
Center for Information Services and High Performance Computing – TU Dresden

Efficient Clustering and Scheduling for

Task-Graph based Parallelization
Marc Hartung

02. February 2015

E-Mail: marc.hartung@tu-dresden.de

mailto:marc.hartung@tu-dresden.de

HPC-OM

www.hpc-om.de

2/23

Content

1 Motivation

2 Scheduling

3 TGSim - Framework

4 Results

3/23

Outline

1 Motivation

2 Scheduling

3 TGSim - Framework

4 Results

4/23

Motivation

Achieve speed-up through parallel execution of the ODE-system’s tasks

OM-Simulation

Start Values

ODE-System

Time Integration

Assigning tasks to more than one CPU reduces simulation time

Improvement depends on model

5/23

Motivation

Achieve speed-up through parallel execution of the ODE-system’s tasks

OM-Simulation

Start Values

ODE-System

Time Integration

Assigning tasks to more than one CPU reduces simulation time

Improvement depends on model

5/23

Motivation

Task Graph visualizes right-hand side evaluation

Contains computation costs, dependencies and communication costs

T4

110

T5

100

T3

50

T2

70

T1

10

computation costs10

dependency with communication costs

strongly connected componentTX

101010

10 10

10

Algorithms for task-to-core mapping and ordering are needed!

6/23

Motivation

Task Graph visualizes right-hand side evaluation

Contains computation costs, dependencies and communication costs

Core 2Core 1

T1

10

T2

70

T3

50

T5

100

T4

110

T4

110

T5

100

T3

50

T2

70

T1

10

computation costs10

dependency with communication costs

strongly connected componentTX

0 10

0100

101010

10 10

10

Algorithms for task-to-core mapping and ordering are needed!

6/23

Motivation

Task Graph visualizes right-hand side evaluation

Contains computation costs, dependencies and communication costs

Core 2Core 1

T1

10

T2

70

T3

50

T5

100

T4

110

T4

110

T5

100

T3

50

T2

70

T1

10

computation costs10

dependency with communication costs

strongly connected componentTX

0 10

0100

101010

10 10

10

Algorithms for task-to-core mapping and ordering are needed!

6/23

Motivation

Task Graph based Parallelization

+ Heterogeneous data dependencies

+ Allows nested parallelism

+ Numerical stable

+ Universal parallel solution (in theory)

Obstacles

– Compile time

– Parallel efficiency

– Model dependent

7/23

Motivation

Task Graph based Parallelization

+ Heterogeneous data dependencies

+ Allows nested parallelism

+ Numerical stable

+ Universal parallel solution (in theory)

Obstacles

– Compile time

– Parallel efficiency

– Model dependent

7/23

Outline

1 Motivation

2 Scheduling

3 TGSim - Framework

4 Results

8/23

Scheduling

Scheduling is a NP-complete decision problem

Many greedy algorithms available

Complexity between O(n) and O(n4) (n ... number of tasks)

Low cost algorithms achieve usable solutions

But: No speed up guaranty

9/23

Scheduling

Scheduling is a NP-complete decision problem

Many greedy algorithms available

Complexity between O(n) and O(n4) (n ... number of tasks)

Low cost algorithms achieve usable solutions

But: No speed up guaranty

9/23

Scheduling - Taxonomy

10/23

Scheduling - ETF

Earliest Time First - Algorithm

List scheduler (for bounded
number of processors)

Checks every ready task for
earliest start time

Draws solved by highest bottom
level

Complexity: O(p · n2)
(p ... number of cores)

Other list scheduler:
LVL ... Level Scheduler

DLS ... Dynamical Level Scheduling

MCP ... Modified Critical Path

11/23

Scheduling - ETF

Earliest Time First - Algorithm

List scheduler (for bounded
number of processors)

Checks every ready task for
earliest start time

Draws solved by highest bottom
level

Complexity: O(p · n2)
(p ... number of cores)

Other list scheduler:
LVL ... Level Scheduler

DLS ... Dynamical Level Scheduling

MCP ... Modified Critical Path

11/23

Scheduling - ETF

Earliest Time First - Algorithm

List scheduler (for bounded
number of processors)

Checks every ready task for
earliest start time

Draws solved by highest bottom
level

Complexity: O(p · n2)
(p ... number of cores)

Other list scheduler:
LVL ... Level Scheduler

DLS ... Dynamical Level Scheduling

MCP ... Modified Critical Path

11/23

Scheduling - ETF

Earliest Time First - Algorithm

List scheduler (for bounded
number of processors)

Checks every ready task for
earliest start time

Draws solved by highest bottom
level

Complexity: O(p · n2)
(p ... number of cores)

Other list scheduler:
LVL ... Level Scheduler

DLS ... Dynamical Level Scheduling

MCP ... Modified Critical Path

11/23

Scheduling - ETF

Earliest Time First - Algorithm

List scheduler (for bounded
number of processors)

Checks every ready task for
earliest start time

Draws solved by highest bottom
level

Complexity: O(p · n2)
(p ... number of cores)

Other list scheduler:
LVL ... Level Scheduler

DLS ... Dynamical Level Scheduling

MCP ... Modified Critical Path

11/23

Scheduling - ETF

Earliest Time First - Algorithm

List scheduler (for bounded
number of processors)

Checks every ready task for
earliest start time

Draws solved by highest bottom
level

Complexity: O(p · n2)
(p ... number of cores)

Other list scheduler:
LVL ... Level Scheduler

DLS ... Dynamical Level Scheduling

MCP ... Modified Critical Path

11/23

Scheduling - ETF

Earliest Time First - Algorithm

List scheduler (for bounded
number of processors)

Checks every ready task for
earliest start time

Draws solved by highest bottom
level

Complexity: O(p · n2)
(p ... number of cores)

Other list scheduler:
LVL ... Level Scheduler

DLS ... Dynamical Level Scheduling

MCP ... Modified Critical Path

11/23

Scheduling - ETF

Earliest Time First - Algorithm

List scheduler (for bounded
number of processors)

Checks every ready task for
earliest start time

Draws solved by highest bottom
level

Complexity: O(p · n2)
(p ... number of cores)

Other list scheduler:
LVL ... Level Scheduler

DLS ... Dynamical Level Scheduling

MCP ... Modified Critical Path

11/23

Scheduling - ETF

Earliest Time First - Algorithm

List scheduler (for bounded
number of processors)

Checks every ready task for
earliest start time

Draws solved by highest bottom
level

Complexity: O(p · n2)
(p ... number of cores)

Other list scheduler:
LVL ... Level Scheduler

DLS ... Dynamical Level Scheduling

MCP ... Modified Critical Path

11/23

Scheduling - Status

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel i7-3930K 6x 3.20 GHz, Linux

1 2 4 6
0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

1,00
1,59

2,38 2,80

Theoretical-Speed-Up Cpp-Runtime_Level_OpenMP

number of cores

sp
ee

d-
up

Approach: Analyse scheduler and parallelization methods to close gaps

12/23

Scheduling - Status

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel i7-3930K 6x 3.20 GHz, Linux

1 2 4 6
0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

1,00
1,59

2,38 2,80

Theoretical-Speed-Up Cpp-Runtime_Level_OpenMP

number of cores

sp
ee

d-
up

Approach: Analyse scheduler and parallelization methods to close gaps

12/23

Outline

1 Motivation

2 Scheduling

3 TGSim - Framework

4 Results

13/23

TGSim-Framework

Task Graph Simulation Framework

Analyse and evaluate scheduling and clustering algorithms

Benchmark different parallelization methods

Parallel runtime prediction for OM simulations and other traceable
programs

Implementation:

Written in C++ using OOP

Easy to expand and user-friendly

Creates OM-simulation alike programs with low overhead tracing
mechanisms

ODE-tasks replaced by wait tasks to reduce unintended influences

14/23

TGSim-Framework

Task Graph Simulation Framework

Analyse and evaluate scheduling and clustering algorithms

Benchmark different parallelization methods

Parallel runtime prediction for OM simulations and other traceable
programs

Implementation:

Written in C++ using OOP

Easy to expand and user-friendly

Creates OM-simulation alike programs with low overhead tracing
mechanisms

ODE-tasks replaced by wait tasks to reduce unintended influences

14/23

Scheduling

Runtime
AnalysisTGSim

OMC

GraphML

M O S

Statistic

TGSim workflow

Profiled CppRuntime-simulation creates
GraphML-file

TGSim uses GraphML-File as input

Analytical evaluation of scheduled task
graphs

Execution of scheduled simulations to
benchmark parallel methods

15/23

Outline

1 Motivation

2 Scheduling

3 TGSim - Framework

4 Results

16/23

Results - Outline

1 TGSim runtime simulation vs. OM-Cpp-Runtime simulation

Comparable?

2 Compare parallelization methods

Dynamic scheduling and static scheduling

3 Compare TGSim scheduler

Scheduling algorithms: MCP, DLS, ETF, LVL

17/23

Results - TGSim vs. Cpp-Runtime

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux

1 2 4 6
0,00

0,50

1,00

1,50

2,00

2,50

3,00

TGSim_Level_OpenMP Cpp-Runtime_Level_OpenMP

number of cores

sp
ee

d-
up

TGSim simulates OM-simulation work flow very well
To simplify comparing, the OpenMP-OM-Cpp-Runtime results will be in
every diagram

18/23

Results - TGSim vs. Cpp-Runtime

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux

1 2 4 6
0,00

0,50

1,00

1,50

2,00

2,50

3,00

TGSim_Level_OpenMP Cpp-Runtime_Level_OpenMP

number of cores

sp
ee

d-
up

TGSim simulates OM-simulation work flow very well

To simplify comparing, the OpenMP-OM-Cpp-Runtime results will be in
every diagram

18/23

Results - TGSim vs. Cpp-Runtime

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux

1 2 4 6
0,00

0,50

1,00

1,50

2,00

2,50

3,00

TGSim_Level_OpenMP Cpp-Runtime_Level_OpenMP

number of cores

sp
ee

d-
up

TGSim simulates OM-simulation work flow very well
To simplify comparing, the OpenMP-OM-Cpp-Runtime results will be in
every diagram

18/23

Results - Benchmark Dynamic Methods

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux

2 4 6
0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

TGSim_IntelTBB TGSim_OpenMP Cpp-Runtime_OpenMP

number of cores

sp
ee

d-
up

IntelTBB is comparable to OpenMP
Small disadvantage: Initialization time of IntelTBB ist 3700µs and of
OpenMP 4µs

19/23

Results - Benchmark Static Methods

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux

2 4 6
0,00

0,50

1,00

1,50

2,00

2,50

3,00

TGSim_Pthread TGSim_MPI Cpp-Runtime_OpenMP

number of cores

sp
ee

d-
up

PThread Performance in the first test cases better

Static parallelization depends on scheduling

20/23

Results - Benchmark Scheduling

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux

2 4 6
0

1

2

3

4

5

6

7

MCP DLS ETF LVL Cpp-Runtime

number of cores

sp
ee

d-
up

Proper scheduling leads to high improvements

21/23

Results - Benchmark Scheduling

Model: Modelica.Fluid.Examples.BranchingDynamicPipes
System: Intel Xeon E5-2690 8x 2.90GHz, Linux

2 4 6
0

1

2

3

4

5

6

7

MCP DLS ETF LVL Cpp-Runtime

number of cores

sp
ee

d-
up

Theoretical_Speed-Up

Proper scheduling leads to high improvements

21/23

Summary & Future Work

Summary

With increasing number of cores static scheduling performs better than
dynamic

Scheduler which consider communication costs comparable in
performance and much better than other

PThreads fastest parallelization method, OpenMP and IntelTBB
comparable

Future Work

Extend HPCOM OpenModelica library including TGSim optimizations

22/23

Summary & Future Work

Summary

With increasing number of cores static scheduling performs better than
dynamic

Scheduler which consider communication costs comparable in
performance and much better than other

PThreads fastest parallelization method, OpenMP and IntelTBB
comparable

Future Work

Extend HPCOM OpenModelica library including TGSim optimizations

22/23

Thank you for your attention.

E-Mail: marc.hartung@tu-dresden.de

23/23

Test Framework TGSim II

MPI example

1 // core 1

2
3 //task 1

4 wait(costs1);

5 MPI_Isend(data1 ,...,core2 ,...);

6
7 //task 2

8 wait(costs2);

9
10 //task4

11 MPI_Irecv(data3 ,...,core2 ,...);

12 wait(costs4);

1 // core 2

2
3 //task 3

4
5 MPIIrecv(data1 ,...,core1 ,...);

6
7
8 wait(costs3);

9
10
11 MPIsend(data3 ,...,core1 ,...);

23/23

	Motivation
	Scheduling
	TGSim - Framework
	Results

