
Modeling with Partial Di�erential Equations �

Modelica Language Extension Proposal

Jan �ilar1 Kristian Stavåker2 Marek Mateják1

Pavol Privitzer1 Jozef Nagy3

1First Faculty of Medicine

Charles University

Prague, Czech Republic

2Department of Computer and Information Science

Linköping University

Linköping, Sweden

3Prague, Czech Republic

OpenModelica Workshop 2014



ODE and PDE

ODE PDE
examples vibrating mass vibrating string

d2x
dt2

+ kx = 0 ∂2u
∂t2

− q ∂2u
∂x2

= 0
Unknown function of 1 variable multi-variable function
(solution) (here time) (here time, space coordinate)
derivatives the only variable dt at least two variables ∂t, ∂x , ...
conditions initial initial and boundary



PDE handling in the context of Modelica

• PDEs are not supported in the Modelica standard

• Approaches to unifying PDE modeling with Modelica exist

• Chapter in Peter Fritzson's Modelica book[1]

• Levon Saldamli proposed in his PhD thesis [2]

• support for PDE on language level
• language extension not complete
• not supported in OM and other tools

We continue this work and propose some modi�cations and further
extensions.



Example � 3D heat transfer with source and PID controller

• heat transfer in a room
• in middle of right wall temperature sensor
• left wall � heating
• PID controller



Mathematical model of heat transfer

PDE:

∂T

∂t
− α ·

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
= 0

IC: T (0, x , y , z) = a − kx

BC for left wall (heating) ∂T
∂~n (t, 0, y , z) = −β P

lx ly

BC for other walls (insulated) ∂T
∂~n = 0 on remaining walls

T .. temperature � �eld
t, x , y , z .. time and space coordinates
lx , ly , lz .. dimensions of the room
P .. power of heating
~n .. normal vector of the boundary



Mathematical model of PID controller and heating

heat sensor

Ts = T

(
lx ,

ly

2
,
lz

2

)
PID controller and heating � ODE

e = Td − Ts

P = kpe + ki

tˆ

0

e(τ)dτ + kd
d

dt
e

Ts .. temperature of the sensor placed in middle of the right wall



Modelica model



Domain

• We have to represent the room and it's boundaries.
• Subsets of space (1D, 2D or 3D) where �elds are de�ned,
equations hold and calculations are performed we call domain.

• There is new built-in type Domain:

type Domain
parameter Integer ndim;

replaceable Region interior;
replaceable function shape

input Real u[ndim-1];
output Real coord[ndim];

end shape;
end Domain;

• All domains extends this built-in type
• Domain contains regions representing its interior and
boundaries. region is also new built-in type.

• Shape-function maps real intervals onto regions and thus
de�nes them (idea from Peter's Book [1]).



Domain example

class DomainBlock3D
extends Domain(ndim=3);
parameter Real Lx, Ly, Lz, ax, ay, az;
Coordinate x, y, z ;
coord = {x,y,z};
redeclare function shape //impure - not supported

input Real vx, vy, vz;
output Real x=ax+Lx*vx, y=ay+Ly*vy, z=az+Lz*vz;

end shape;
Region3D interior(shape=shape, interval={{0,1},{0,1},{0,1}});
Region2D left(shape=shape, interval={0,{0,1},{0,1}});
Region2D bottom(shape=shape, interval={{0,1},{0,1},0});
... //right, top, front, rear

end DomainBlock3D;
other options to de�ne domains exist



Coordinates

We used coordinate variables to determine position of points in the
room.
Coordinates

• are independent variables (such as time in current Modelica)

• �elds are functions of coordinates

• �elds may be di�erentiated with respect to coordinates

• need spacial handling in compiler and runtime

New modi�er coordinate � to de�ne coordinates. Usage e.g.
coordinate Real x(name=�cartesian�);

The type should be always Real.



Fields

Temperature in the room is a �eld variable

• its value dependes on time and space position (multi-variable
function)

new modi�er field to de�ne �elds, usage e.g.
field Real T(domain=room);

• modelica built-in types or types derived from them allowed only

• domain � mandatory attribute � to determine de�nition
domain



Field � literal constructor, accessing value

• to set initial value of the temperature, �eld literal constructor
is needed
field parameter Real T_0 = {a-k*room.x in room};

• T_0 is a �eld constant in time
• its domain is room
• its value is given by the expression depending on the x
coordinate

• We have to access value of temperature in the point where the
temperature sensor is placed.
T_sensor = T in room.sensorPosition;

• T is �eld, T_sensor not
• sensorPosition is of type Region0D � represents the point



in � domain and region speci�cation keyword

• in keyword is used also in PDEs and BC to determine on
which region (boundary) they hold.

• default region is interior, if it is not speci�ed

field Real T, W;

Real T_sensor;

parameter Real lambda, T_out;

Room room; //3D domain, has 0D region sensorPosition

equation

W = -lambda*grad(T) in room; //= room.interior (PDE)

pder(T,room.right.n) = 0 in room.right; //BC

T_sensor = T in room.sensorPosition;

//(nonfield-field)



Di�erential operators

We need partial di�erential operators that are used in PDEs and
BCs.

• New pder operator:

pder(u,time)∼∂u
∂t , pder(u,room.x)∼∂u

∂x ,

pder(u,room.x,room.y)∼ ∂2u
∂x∂y

• normal derivative (often in BC)

pder(u,room.n)∼∂u
∂~n

• n (normal vector) � implicit member of all regions of
dimension n − 1 in n-dimensional domain

• vector di�erential operators gradient, divergence, curl are
de�ned



Accessing coordinate variables

• Fields and equations are located outside domain class.
Coordinates (and normal vector) inside � in equations must be
accessed using �.�
pder(u,omega.x) = 0 in omega.interior;

v*omega.left.n = 0 in omega.left;

• One possible shortcut would be to use new keywords dom and
reg to refer the domain, resp. region speci�ed with in. E.g.
pder(u,dom.x) = 0 in omega.interior;

v*reg.n = 0 in omega.left;

• Other option � allow access coordinates directly without
speci�cation of the domain:
pder(u,x) = 0 in omega.interior;

v*n = 0 in omega.left;

• if a variable of a same name exists, it has preference and the
coordinate must be accessed with �.� anyway



Changes over previous extensions � domains

• Domains
• previously described by de�ning its boundaries using
shape-function. It works well in 2D, but doesn't work in 3D.
E.g. to build-up the domain on the picture below, it is hard to
�nd shape-functions generating incomplete intersecting square
sides and sphere.

• we suggest to use one shape-function to parametrize interior
and all boundaries. Complex geometries de�ne in some other
way (CSG, import from CAD).



Changes � coordinates, in operator, accessing

�elds

• Coordinates

• previously no special syntax to de�ne them. There are two
prede�ned arrays for coordinate systems in built-in type
domain.

• we suggest new modi�er coordinate to de�ne coordinates so
that user can de�ne any number of coordinate systems.

• in operator

• previously used only in BCs and �led literal constructor
• we suggest to use it also in PDEs and equations relating �eld
and non-�eld variables (explained in next point)

• accessing �eld values in particular point

• originally in function-like style, e.g. T(1.3, 9.1 , 4.7)
• we suggest to disable this, as it is also not possible to access
regular variable in particular time in this way. Use in operator
with region of type Region0D to represent the point instead.



Changes � �eld literal constructor, start values

of derivatives

• �eld literal constructor

• originally e.g. u = {2*a+b for (a,b) in omega}, where

iterator variables (a,b) exist only in constructor expression
and represent coordinates in omega. But which coordinate do
iterator variables represent if there are more coordinate
systems in omega?

• we suggest u = {2*omega.x+omega.y in omega.interior}

instead, where omega.x and omega.y are already de�ned in
omega.

• start value for derivatives of a �eld

• higher derivatives of �elds are allowed, thus we need to assign
initial values to derivatives. We suggest new attributes of a
�eld variables startPrime and startSecond to set start
value for �rst and second derivative. Prospective even higher
derivatives must be initialized in initialEquation section.



Changes � di�erential operators, normal vector,

accessing coordinate variables

• di�erential operators

• previously der(u)∼∂u
∂t , der(u,x)∼∂u

∂x

• we suggest pder(u, time)∼∂u
∂t , pder(u,x)∼∂u

∂x

• normal vector

• previously member of domain
• now member of regions of dimension n-1 in n-dimensional
domain i.e. plane in 3D, curve in 2D and points in 1D.

• accessing coordinate variables

• two possible shortcuts to access coordinates in equations



Conclusions and future goals

• we studied previous extensions

• proposed few changes to eliminate some weaknesses

• added some new extensions

Presented extension � merge of previous and new extensions.
What next?

• complete the extension (still several open problems)

• implement support (by compiler, runtime, solver) in
OpenModelica (during my PhD implement at least 1D models)

• attempt to standardize it



The End

New ideas welcome.

Thank you.



Bibliography

Peter Fritzson.
Principles of Object-Oriented Modeling and Simulation with

Modelica 2.1.
Wiley-IEEE Press, 2004.

Levon Saldamli.
A High-Level Language for Modeling with Partial Di�erential

Equations.
PhD thesis, Department of Computer and Information Science,
Linköping University, 2006.


