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Motivation

Achieve speed-up through parallel execution of the ODE-system’s tasks

OM-Simulation

Start Values

ODE-System

Time Integration

Assigning tasks to more than one CPU reduces simulation time

Improvement depends on model
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Motivation

Task Graph visualizes right-hand side evaluation

Contains computation costs, dependencies and communication costs
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Motivation

Task Graph based Parallelization

+ Heterogeneous data dependencies

+ Allows nested parallelism

+ Numerical stable

+ Universal parallel solution (in theory)

Obstacles

– Compile time

– Parallel efficiency

– Model dependent
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Scheduling

Scheduling is a NP-complete decision problem

Many greedy algorithms available

Complexity between O(n) and O(n4) (n ... number of tasks)

Low cost algorithms achieve usable solutions

But: No speed up guaranty
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Scheduling - Taxonomy
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Scheduling - ETF

Earliest Time First - Algorithm

List scheduler (for bounded
number of processors)

Checks every ready task for
earliest start time

Draws solved by highest bottom
level

Complexity: O(p · n2)
(p ... number of cores)

Other list scheduler:
LVL ... Level Scheduler

DLS ... Dynamical Level Scheduling

MCP ... Modified Critical Path
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Scheduling - Status

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel i7-3930K 6x 3.20 GHz, Linux
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Approach: Analyse scheduler and parallelization methods to close gaps
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TGSim-Framework

Task Graph Simulation Framework

Analyse and evaluate scheduling and clustering algorithms

Benchmark different parallelization methods

Parallel runtime prediction for OM simulations and other traceable
programs

Implementation:

Written in C++ using OOP

Easy to expand and user-friendly

Creates OM-simulation alike programs with low overhead tracing
mechanisms

ODE-tasks replaced by wait tasks to reduce unintended influences
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Scheduling

Runtime
AnalysisTGSim

OMC

GraphML

M O S

Statistic

TGSim workflow

Profiled CppRuntime-simulation creates
GraphML-file

TGSim uses GraphML-File as input

Analytical evaluation of scheduled task
graphs

Execution of scheduled simulations to
benchmark parallel methods
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Results - Outline

1 TGSim runtime simulation vs. OM-Cpp-Runtime simulation

Comparable?

2 Compare parallelization methods

Dynamic scheduling and static scheduling

3 Compare TGSim scheduler

Scheduling algorithms: MCP, DLS, ETF, LVL
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Results - TGSim vs. Cpp-Runtime

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux
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TGSim simulates OM-simulation work flow very well
To simplify comparing, the OpenMP-OM-Cpp-Runtime results will be in
every diagram

18/23



Results - TGSim vs. Cpp-Runtime

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux

1 2 4 6
0,00

0,50

1,00

1,50

2,00

2,50

3,00

TGSim_Level_OpenMP Cpp-Runtime_Level_OpenMP

number of cores

sp
ee

d-
up

TGSim simulates OM-simulation work flow very well

To simplify comparing, the OpenMP-OM-Cpp-Runtime results will be in
every diagram

18/23



Results - TGSim vs. Cpp-Runtime

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux

1 2 4 6
0,00

0,50

1,00

1,50

2,00

2,50

3,00

TGSim_Level_OpenMP Cpp-Runtime_Level_OpenMP

number of cores

sp
ee

d-
up

TGSim simulates OM-simulation work flow very well
To simplify comparing, the OpenMP-OM-Cpp-Runtime results will be in
every diagram

18/23



Results - Benchmark Dynamic Methods

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux

2 4 6
0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

TGSim_IntelTBB TGSim_OpenMP Cpp-Runtime_OpenMP

number of cores

sp
ee

d-
up

IntelTBB is comparable to OpenMP
Small disadvantage: Initialization time of IntelTBB ist 3700µs and of
OpenMP 4µs
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Results - Benchmark Static Methods

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux
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PThread Performance in the first test cases better

Static parallelization depends on scheduling
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Results - Benchmark Scheduling

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux
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Proper scheduling leads to high improvements
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Summary & Future Work

Summary

With increasing number of cores static scheduling performs better than
dynamic

Scheduler which consider communication costs comparable in
performance and much better than other

PThreads fastest parallelization method, OpenMP and IntelTBB
comparable

Future Work

Extend HPCOM OpenModelica library including TGSim optimizations
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Thank you for your attention.

E-Mail: marc.hartung@tu-dresden.de
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Test Framework TGSim II

MPI example

1 // core 1

2
3 //task 1

4 wait(costs1 );

5 MPI\_Isend(data1 ,...,core2 ,...);

6
7 //task 2

8 wait(costs2 );

9
10 //task4

11 MPI\_Irecv(data3 ,...,core2 ,...);

12 wait(costs4 );

1 // core 2

2
3 //task 3

4
5 MPIIrecv(data1 ,...,core1 ,...);

6
7
8 wait(costs3 );

9
10
11 MPIsend(data3 ,...,core1 ,...);
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