines.PumpA PO1;
Machines.PumpB PO2; package Requirements
Machines.PumpA PO3; model Req
end SRI; /* number of cavitating pumps*/
input Real numberOfCavPumps = 0;
package Machines /* min. number of operating pumps */
model PumpA o constant Integer maxNumOfCavPumps = 0;
/' Volumetric mass flow-rate inside the pump /*indication of requirement violation, 0 = means not evaluated */
Real Qv =1; 4 ’
// Pressure at the inlet (C1 is the fluid connector at the inlet) output Integer status(start=0,fixed=true);
Real C1 P=1;)
// Pressure at the outlet (C2 is the fluid connector at the outlet) algorithm
Real C2 P=1; if numberOfCavPumps > maxNumOfCavPumps then
end PumpA; status := 2 "2 means violated";
else
model PumpB status := 1 "1 means NOT violated";
// Volumetric mass flow-rate inside the pump end if;
Real Qv =1; .
// Pressure at the inlet (C1 is the fluid connector at the inlet) end Reqf '
Real C1 P=1; end Requirements;
// Pressure at the outlet (C2 is the fluid connector at the outlet)
Real C2 P=1;

// Minimum pressure inside the pump
Real Pmin = 20;
end PumpB;
end Machines;

Example: Aux. Functions from Lib.

package HFunctions
function H i1s_cavitating
/* Volumetric flow inside the pump
input Real vol flow;
/* Minimum pressure inside the pump
input Real Pmin;
/* Table giving the minimum pressure inside the
pump as a function of the volumetric flow inside the pump */
input Real NPSH;
/* Boolean stating whether the requirement
for non-cavitation is satisfied (=false) or not (=true) */
output Boolean is_cavitating;

algorithm
is_cavitating := (Pmin < getNPSH(vol flow));
end H is cavitating;
For determining whether a pump cavitates, call a library function

function getNPSH getNPSH(vol_flow)

end getNPSH;
end HFunctions;

Example: Analysis model

Formalized requirement:

package Requirements
model Req
/* number of cavitating pumps*/
input Real numberOfCavPumps = 0;
/* min. number of operating pumps */
. constant Integer maxNumOfCavPumps = 0;
model AnalyslsMOdel /*indication of requirement violation, 0 = means not evaluated *

output Integer status(start=0,fixed=true);

. algorithm
if numberOfCavPumps > maxNumOfCavPumps then

Requirements .Req reql . status := 2 "2 means violated";

9 else

SRI Sri . status := 1 "1 means NOT violated";
end if}
5 B

end Req;

el’ld Anal}ISlS 0) end Requirements;

System model:

model SRI
Machines.PumpA PO1;
Machines.PumpB PO2;
Machines.PumpA PO3;
end SRI;

package Machines

model PumpA
// Volumetric mass flow-rate inside the pump
Real Qv=1;
// Pressure at the inlet (C1 is the fluid connector at the inlet)
Real C1_P=1;
// Pressure at the outlet (C2 is the fluid connector at the outlet)
Real C2_P=1;

end PumpA;

model PumpB
// Volumetric mass flow-rate inside the pump
Real Qv=1;
// Pressure at the inlet (C1 is the fluid connector at the inlet)
Real C1_P=1;
// Pressure at the outlet (C2 is the fluid connector at the outlet)
Real C2_P=1;
// Minimum pressure inside the pump
Real Pmin = 20;

end PumpB;

end Machines;

WHAT DO WE WANT TO ACHIEVE?

What do we want to achieve?

Initial AnalysisModel: Binding:

model AnalysisModel
= [P] MODRIOB...sExample import Mediators.*; client instance reference = binding expression
[P] Requirements Requirements.Req reql;
+ IE Machines SRI SI'i;
[P] HFunctions end AnalysisModel; A binding is a causal relation which specifies that,
- at any simulated time, the value given to the
Slntyzehicde! ot View Class H H
5 [P partolMediators g - referenced client instance shall be the same as the
? [B wediators » value computed by the right-hand expression.

o

Neu Modelica Klasse

) Modell prifen

Simulieren

Updated AnalysisModel model with a binding:

E Instanziiere Modell
/

v

(Entladen

1d SR model AnalysisModel
k Update bindings import Mediators.*;
[SSpw—vey Requirements.Req reql (numberOfCavPumps=

madsl Dumn A

sum({

(if (HFunctions.H_is_cavitating(sri.PO1.Qv, sri.PO1.C1_P, 1))
then 1 else 0),

(if (HFunctions.H_is_cavitating(sri.PO2.Qv, sri.PO2.Pmin, 1))
then 1 else 0),

(if (HFunctions.H_is_cavitating(sri.PO3.Qv, sri.PO3.C1_P, 1))
then 1 else 0)}));

SRI sri;
end AnalysisModel,

WHAT DO WE NEED TO ACHIEVE
THIS?

Bindings Concept: Basic Idea

Some models require data: Clients
Some models can provide require data: Providers

Clients and providers do not know each other a
priori !

Mediators relate a number of clients to a number
of providers

clients mediator providers

What do we Need to Capture?

Mediator specifies which models are clients and exposes
what information is needed

Providers are used to infer the binding expression for clients

In our example:

— A mediator will be used to infer the binding expression that
calculates the number of caviating pumps in a particular system
design model.

Computing strategy:
— Each pump model shall return 17 if it cavitates and 0 otherwise
— Mediator will sum up the values from all the pumps

How do we capture this
information?

Example using Modelica Syntax

Requirement
Analyst

=

package PartialMediators

partial mediator NumberOfCaviatingPumps (& ----------- - __

/* Number of cavitating pumps. This mediator is incomplete
because no provider are defined yet. */

type Real;

clients
mandatory Requirements.Req.numberOfCavPumps;

end NumberOfCaviatingPumps_C;
end PartialMediators;

clients

System
Designer

package Mediators

extends PartialMediators.NumberOfCaviatingPumps_C;

/* reduces the array of provided values to a single value */
template sum(:) end template;

/* list of providers used to compute the number of
all cavitating pumps */
providers
/* reference to the provider model (i.e., its qualified name) */
Machines.PumpA
template
if HFunctions.H_is_caviating(
getPath().Qv, getPath().C1_P,
getNPSHTable(A)

then 1 else 0
end template;

/* getPath() is a placeholder that will be replaced with the
instance path of the pump model */
Machines.PumpB
template
if HFunctions.H_is_caviating(
getPath().Qv, getPath().Pmin,
getNPSHTable(B)

)
then 1 else 0

end template;
end NumberOtCaviatingPumps_P1;
end Mediators;

ALS

Vs

providers

What do we need to capture?

Abstract Syntax View
name
type
value template
} provider provider
reference reference reference reference
isMandatory id template providerid template

Mediator name (with optional comments) reflects what is needed by clients

Mediator type must be compatible to each of its clients (for Modelica also the lowest variability of clients should be indicated)
Client or provider id is the qualified name of the client or provider model (e.g. Packagel .Modell.componentl)
isMandatory (true by default) indicates whether the client must be bound. If not, the client component must have a default
value.

All value templates are optional (template, preliminary name, an expression that returns a value)

Client or provider template contains expressions that can contain instance paths (e.g. in Modelica using the dot-notation) for
referencing components within the client or provider models

Mediator template can only contain predefined macros (e.g. sum(:), toArray(:), card(:), min(:), max(:), etc.)

HOW TO ACHIEVE OUR GOAL?

Generated Binding Expression

Mediator that contains client references: —

__

. partial mediator NumberOfCaviatingPumps_C
type Real
i clients !
isMandatory Requirements.Req.numberOfCavPumps;

__

mediator NumberOfCavitatingPumps_P1
extends NumberOfCaviatingPumps_C;

template sum(:) end template;
providers
Machines.PumpA
template
if HFunctions.H_is_caviating(getPath().Qyv, getPath().C1_P,
getNPSHTable(A)) then 1 else 0
end template;

Model with generated binding for client req1.numberOfCavPumps:

model AnalysisModel

Requirements.Req req1(numberOfCavPumps= sum({ /
(if (HFunctions.H_is_cavitating(sri.PO1.Qy, sri.PO1.C1_P, 1)) then 1 else 0}
(if (HFunctions.H_is_cavitating(sri.PO2.Qv, sri.PO2.Pmin, 1)) then 1 else 0),
(if (HFunctions.H_is_cavitating(sri.PO3.Qy, sri.PO3.C1_P, 1)) then 1 else 0)}));

clients mediator providers

GV\ /'V°
> <?
°A/ \A°

Mediator
definition

Generated binding
expressions for clients

Note, getPath() is replaced by
provider model instance path
within the given context

Generating Bindings Expression

Instantiation Tree

AnalysisModel

sri

req1

N

numberOfCavPumps ... (provider) PO1 (provider) PO2 (provider) PO3

AN T N N

Qv C1P C2P Q C1P C2P Pmin Qv C1P C2P

Inferred binding expression: numberOfCavPumps= sum({
(if (HFunctions.H_is_cavitating(sri.PO1.Qy, sri.PO1.C1_P, 1)) then 1 else 0),
(if (HFunctions.H_is_cavitating(sri.PO2.Qyv, sri.PO2.Pmin, 1)) then 1 else 0),
(if (HFunctions.H_is_cavitating(sri.PO3.Qyv, sri.PO1.C1_P, 1)) then 1 else 0)}))

To be stored as modified in AnalysisMode1: req1 (humberOfCavPumps = ...

Client model qualified name: Requirements.Req.numberOfCavPumps (used to identify it as client based on mediator references)
Client instance path in AnalysisModel1: req1.numberOfCavPumps

Mediator (used to inferring the binding expression): Mediators.NumberOfCaviatingPumps_P1

Mediator operation (used to inferring the binding expression): sum(:)

Providers (used to inferring bindings expression): sri.PO1, sri.PO2, sri.PO3

USING BINDINGS FOR VERIFICATION
MODEL COMPOSITION

Composing Verification Models

main idea

« Collect all scenarios, requirements, import mediators

» (Generate/compose verification models automatically:
— Select the system model to be verified

— Find all scenarios that can stimulate the selected system model
(i.e., for each mandatory client check whether the binding
expression can be inferred)

— Find requirements that are implemented in the selected system
model (i.e., check whether for each requirement for all
mandatory clients binding expressions can be inferred)

« Present the list of scenarios and requirements to the user

— The user can select only a subset or scenarios or requirements
he/she wishes to consider

Generating/Composing
Verification Models

algorithm

O Combinations

s e E

* Abort if no scenario

¢

More scenarios

® N/<?>Y [Select Scenario } -- @

else e

-

. - . * Next scenario if no requirement
Clients of design a

alternative satisfied Analyze (Next) Requirement S

by providers from
More req.

scenario?
N Y }
| @ Select Requirement SEE=S ||
else
,// More requirements
/,’- | |

All requirement else
clients satisfied?

Issues

* Best representation:
— Modelica Syntax? XML"? Annotations?

